Friday, December 1, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

γδ T cells: origin and fate, subsets, diseases and immunotherapy – Signal Transduction and Targeted Therapy


  • Sung, H. et al. Global Cancer Statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • de Visser, K. E. & Joyce, J. A. The evolving tumor microenvironment: from cancer initiation to metastatic outgrowth. Cancer Cell 41, 374–403 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • DePeaux, K. & Delgoffe, G. M. Metabolic barriers to cancer immunotherapy. Nat. Rev. Immunol. 21, 785–797 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Almagro, J. et al. Tissue architecture in tumor initiation and progression. Trends Cancer 8, 494–505 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hanahan, D. Hallmarks of cancer: new dimensions. Cancer Discov. 12, 31–46 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell. 144, 646–674 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Papotto, P. H., Ribot, J. C. & Silva-Santos, B. IL-17(+) gammadelta T cells as kick-starters of inflammation. Nat. Immunol. 18, 604–611 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Silva-Santos, B., Mensurado, S. & Coffelt, S. B. gammadelta T cells: pleiotropic immune effectors with therapeutic potential in cancer. Nat. Rev. Cancer 19, 392–404 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mensurado, S., Blanco-Dominguez, R. & Silva-Santos, B. The emerging roles of gammadelta T cells in cancer immunotherapy. Nat. Rev. Clin. Oncol. 20, 178–191 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ribot, J. C., Lopes, N. & Silva-Santos, B. gammadelta T cells in tissue physiology and surveillance. Nat. Rev. Immunol. 21, 221–232 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, Y. et al. Allogeneic Vgamma9Vdelta2 T-cell immunotherapy exhibits promising clinical safety and prolongs the survival of patients with late-stage lung or liver cancer. Cell Mol. Immunol. 18, 427–439 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alnaggar, M. et al. Allogenic Vgamma9Vdelta2 T cell as new potential immunotherapy drug for solid tumor: a case study for cholangiocarcinoma. J. Immunother. Cancer 7, 36 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang, J. et al. Allogeneic Vgamma9Vdelta2 T-cell therapy promotes pulmonary lesion repair: an open-label, single-arm pilot study in patients with multidrug-resistant tuberculosis. Front. Immunol. 12, 756495 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sebestyen, Z. et al. Translating gammadelta (gammadelta) T cells and their receptors into cancer cell therapies. Nat. Rev. Drug Discov. 19, 169–184 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deseke, M. & Prinz, I. Ligand recognition by the γδ TCR and discrimination between homeostasis and stress conditions. Cell Mol. Immunol. 17, 914–924 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vantourout, P. & Hayday, A. Six-of-the-best: unique contributions of gammadelta T cells to immunology. Nat. Rev. Immunol. 13, 88–100 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Silva-Santos, B., Serre, K. & Norell, H. gammadelta T cells in cancer. Nat. Rev. Immunol. 15, 683–691 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, L. et al. T cells in health and disease. Sig. Transduct. Target Ther. 8, 235 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Qu, G. et al. Comparing mouse and human tissue-resident gammadelta T cells. Front. Immunol. 13, 891687 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Papotto, P. H., Reinhardt, A., Prinz, I. & Silva-Santos, B. Innately versatile: gammadelta17 T cells in inflammatory and autoimmune diseases. J. Autoimmun. 87, 26–37 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grupp, S. A. et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N. Engl. J. Med. 368, 1509–1518 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Porter, D. L. et al. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N. Engl. J. Med. 365, 725–733 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • June, C. H. et al. CAR T cell immunotherapy for human cancer. Science 359, 1361–1365 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ellebrecht, C. T. et al. Reengineering chimeric antigen receptor T cells for targeted therapy of autoimmune disease. Science 353, 179–184 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mirzaei, H. R. et al. Prospects for chimeric antigen receptor (CAR) gammadelta T cells: a potential game changer for adoptive T cell cancer immunotherapy. Cancer Lett. 380, 413–423 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wawrzyniecka, P. A. et al. Chimeric antigen receptor T cells for gamma-delta T cell malignancies. Leukemia 36, 577–579 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Makkouk, A. et al. Allogeneic Vδ1 gamma delta T cells engineered with glypican-3 (GPC3)-specific CAR expressing soluble IL-15 have enhanced antitumor efficacy against hepatocellular carcinoma in preclinical models. J. Clin. Oncol. 39, e14511–e14511 (2021).

    Article 

    Google Scholar
     

  • Saito, H. et al. Complete primary structure of a heterodimeric T-cell receptor deduced from cDNA sequences. Nature 309, 757–762 (1984).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hayday, A. C. et al. Structure, organization, and somatic rearrangement of T cell gamma genes. Cell 40, 259–269 (1985).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lefranc, M.-P. & Rabbitts, T. Two tandemly organized human genes encoding the T-cell γ constant-region sequences show multiple rearrangement in different T-cell types. Nature 316, 464–466 (1985).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Murre, C. et al. Human γ-chain genes are rearranged in leukaemic T cells and map to the short arm of chromosome 7. Nature 316, 549–552 (1985).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bank, I. et al. A functional T3 molecule associated with a novel heterodimer on the surface of immature human thymocytes. Nature 322, 179–181 (1986).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brenner, M. B. et al. Identification of a putative second T-cell receptor. Nature 322, 145–149 (1986).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Borst, J. et al. A T-cell receptor γ/CD3 complex found on cloned functional lymphocytes. Nature 325, 683–688 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Born, W. et al. Recognition of a peptide antigen by heat shock-reactive γδ T lymphocytes. Science 249, 67–69 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • O’Brien, R. L. et al. Stimulation of a major subset of lymphocytes expressing T cell receptor γδ by an antigen derived from Mycobacterium tuberculosis. Cell 57, 667–674 (1989).

    Article 
    PubMed 

    Google Scholar
     

  • Holoshttz, J. et al. Isolation of CD4-CD8-mycobacteria-reactive T lymphocyte clones from rheumatoid arthritis synovial fluid. Nature 339, 226–229 (1989).

    Article 

    Google Scholar
     

  • Janis, E. M., Kaufmann, S. H., Schwartz, R. H. & Pardoll, D. M. Activation of γδ T cells in the primary immune response to Mycobacterium tuberculosis. Science 244, 713–716 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Modlin, R. L. et al. Lymphocytes bearing antigen-specific γδ T-cell receptors accumulate in human infectious disease lesions. Nature 339, 544–548 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Augustin, A., Kubo, R. T. & Sim, G.-K. Resident pulmonary lymphocytes expressing the γ/δ T-cell receptor. Nature 340, 239–241 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Haregewoin, A., Soman, G., Horn, R. C. & Finberg, R. W. Human γδ + T cells respond to mycobacterial heat-shock protein. Nature 340, 309–312 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Autran, B. et al. T cell receptor gamma/delta+ lymphocyte subsets during HIV infection. Clin. Exp. Immunol. 75, 206 (1989).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferrick, D. A. et al. Differential production of interferon-γ and interleukin-4 in response to Th1-and Th2-stimulating pathogens by γδ T cells in vivo. Nature 373, 255–257 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morita, C. T. et al. Direct presentation of nonpeptide prenyl pyrophosphate antigens to human γδ T cells. Immunity 3, 495–507 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • De Paoli, P. et al. A subset of γδ lymphocytes is increased during HIV‐1 infection. Clin. Exp. Immunol. 83, 187–191 (1991).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Maria, A. et al. Selective increase of a subset of T cell receptor γδ T lymphocytes in the peripheral blood of patients with human immunodeficiency virus type 1 infection. J. Infect. Dis. 165, 917–919 (1992).

    Article 
    PubMed 

    Google Scholar
     

  • Boullier, S., Cochet, M., Poccia, F. & Gougeon, M.-L. CDR3-independent gamma delta V delta 1 + T cell expansion in the peripheral blood of HIV-infected persons. J. Immunol. 154, 1418–1431 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boismenu, R. & Havran, W. L. Modulation of epithelial cell growth by intraepithelial γδ T cells. Science 266, 1253–1255 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harrison, L. C., Dempsey-Collier, M., Kramer, D. R. & Takahashi, K. Aerosol insulin induces regulatory CD8 γδ T cells that prevent murine insulin-dependent diabetes. J. Exp. Med. 184, 2167–2174 (1996).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zuany-Amorim, C. et al. Requirement for γδ T cells in allergic airway inflammation. Science 280, 1265–1267 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fournié, J. J. & Bonneville, M. Stimulation of γδ T cells by phosphoantigens. Res. Immunol. 147, 338–347 (1996).

    Article 
    PubMed 

    Google Scholar
     

  • Hoft, D. F., Brown, R. M. & Roodman, S. T. Bacille Calmette-Guérin vaccination enhances human γδ T cell responsiveness to mycobacteria suggestive of a memory-like phenotype. J. Immunol. 161, 1045–1054 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Girardi, M. et al. Regulation of cutaneous malignancy by γδ T cells. Science 294, 605–609 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wilhelm, M. et al. T cells for immune therapy of patients with lymphoid malignancies. Blood 102, 200–206 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rischer, M. et al. Human γδ T cells as mediators of chimaeric‐receptor redirected anti‐tumour immunity. Br. J. Haematol. 126, 583–592 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brandes, M., Willimann, K. & Moser, B. Professional antigen-presentation function by human γδ T cells. Science 309, 264–268 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lockhart, E., Green, A. M. & Flynn, J. L. IL-17 production is dominated by gammadelta T cells rather than CD4 T cells during Mycobacterium tuberculosis infection. J. Immunol. 177, 4662–4669 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Umemura, M. et al. IL-17-mediated regulation of innate and acquired immune response against pulmonary Mycobacterium bovis bacille Calmette-Guerin infection. J. Immunol. 178, 3786–3796 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shibata, K. et al. Resident Vdelta1+ gammadelta T cells control early infiltration of neutrophils after Escherichia coli infection via IL-17 production. J. Immunol. 178, 4466–4472 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peng, M. et al. Interleukin 17-producing γδ T cells increased in patients with active pulmonary tuberculosis. Cell Mol. Immunol. 5, 203–208 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fenoglio, D. et al. Vdelta1 T lymphocytes producing IFN-gamma and IL-17 are expanded in HIV-1-infected patients and respond to Candida albicans. Blood 113, 6611–6618 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sutton, C. E. et al. Interleukin-1 and IL-23 induce innate IL-17 production from γδ T cells, amplifying Th17 responses and autoimmunity. Immunity 31, 331–341 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ribot, J. C. et al. CD27 is a thymic determinant of the balance between interferon-γ-and interleukin 17–producing γδ T cell subsets. Nat. Immunol. 10, 427–436 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haas, J. D. et al. CCR6 and NK1. 1 distinguish between IL‐17 A and IFN‐γ‐producing γδ effector T cells. Eur. J. Immunol. 39, 3488–3497 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shichita, T. et al. Pivotal role of cerebral interleukin-17-producing gammadeltaT cells in the delayed phase of ischemic brain injury. Nat. Med. 15, 946–950 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martin, B. et al. Interleukin-17-producing γδ T cells selectively expand in response to pathogen products and environmental signals. Immunity 31, 321–330 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cho, J. S. et al. IL-17 is essential for host defense against cutaneous Staphylococcus aureus infection in mice. J. Clin. Invest. 120, 1762–1773 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Petermann, F. et al. gammadelta T cells enhance autoimmunity by restraining regulatory T cell responses via an interleukin-23-dependent mechanism. Immunity 33, 351–363 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pantelyushin, S. et al. Rorgammat+ innate lymphocytes and gammadelta T cells initiate psoriasiform plaque formation in mice. J. Clin. Invest. 122, 2252–2256 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laggner, U. et al. Identification of a novel proinflammatory human skin-homing Vγ9Vδ2 T cell subset with a potential role in psoriasis. J. Immunol. 187, 2783–2793 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cai, Y. et al. Pivotal role of dermal IL-17-producing γδ T cells in skin inflammation. Immunity 35, 596–610 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mabuchi, T., Takekoshi, T. & Hwang, S. T. Epidermal CCR6+ γδ T cells are major producers of IL-22 and IL-17 in a murine model of psoriasiform dermatitis. J. Immunol. 187, 5026–5031 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Becher, B. & Pantelyushin, S. Hiding under the skin: Interleukin-17–producing γδ T cells go under the skin? Nat. Med. 18, 1748–1750 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krueger, J. G. Hiding under the skin: a welcome surprise in psoriasis. Nat. Med. 18, 1750–1751 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gray, E. E. et al. Deficiency in IL-17-committed Vγ4 + γδ T cells in a spontaneous Sox13-mutant CD45. 1+ congenic mouse substrain provides protection from dermatitis. Nat. Immunol. 14, 584–592 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rei, M. et al. Murine CD27(-) Vgamma6(+) gammadelta T cells producing IL-17A promote ovarian cancer growth via mobilization of protumor small peritoneal macrophages. Proc. Natl Acad. Sci. USA 111, E3562–E3570 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wakita, D. et al. Tumor-infiltrating IL-17-producing gammadelta T cells support the progression of tumor by promoting angiogenesis. Eur. J. Immunol. 40, 1927–1937 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Carmi, Y. et al. Microenvironment-derived IL-1 and IL-17 interact in the control of lung metastasis. J. Immunol. 186, 3462–3471 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma, S. et al. IL-17A produced by gammadelta T cells promotes tumor growth in hepatocellular carcinoma. Cancer Res. 74, 1969–1982 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, P. et al. gammadeltaT17 cells promote the accumulation and expansion of myeloid-derived suppressor cells in human colorectal cancer. Immunity 40, 785–800 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Caccamo, N. et al. Differentiation, phenotype, and function of interleukin-17-producing human Vgamma9Vdelta2 T cells. Blood 118, 129–138 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harly, C. et al. Key implication of CD277/butyrophilin-3 (BTN3A) in cellular stress sensing by a major human gammadelta T-cell subset. Blood 120, 2269–2279 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sheridan, B. S. et al. gammadelta T cells exhibit multifunctional and protective memory in intestinal tissues. Immunity 39, 184–195 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murphy, A. G. et al. Staphylococcus aureus infection of mice expands a population of memory gammadelta T cells that are protective against subsequent infection. J. Immunol. 192, 3697–3708 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Soriano-Sarabia, N. et al. Peripheral Vgamma9Vdelta2 T Cells Are a Novel Reservoir of Latent HIV Infection. PLoS Pathog. 11, e1005201 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gentles, A. J. et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat. Med. 21, 938–945 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rijkers, G., Vervenne, T. & van der Pol, P. More bricks in the wall against SARS-CoV-2 infection: involvement of gamma9delta2 T cells. Cell Mol. Immunol. 17, 771–772 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carissimo, G. et al. Whole blood immunophenotyping uncovers immature neutrophil-to-VD2 T-cell ratio as an early marker for severe COVID-19. Nat. Commun. 11, 5243 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jouan, Y. et al. Phenotypical and functional alteration of unconventional T cells in severe COVID-19 patients. J. Exp. Med. 217, 1–9 (2020).

    Article 

    Google Scholar
     

  • Zhu, X. et al. Dectin-1 signaling on colonic gammadelta T cells promotes psychosocial stress responses. Nat. Immunol. 24, 625–636 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hosokawa, H. & Rothenberg, E. V. How transcription factors drive choice of the T cell fate. Nat. Rev. Immunol. 21, 162–176 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sumaria, N., Martin, S. & Pennington, D. J. Developmental origins of murine gammadelta T-cell subsets. Immunology 156, 299–304 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rothenberg, E. V. Single-cell insights into the hematopoietic generation of T-lymphocyte precursors in mouse and human. Exp. Hematol. 95, 1–12 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiong, N. & Raulet, D. H. Development and selection of gammadelta T cells. Immunol. Rev. 215, 15–31 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boehme, L., Roels, J. & Taghon, T. Development of gammadelta T cells in the thymus – a human perspective. Semin Immunol. 6164, 101662 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Munoz-Ruiz, M., Sumaria, N., Pennington, D. J. & Silva-Santos, B. Thymic determinants of gammadelta T cell differentiation. Trends Immunol. 38, 336–344 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shah, D. K. & Zuniga-Pflucker, J. C. An overview of the intrathymic intricacies of T cell development. J. Immunol. 192, 4017–4023 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pellicci, D. G., Koay, H. F. & Berzins, S. P. Thymic development of unconventional T cells: how NKT cells, MAIT cells and gammadelta T cells emerge. Nat. Rev. Immunol. 20, 756–770 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McVay, L. D. & Carding, S. R. Generation of human gammadelta T-cell repertoires. Crit. Rev. Immunol. 19, 431–460 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Carding, S. R. et al. Developmentally regulated fetal thymic and extrathymic T-cell receptor gamma delta gene expression. Genes Dev. 4, 1304–1315 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Velilla, P. A., Rugeles, M. T. & Chougnet, C. A. Defective antigen-presenting cell function in human neonates. Clin. Immunol. 121, 251–259 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Washburn, T. et al. Notch activity influences the alphabeta versus gammadelta T cell lineage decision. Cell 88, 833–843 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Van Coppernolle, S. et al. Notch induces human T-cell receptor gammadelta+ thymocytes to differentiate along a parallel, highly proliferative and bipotent CD4 CD8 double-positive pathway. Leukemia 26, 127–138 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Garcia-Peydro, M., de Yebenes, V. G. & Toribio, M. L. Notch1 and IL-7 receptor interplay maintains proliferation of human thymic progenitors while suppressing non-T cell fates. J. Immunol. 177, 3711–3720 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Haks, M. C. et al. Attenuation of gammadeltaTCR signaling efficiently diverts thymocytes to the alphabeta lineage. Immunity 22, 595–606 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zarin, P. et al. Enforcement of gammadelta-lineage commitment by the pre-T-cell receptor in precursors with weak gammadelta-TCR signals. Proc. Natl Acad. Sci. USA 111, 5658–5663 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hayes, S. M., Li, L. & Love, P. E. TCR signal strength influences alphabeta/gammadelta lineage fate. Immunity 22, 583–593 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hayday, A. C. & Pennington, D. J. Key factors in the organized chaos of early T cell development. Nat. Immunol. 8, 137–144 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Garcia-Peydro, M., de Yebenes, V. G. & Toribio, M. L. Sustained Notch1 signaling instructs the earliest human intrathymic precursors to adopt a gammadelta T-cell fate in fetal thymus organ culture. Blood 102, 2444–2451 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Van de Walle, I. et al. Specific Notch receptor-ligand interactions control human TCR-alphabeta/gammadelta development by inducing differential Notch signal strength. J. Exp. Med. 210, 683–697 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van de Walle, I. et al. An early decrease in Notch activation is required for human TCR-alphabeta lineage differentiation at the expense of TCR-gammadelta T cells. Blood 113, 2988–2998 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Buus, T. B., Odum, N., Geisler, C. & Lauritsen, J. P. H. Three distinct developmental pathways for adaptive and two IFN-gamma-producing gammadelta T subsets in adult thymus. Nat. Commun. 8, 1911 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fiala, G. J., Gomes, A. Q. & Silva-Santos, B. From thymus to periphery: molecular basis of effector gammadelta-T cell differentiation. Immunol. Rev. 298, 47–60 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gogoi, D., Dar, A. A. & Chiplunkar, S. V. Involvement of Notch in activation and effector functions of gammadelta T cells. J. Immunol. 192, 2054–2062 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Di Lorenzo, B., Ravens, S. & Silva-Santos, B. High-throughput analysis of the human thymic Vdelta1(+) T cell receptor repertoire. Sci. Data 6, 115 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McVay, L. D. et al. The generation of human gammadelta T cell repertoires during fetal development. J. Immunol. 160, 5851–5860 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ciofani, M. et al. Stage-specific and differential notch dependency at the alphabeta and gammadelta T lineage bifurcation. Immunity 25, 105–116 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ciofani, M. & Zuniga-Pflucker, J. C. Determining gammadelta versus alphass T cell development. Nat. Rev. Immunol. 10, 657–663 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kreslavsky, T., Garbe, A. I., Krueger, A. & von Boehmer, H. T cell receptor-instructed alphabeta versus gammadelta lineage commitment revealed by single-cell analysis. J. Exp. Med. 205, 1173–1186 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prinz, I. et al. Visualization of the earliest steps of gammadelta T cell development in the adult thymus. Nat. Immunol. 7, 995–1003 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weerkamp, F. et al. Human thymus contains multipotent progenitors with T/B lymphoid, myeloid, and erythroid lineage potential. Blood 107, 3131–3137 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ktorza, S. et al. CD34-positive early human thymocytes: T cell receptor and cytokine receptor gene expression. Eur. J. Immunol. 25, 2471–2478 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krangel, M. S., Yssel, H., Brocklehurst, C. & Spits, H. A distinct wave of human T cell receptor gamma/delta lymphocytes in the early fetal thymus: evidence for controlled gene rearrangement and cytokine production. J. Exp. Med. 172, 847–859 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tieppo, P. et al. The human fetal thymus generates invariant effector gammadelta T cells. J. Exp. Med. 217, e20190834 (2020).

    Article 

    Google Scholar
     

  • Papadopoulou, M. et al. TCR sequencing reveals the distinct development of fetal and adult human Vgamma9Vdelta2 T cells. J. Immunol. 203, 1468–1479 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Elliott, J. F. et al. The adult T-cell receptor delta-chain is diverse and distinct from that of fetal thymocytes. Nature 331, 627–631 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Casorati, G., De Libero, G., Lanzavecchia, A. & Migone, N. Molecular analysis of human gamma/delta+ clones from thymus and peripheral blood. J. Exp. Med. 170, 1521–1535 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Davey, M. S. et al. The human Vdelta2(+) T-cell compartment comprises distinct innate-like Vgamma9(+) and adaptive Vgamma9(−) subsets. Nat. Commun. 9, 1760 (2018).

    Article 
    PubMed Central 

    Google Scholar
     

  • Fisch, P. et al. Recognition by human V gamma 9/V delta 2 T cells of a GroEL homolog on Daudi Burkitt’s lymphoma cells. Science 250, 1269–1273 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, H. et al. Profiling the pattern of the human T-cell receptor gammadelta complementary determinant region 3 repertoire in patients with lung carcinoma via high-throughput sequencing analysis. Cell Mol. Immunol. 16, 250–259 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y. et al. The role of short homology repeats and TdT in generation of the invariant gamma delta antigen receptor repertoire in the fetal thymus. Immunity 3, 439–447 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kallemeijn, M. J. et al. Next-generation sequencing analysis of the human TCRgammadelta+ T-cell repertoire reveals shifts in Vgamma- and Vdelta-usage in memory populations upon aging. Front. Immunol. 9, 448 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Couedel, C. et al. Allelic exclusion at the TCR delta locus and commitment to gamma delta lineage: different modalities apply to distinct human gamma delta subsets. J. Immunol. 172, 5544–5552 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Asnafi, V. et al. Analysis of TCR, pT alpha, and RAG-1 in T-acute lymphoblastic leukemias improves understanding of early human T-lymphoid lineage commitment. Blood 101, 2693–2703 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Davodeau, F. et al. Surface expression of two distinct functional antigen receptors on human gamma delta T cells. Science 260, 1800–1802 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gonzalez-Garcia, S. et al. CSL-MAML-dependent Notch1 signaling controls T lineage-specific IL-7Ralpha gene expression in early human thymopoiesis and leukemia. J. Exp. Med. 206, 779–791 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pallard, C. et al. Distinct roles of the phosphatidylinositol 3-kinase and STAT5 pathways in IL-7-mediated development of human thymocyte precursors. Immunity 10, 525–535 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ye, S. K. et al. The IL-7 receptor controls the accessibility of the TCRgamma locus by Stat5 and histone acetylation. Immunity 15, 813–823 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ye, S. K. et al. Induction of germline transcription in the TCRgamma locus by Stat5: implications for accessibility control by the IL-7 receptor. Immunity 11, 213–223 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wagatsuma, K. et al. STAT5 orchestrates local epigenetic changes for chromatin accessibility and rearrangements by direct binding to the TCRgamma locus. J. Immunol. 195, 1804–1814 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roels, J. et al. Transcriptional dynamics and epigenetic regulation of E and ID protein encoding genes during human T cell development. Front. Immunol. 13, 960918 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghosh, J. K., Romanow, W. J. & Murre, C. Induction of a diverse T cell receptor gamma/delta repertoire by the helix-loop-helix proteins E2A and HEB in nonlymphoid cells. J. Exp. Med. 193, 769–776 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Langerak, A. W. et al. Basic helix-loop-helix proteins E2A and HEB induce immature T-cell receptor rearrangements in nonlymphoid cells. Blood 98, 2456–2465 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nie, L., Xu, M., Vladimirova, A. & Sun, X. H. Notch-induced E2A ubiquitination and degradation are controlled by MAP kinase activities. EMBO J. 22, 5780–5792 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rodriguez-Caparros, A. et al. Notch signaling controls transcription via the recruitment of RUNX1 and MYB to enhancers during T cell development. J. Immunol. 202, 2460–2472 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Van de Walle, I. et al. GATA3 induces human T-cell commitment by restraining Notch activity and repressing NK-cell fate. Nat. Commun. 7, 11171 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garbe, A. I. et al. Differential synergy of Notch and T cell receptor signaling determines alphabeta versus gammadelta lineage fate. J. Exp. Med. 203, 1579–1590 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Smedt, M. et al. Different thresholds of Notch signaling bias human precursor cells toward B-, NK-, monocytic/dendritic-, or T-cell lineage in thymus microenvironment. Blood 106, 3498–3506 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Ha, V. L. et al. The T-ALL related gene BCL11B regulates the initial stages of human T-cell differentiation. Leukemia 31, 2503–2514 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cante-Barrett, K. et al. Loss of CD44(dim) expression from early progenitor cells marks T-cell lineage commitment in the human thymus. Front. Immunol. 8, 32 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Puel, A., Ziegler, S. F., Buckley, R. H. & Leonard, W. J. Defective IL7R expression in T(-)B( + )NK(+) severe combined immunodeficiency. Nat. Genet. 20, 394–397 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hinz, T. et al. Cell-surface expression of transrearranged Vgamma-cbeta T-cell receptor chains in healthy donors and in ataxia telangiectasia patients. Br. J. Haematol. 109, 201–210 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Davodeau, F. et al. Surface expression of functional T cell receptor chains formed by interlocus recombination on human T lymphocytes. J. Exp. Med. 180, 1685–1691 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Edwards, S. C. et al. A population of proinflammatory T cells coexpresses alphabeta and gammadelta T cell receptors in mice and humans. J. Exp. Med. 217, e20190834 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeng, Y. et al. Single-cell RNA sequencing resolves spatiotemporal development of pre-thymic lymphoid progenitors and thymus organogenesis in human embryos. Immunity 51, 930–948.e936 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sanchez Sanchez, G. et al. Identification of distinct functional thymic programming of fetal and pediatric human gammadelta thymocytes via single-cell analysis. Nat. Commun. 13, 5842 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perriman, L. et al. A three-stage developmental pathway for human Vγ9Vδ2 T cells within the postnatal thymus. Sci. Immunol. 8, eabo4365 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shah, K., Al-Haidari, A., Sun, J. & Kazi, J. U. T cell receptor (TCR) signaling in health and disease. Sig. Transduct. Target Ther. 6, 412 (2021).

    Article 

    Google Scholar
     

  • Singer, A., Adoro, S. & Park, J. H. Lineage fate and intense debate: myths, models and mechanisms of CD4- versus CD8-lineage choice. Nat. Rev. Immunol. 8, 788–801 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Spidale, N. A. et al. Interleukin-17-producing gammadelta T cells originate from SOX13(+) progenitors that are independent of gammadeltaTCR signaling. Immunity 49, 857–872.e5 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Melichar, H. J. et al. Regulation of gammadelta versus alphabeta T lymphocyte differentiation by the transcription factor SOX13. Science 315, 230–233 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Munoz-Ruiz, M. et al. TCR signal strength controls thymic differentiation of discrete proinflammatory gammadelta T cell subsets. Nat. Immunol. 17, 721–727 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bain, G. et al. Regulation of the helix-loop-helix proteins, E2A and Id3, by the Ras-ERK MAPK cascade. Nat. Immunol. 2, 165–171 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, S. Y. et al. Noncanonical mode of ERK action controls alternative alphabeta and gammadelta T cell lineage fates. Immunity 41, 934–946 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murphy, L. O. et al. Molecular interpretation of ERK signal duration by immediate early gene products. Nat. Cell Biol. 4, 556–564 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yukawa, M. et al. AP-1 activity induced by co-stimulation is required for chromatin opening during T cell activation. J. Exp. Med. 217, e20182009 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Roels, J. et al. Distinct and temporary-restricted epigenetic mechanisms regulate human alphabeta and gammadelta T cell development. Nat. Immunol. 21, 1280–1292 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rivera, R. R. et al. Thymocyte selection is regulated by the helix-loop-helix inhibitor protein, Id3. Immunity 12, 17–26 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sagar et al. Deciphering the regulatory landscape of fetal and adult gammadelta T-cell development at single-cell resolution. EMBO J. 39, e104159 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pennington, D. J. et al. The inter-relatedness and interdependence of mouse T cell receptor gammadelta+ and alphabeta+ cells. Nat. Immunol. 4, 991–998 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schmolka, N., Wencker, M., Hayday, A. C. & Silva-Santos, B. Epigenetic and transcriptional regulation of gammadelta T cell differentiation: programming cells for responses in time and space. Semin Immunol. 27, 19–25 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kagnoff, M. F. Current concepts in mucosal immunity. III. Ontogeny and function of gamma delta T cells in the intestine. Am. J. Physiol. 274, G455–G458 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • Nielsen, M. M., Witherden, D. A. & Havran, W. L. gammadelta T cells in homeostasis and host defence of epithelial barrier tissues. Nat. Rev. Immunol. 17, 733–745 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin, Y. et al. CCR10 is important for the development of skin-specific gammadeltaT cells by regulating their migration and location. J. Immunol. 185, 5723–5731 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, W. et al. Skin gammadelta T cells and their function in wound healing. Front. Immunol. 13, 875076 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frascoli, M. et al. Skin gammadelta T cell inflammatory responses are hardwired in the thymus by oxysterol sensing via GPR183 and calibrated by dietary cholesterol. Immunity 56, 562–575.e566 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marshall, A. S. et al. Skin-Resident gammadelta T cells exhibit site-specific morphology and activation states. J. Immunol. Res. 2019, 9020234 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, Y. et al. Epidermal resident gammadelta T cell development and function in skin. Cell. Mol. Life Sci. CMLS 78, 573–580 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Castillo-Gonzalez, R., Cibrian, D. & Sanchez-Madrid, F. Dissecting the complexity of gammadelta T-cell subsets in skin homeostasis, inflammation, and malignancy. J. Allergy Clin. Immunol. 147, 2030–2042 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cruz, M. S., Diamond, A., Russell, A. & Jameson, J. M. Human alphabeta and gammadelta T cells in skin immunity and disease. Front. Immunol. 9, 1304 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fischer, M. A., Golovchenko, N. B. & Edelblum, K. L. gammadelta T cell migration: separating trafficking from surveillance behaviors at barrier surfaces. Immunol. Rev. 298, 165–180 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McCarthy, N. E. & Eberl, M. Human gammadelta T-cell control of mucosal immunity and inflammation. Front. Immunol. 9, 985 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chien, Y. H., Meyer, C. & Bonneville, M. gammadelta T cells: first line of defense and beyond. Annu. Rev. Immunol. 32, 121–155 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rampoldi, F. & Prinz, I. Three layers of intestinal gammadelta T cells talk different languages with the microbiota. Front. Immunol. 13, 849954 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johnson, M. D., Witherden, D. A. & Havran, W. L. The role of tissue-resident T cells in stress surveillance and tissue maintenance. Cells. 9, 686 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Uehara, S., Song, K., Farber, J. M. & Love, P. E. Characterization of CCR9 expression and CCL25/thymus-expressed chemokine responsiveness during T cell development: CD3(high)CD69+ thymocytes and gammadeltaTCR+ thymocytes preferentially respond to CCL25. J. Immunol. 168, 134–142 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Poggi, A. et al. Migration of V delta 1 and V delta 2 T cells in response to CXCR3 and CXCR4 ligands in healthy donors and HIV-1-infected patients: competition by HIV-1 Tat. Blood 103, 2205–2213 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Glatzel, A. et al. Patterns of chemokine receptor expression on peripheral blood gamma delta T lymphocytes: strong expression of CCR5 is a selective feature of V delta 2/V gamma 9 gamma delta T cells. J. Immunol. 168, 4920–4929 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bonecchi, R. et al. Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (Th1s) and Th2s. J. Exp. Med. 187, 129–134 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kabelitz, D. & Wesch, D. Features and functions of gamma delta T lymphocytes: focus on chemokines and their receptors. Crit. Rev. Immunol. 23, 339–370 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lança, T. et al. Protective role of the inflammatory CCR2/CCL2 chemokine pathway through recruitment of type 1 cytotoxic γδ T lymphocytes to tumor beds. J. Immunol. 190, 6673–6680 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • McVay, L. D. & Carding, S. R. Extrathymic origin of human gamma delta T cells during fetal development. J. Immunol. 157, 2873–2882 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dimova, T. et al. Effector Vgamma9Vdelta2 T cells dominate the human fetal gammadelta T-cell repertoire. Proc. Natl Acad. Sci. USA 112, E556–E565 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Willcox, C. R., Davey, M. S. & Willcox, B. E. Development and selection of the human Vgamma9Vdelta2(+) T-cell repertoire. Front. Immunol. 9, 1501 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, W., Lau, Z. W. X., Fulop, T. & Larbi, A. The aging of gammadelta T cells. Cells. 9, 1181 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morita, C. T., Parker, C. M., Brenner, M. B. & Band, H. TCR usage and functional capabilities of human gamma delta T cells at birth. J. Immunol. 153, 3979–3988 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ribot, J. C. et al. Human gammadelta thymocytes are functionally immature and differentiate into cytotoxic type 1 effector T cells upon IL-2/IL-15 signaling. J. Immunol. 192, 2237–2243 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Parker, C. M. et al. Evidence for extrathymic changes in the T cell receptor gamma/delta repertoire. J. Exp. Med. 171, 1597–1612 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goronzy, J. J. & Weyand, C. M. Mechanisms underlying T cell ageing. Nat. Rev. Immunol. 19, 573–583 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mittelbrunn, M. & Kroemer, G. Hallmarks of T cell aging. Nat. Immunol. 22, 687–698 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tserel, L. et al. Age-related profiling of DNA methylation in CD8 + T cells reveals changes in immune response and transcriptional regulator genes. Sci. Rep. 5, 13107 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Urban, L. A. et al. The impact of age-related hypomethylated DNA on immune signaling upon cellular demise. Trends Immunol. 42, 464–468 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, J. et al. DNA methylation of T lymphocytes as a therapeutic target: implications for rheumatoid arthritis etiology. Front. Immunol. 13, 863703 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, S. et al. MicroRNA profile of circulating CD4 + T cells in aged patients with atherosclerosis obliterans. BMC Cardiovasc. Disord. 22, 172 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, C., Ye, Z., Weyand, C. M. & Goronzy, J. J. miR-181a-regulated pathways in T-cell differentiation and aging. Immun. Ageing 18, 28 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taheri, M. et al. Emerging role of non-coding RNAs in regulation of T-lymphocyte function. Front. Immunol. 12, 756042 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wells, A. C., Pobezinskaya, E. L. & Pobezinsky, L. A. Non-coding RNAs in CD8 T cell biology. Mol. Immunol. 120, 67–73 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Argentati, K. et al. Numerical and functional alterations of circulating gammadelta T lymphocytes in aged people and centenarians. J. Leukoc. Biol. 72, 65–71 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jia, Z. et al. Immune-ageing evaluation of peripheral T and NK lymphocyte subsets in Chinese healthy adults. Phenomics 3, 360–374 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lopez-Otin, C. et al. Hallmarks of aging: an expanding universe. Cell 186, 243–278 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ullrich, R. et al. gamma delta T cells in the human intestine express surface markers of activation and are preferentially located in the epithelium. Cell Immunol. 128, 619–627 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Toulon, A. et al. A role for human skin-resident T cells in wound healing. J. Exp. Med. 206, 743–750 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bos, J. D. et al. T-cell receptor gamma delta bearing cells in normal human skin. J. Invest. Dermatol. 94, 37–42 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ravens, S. et al. Human gammadelta T cells are quickly reconstituted after stem-cell transplantation and show adaptive clonal expansion in response to viral infection. Nat. Immunol. 18, 393–401 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Silva-Santos, B. & Strid, J. gammadelta T cells get adaptive. Nat. Immunol. 18, 370–372 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Melandri, D. et al. The gammadeltaTCR combines innate immunity with adaptive immunity by utilizing spatially distinct regions for agonist selection and antigen responsiveness. Nat. Immunol. 19, 1352–1365 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brandes, M. et al. Cross-presenting human gammadelta T cells induce robust CD8+ alphabeta T cell responses. Proc. Natl Acad. Sci. USA 106, 2307–2312 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chan, K. F., Duarte, J. D. G., Ostrouska, S. & Behren, A. gammadelta T cells in the tumor microenvironment-interactions with other immune cells. Front. Immunol. 13, 894315 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vermijlen, D. et al. Distinct cytokine-driven responses of activated blood gammadelta T cells: insights into unconventional T cell pleiotropy. J. Immunol. 178, 4304–4314 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ansel, K. M. et al. A chemokine-driven positive feedback loop organizes lymphoid follicles. Nature 406, 309–314 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wen, L. et al. Germinal center formation, immunoglobulin class switching, and autoantibody production driven by “non alpha/beta” T cells. J. Exp. Med. 183, 2271–2282 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Caccamo, N. et al. CXCR5 identifies a subset of Vgamma9Vdelta2 T cells which secrete IL-4 and IL-10 and help B cells for antibody production. J. Immunol. 177, 5290–5295 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Conti, L. et al. Reciprocal activating interaction between dendritic cells and pamidronate-stimulated gammadelta T cells: role of CD86 and inflammatory cytokines. J. Immunol. 174, 252–260 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Devilder, M. C. et al. Potentiation of antigen-stimulated V gamma 9V delta 2 T cell cytokine production by immature dendritic cells (DC) and reciprocal effect on DC maturation. J. Immunol. 176, 1386–1393 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Caccamo, N. et al. gammadelta T cells condition dendritic cells in vivo for priming pulmonary CD8 T cell responses against Mycobacterium tuberculosis. Eur. J. Immunol. 36, 2681–2690 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martino, A. & Poccia, F. Gamma delta T cells and dendritic cells: close partners and biological adjuvants for new therapies. Curr. Mol. Med. 7, 658–673 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dalton, J. E., Pearson, J., Scott, P. & Carding, S. R. The interaction of gamma delta T cells with activated macrophages is a property of the V gamma 1 subset. J. Immunol. 171, 6488–6494 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ferrero, E. et al. Macrophages exposed to Mycobacterium tuberculosis release chemokines able to recruit selected leucocyte subpopulations: focus on gammadelta cells. Immunology 108, 365–374 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Spencer, C. T. et al. Granzyme A produced by gamma(9)delta(2) T cells induces human macrophages to inhibit growth of an intracellular pathogen. PLoS Pathog. 9, e1003119 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dieli, F. et al. Vgamma9/Vdelta2 T lymphocytes reduce the viability of intracellular Mycobacterium tuberculosis. Eur. J. Immunol. 30, 1512–1519 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maniar, A. et al. Human gammadelta T lymphocytes induce robust NK cell-mediated antitumor cytotoxicity through CD137 engagement. Blood 116, 1726–1733 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nussbaumer, O., Gruenbacher, G., Gander, H. & Thurnher, M. DC-like cell-dependent activation of human natural killer cells by the bisphosphonate zoledronic acid is regulated by gammadelta T lymphocytes. Blood. 118, 2743–2751 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, M. et al. gammadeltaT cells suppress liver fibrosis via strong cytolysis and enhanced NK cell-mediated cytotoxicity against hepatic stellate cells. Front. Immunol. 10, 477 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roberts, N. A. et al. Rank signaling links the development of invariant gammadelta T cell progenitors and Aire(+) medullary epithelium. Immunity 36, 427–437 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hayday, A. & Tigelaar, R. Immunoregulation in the tissues by gammadelta T cells. Nat. Rev. Immunol. 3, 233–242 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Willcox, B. E. & Willcox, C. R. gammadelta TCR ligands: the quest to solve a 500-million-year-old mystery. Nat. Immunol. 20, 121–128 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vermijlen, D. et al. gammadelta T cell responses: how many ligands will it take till we know? Semin Cell Dev. Biol. 84, 75–86 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Benveniste, P. M. et al. Generation and molecular recognition of melanoma-associated antigen-specific human gammadelta T cells. Sci. Immunol. 3, eaav4036 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Kierkels, G. J. J. et al. Identification of a tumor-specific allo-HLA-restricted gammadeltaTCR. Blood Adv. 3, 2870–2882 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Davey, M. S. et al. Clonal selection in the human Vdelta1 T cell repertoire indicates gammadelta TCR-dependent adaptive immune surveillance. Nat. Commun. 8, 14760 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hunter, S. et al. Human liver infiltrating gammadelta T cells are composed of clonally expanded circulating and tissue-resident populations. J. Hepatol. 69, 654–665 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fichtner, A. S., Ravens, S. & Prinz, I. Human gammadelta TCR Repertoires in Health and Disease. Cells 9, 800 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carbone, A., Vaccher, E. & Gloghini, A. Hematologic cancers in individuals infected by HIV. Blood 139, 995–1012 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, H. & Pauza, C. D. HIV envelope-mediated, CCR5/alpha4beta7-dependent killing of CD4-negative gammadelta T cells which are lost during progression to AIDS. Blood 118, 5824–5831 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gioia, C. et al. Lack of CD27-CD45RA-V gamma 9 V delta 2 + T cell effectors in immunocompromised hosts and during active pulmonary tuberculosis. J. Immunol. 168, 1484–1489 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ogongo, P. et al. Differential skewing of donor-unrestricted and gammadelta T cell repertoires in tuberculosis-infected human lungs. J. Clin. Invest. 130, 214–230 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, D. et al. gammadelta T cell exhaustion: opportunities for intervention. J. Leukoc. Biol. 112, 1669–1676 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Correia, D. V. et al. Differentiation of human peripheral blood Vdelta1+ T cells expressing the natural cytotoxicity receptor NKp30 for recognition of lymphoid leukemia cells. Blood 118, 992–1001 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dunne, M. R. et al. Persistent changes in circulating and intestinal gammadelta T cell subsets, invariant natural killer T cells and mucosal-associated invariant T cells in children and adults with coeliac disease. PLoS One 8, e76008 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kenna, T. et al. Distinct subpopulations of gamma delta T cells are present in normal and tumor-bearing human liver. Clin. Immunol. 113, 56–63 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rice, M. T. et al. Recognition of the antigen-presenting molecule MR1 by a Vdelta3(+) gammadelta T cell receptor. Proc. Natl Acad. Sci. USA. 118, e2110288118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leon-Lara, X. et al. Evidence for an adult-like type 1-immunity phenotype of Vdelta1, Vdelta2 and Vdelta3 T cells in ghanaian children with repeated exposure to Malaria. Front. Immunol. 13, 807765 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tuengel, J. et al. Characterization of adaptive-like gammadelta T cells in ugandan infants during primary cytomegalovirus infection. Viruses. 13, 1987 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ravens, S. et al. Human gammadelta T cell receptor repertoires in peripheral blood remain stable despite clearance of persistent Hepatitis C virus infection by direct-acting antiviral drug therapy. Front. Immunol. 9, 510 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, L. et al. The feature of distribution and clonality of TCR gamma/delta subfamilies T cells in patients with B-cell non-Hodgkin lymphoma. J. Immunol. Res. 2014, 241246 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Vries, N. L. et al. gammadelta T cells are effectors of immunotherapy in cancers with HLA class I defects. Nature 613, 743–750 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Melo, A. M. et al. Tissue distribution of gammadelta T cell subsets in oesophageal adenocarcinoma. Clin. Immunol. 229, 108797 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gherardin, N. A. et al. gammadelta T cells in merkel cell carcinomas have a proinflammatory profile prognostic of patient survival. Cancer Immunol. Res. 9, 612–623 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Petrasca, A., Melo, A. M., Breen, E. P. & Doherty, D. G. Human Vdelta3(+) gammadelta T cells induce maturation and IgM secretion by B cells. Immunol. Lett. 196, 126–134 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Spada, F. M. et al. Self-recognition of CD1 by gamma/delta T cells: implications for innate immunity. J. Exp. Med. 191, 937–948 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Uldrich, A. P. et al. CD1d-lipid antigen recognition by the gammadelta TCR. Nat. Immunol. 14, 1137–1145 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luoma, A. M. et al. Crystal structure of Vdelta1 T cell receptor in complex with CD1d-sulfatide shows MHC-like recognition of a self-lipid by human gammadelta T cells. Immunity 39, 1032–1042 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luoma, A. M., Castro, C. D. & Adams, E. J. gammadelta T cell surveillance via CD1 molecules. Trends Immunol. 35, 613–621 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roy, S. et al. Molecular analysis of lipid-reactive Vdelta1 gammadelta T cells identified by CD1c tetramers. J. Immunol. 196, 1933–1942 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hayday, A. & Vantourout, P. A long-playing CD about the gammadelta TCR repertoire. Immunity 39, 994–996 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marlin, R. et al. Sensing of cell stress by human gammadelta TCR-dependent recognition of annexin A2. Proc. Natl Acad. Sci. USA. 114, 3163–3168 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Groh, V., Steinle, A., Bauer, S. & Spies, T. Recognition of stress-induced MHC molecules by intestinal epithelial gammadelta T cells. Science 279, 1737–1740 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Groh, V. et al. Broad tumor-associated expression and recognition by tumor-derived gamma delta T cells of MICA and MICB. Proc. Natl Acad. Sci. USA 96, 6879–6884 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, B. et al. Crystal structure of a gammadelta T-cell receptor specific for the human MHC class I homolog MICA. Proc. Natl Acad. Sci. USA 108, 2414–2419 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adams, E. J., Gu, S. & Luoma, A. M. Human gamma delta T cells: evolution and ligand recognition. Cell Immunol. 296, 31–40 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grunder, C. et al. gamma9 and delta2CDR3 domains regulate functional avidity of T cells harboring gamma9delta2TCRs. Blood 120, 5153–5162 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Gober, H. J. et al. Human T cell receptor gammadelta cells recognize endogenous mevalonate metabolites in tumor cells. J. Exp. Med. 197, 163–168 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benzaid, I. et al. High phosphoantigen levels in bisphosphonate-treated human breast tumors promote Vgamma9Vdelta2 T-cell chemotaxis and cytotoxicity in vivo. Cancer Res. 71, 4562–4572 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ashihara, E. et al. Isopentenyl pyrophosphate secreted from Zoledronate-stimulated myeloma cells, activates the chemotaxis of gammadeltaT cells. Biochem. Biophys. Res. Commun. 463, 650–655 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tanaka, Y. et al. Natural and synthetic non-peptide antigens recognized by human gamma delta T cells. Nature 375, 155–158 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sandstrom, A. et al. The intracellular B30.2 domain of butyrophilin 3A1 binds phosphoantigens to mediate activation of human Vgamma9Vdelta2 T cells. Immunity 40, 490–500 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rigau, M. et al. Butyrophilin 2A1 is essential for phosphoantigen reactivity by gammadelta T cells. Science 367, eaay5516 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Karunakaran, M. M. et al. Butyrophilin-2A1 directly binds germline-encoded regions of the Vgamma9Vdelta2 TCR and is essential for phosphoantigen sensing. Immunity 52, 487–498.e486 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kabelitz, D. et al. Cancer immunotherapy with gammadelta T cells: many paths ahead of us. Cell Mol. Immunol. 17, 925–939 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, Y. et al. A structural change in butyrophilin upon phosphoantigen binding underlies phosphoantigen-mediated Vgamma9Vdelta2 T cell activation. Immunity 50, 1043–1053.e1045 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Scotet, E. et al. Tumor recognition following Vgamma9Vdelta2 T cell receptor interactions with a surface F1-ATPase-related structure and apolipoprotein A-I. Immunity 22, 71–80 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, H. et al. Identification of human T cell receptor gammadelta-recognized epitopes/proteins via CDR3delta peptide-based immunobiochemical strategy. J. Biol. Chem. 283, 12528–12537 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dai, Y. et al. Ectopically expressed human tumor biomarker MutS homologue 2 is a novel endogenous ligand that is recognized by human gammadelta T cells to induce innate anti-tumor/virus immunity. J. Biol. Chem. 287, 16812–16819 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fichtner, A. S. et al. Alpaca (Vicugna pacos), the first nonprimate species with a phosphoantigen-reactive Vgamma9Vdelta2 T cell subset. Proc. Natl Acad. Sci. USA 117, 6697–6707 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bauer, S. et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285, 727–729 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rincon-Orozco, B. et al. Activation of V gamma 9V delta 2 T cells by NKG2D. J. Immunol. 175, 2144–2151 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wrobel, P. et al. Lysis of a broad range of epithelial tumour cells by human gamma delta T cells: involvement of NKG2D ligands and T-cell receptor- versus NKG2D-dependent recognition. Scand. J. Immunol. 66, 320–328 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lanca, T. et al. The MHC class Ib protein ULBP1 is a nonredundant determinant of leukemia/lymphoma susceptibility to gammadelta T-cell cytotoxicity. Blood 115, 2407–2411 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Simoes, A. E., Di Lorenzo, B. & Silva-Santos, B. Molecular determinants of target cell recognition by human gammadelta T cells. Front. Immunol. 9, 929 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Toutirais, O. et al. DNAX accessory molecule-1 (CD226) promotes human hepatocellular carcinoma cell lysis by Vgamma9Vdelta2 T cells. Eur. J. Immunol. 39, 1361–1368 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tokuyama, H. et al. V gamma 9 V delta 2 T cell cytotoxicity against tumor cells is enhanced by monoclonal antibody drugs-rituximab and trastuzumab. Int. J. Cancer 122, 2526–2534 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Capietto, A. H., Martinet, L. & Fournie, J. J. Stimulated gammadelta T cells increase the in vivo efficacy of trastuzumab in HER-2+ breast cancer. J. Immunol. 187, 1031–1038 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gertner-Dardenne, J. et al. Bromohydrin pyrophosphate enhances antibody-dependent cell-mediated cytotoxicity induced by therapeutic antibodies. Blood 113, 4875–4884 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fisher, J. P. et al. Neuroblastoma killing properties of Vdelta2 and Vdelta2-negative gammadeltaT cells following expansion by artificial antigen-presenting cells. Clin. Cancer Res. 20, 5720–5732 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Street, S. E. et al. Innate immune surveillance of spontaneous B cell lymphomas by natural killer cells and gammadelta T cells. J. Exp. Med. 199, 879–884 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Z. et al. Protective immunosurveillance and therapeutic antitumor activity of gammadelta T cells demonstrated in a mouse model of prostate cancer. J. Immunol. 180, 6044–6053 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao, Y. et al. Gamma delta T cells provide an early source of interferon gamma in tumor immunity. J. Exp. Med. 198, 433–442 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jarry, U. et al. Stereotaxic administrations of allogeneic human Vgamma9Vdelta2 T cells efficiently control the development of human glioblastoma brain tumors. Oncoimmunology 5, e1168554 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pereboeva, L., Harkins, L., Wong, S. & Lamb, L. S. The safety of allogeneic innate lymphocyte therapy for glioma patients with prior cranial irradiation. Cancer Immunol. Immunother. 64, 551–562 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Patin, E. C. et al. Type I IFN receptor signaling controls IL7-dependent accumulation and activity of protumoral IL17A-producing gammadelta T cells in breast cancer. Cancer Res. 78, 195–204 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kimura, Y. et al. IL-17A-producing CD30(+) Vdelta1 T cells drive inflammation-induced cancer progression. Cancer Sci. 107, 1206–1214 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coffelt, S. B. et al. IL-17-producing gammadelta T cells and neutrophils conspire to promote breast cancer metastasis. Nature 522, 345–348 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kulig, P. et al. IL17A-Mediated Endothelial Breach Promotes Metastasis Formation. Cancer Immunol Res. 4, 26–32 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Parker, M. E. & Ciofani, M. Regulation of gammadelta T cell effector diversification in the thymus. Front. Immunol. 11, 42 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jensen, K. D. et al. Thymic selection determines gammadelta T cell effector fate: antigen-naive cells make interleukin-17 and antigen-experienced cells make interferon gamma. Immunity 29, 90–100 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fleming, C., Morrissey, S., Cai, Y. & Yan, J. gammadelta T cells: unexpected regulators of cancer development and progression. Trends Cancer 3, 561–570 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lo Presti, E., Dieli, F. & Meraviglia, S. Tumor-infiltrating gammadelta T lymphocytes: pathogenic role, clinical significance, and differential programing in the tumor microenvironment. Front. Immunol. 5, 607 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ye, J. et al. Specific recruitment of gammadelta regulatory T cells in human breast cancer. Cancer Res. 73, 6137–6148 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yao, Y. E., Qin, C. C., Yang, C. M. & Huang, T. X. gammadeltaT17/gammadeltaTreg cell subsets: a new paradigm for asthma treatment. J. Asthma 59, 2028–2038 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, X. et al. Tofacitinib restores the balance of gammadeltaTreg/gammadeltaT17 cells in rheumatoid arthritis by inhibiting the NLRP3 inflammasome. Theranostics 11, 1446–1457 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xuan, L. et al. Regulatory gammadelta T cells induced by G-CSF participate in acute graft-versus-host disease regulation in G-CSF-mobilized allogeneic peripheral blood stem cell transplantation. J. Transl. Med. 16, 144 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mao, Y. et al. A new effect of IL-4 on human gammadelta T cells: promoting regulatory Vdelta1 T cells via IL-10 production and inhibiting function of Vdelta2 T cells. Cell Mol. Immunol. 13, 217–228 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ni, C. et al. Breast cancer-derived exosomes transmit lncRNA SNHG16 to induce CD73+gammadelta1 Treg cells. Sig. Transduct. Target Ther. 5, 41 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Hu, G. et al. Tumor-infiltrating CD39(+)gammadeltaTregs are novel immunosuppressive T cells in human colorectal cancer. Oncoimmunology 6, e1277305 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chabab, G. et al. Identification of a regulatory Vdelta1 gamma delta T cell subpopulation expressing CD73 in human breast cancer. J. Leukoc. Biol. 107, 1057–1067 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seo, N., Tokura, Y., Furukawa, F. & Takigawa, M. Down-regulation of tumoricidal NK and NK T cell activities by MHC Kb molecules expressed on Th2-type gammadelta T and alphabeta T cells coinfiltrating in early B16 melanoma lesions. J. Immunol. 161, 4138–4145 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schmolka, N. et al. Epigenetic and transcriptional signatures of stable versus plastic differentiation of proinflammatory gammadelta T cell subsets. Nat. Immunol. 14, 1093–1100 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chitadze, G., Oberg, H. H., Wesch, D. & Kabelitz, D. The ambiguous role of gammadelta T lymphocytes in antitumor immunity. Trends Immunol. 38, 668–678 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Casetti, R. et al. Cutting edge: TGF-beta1 and IL-15 Induce FOXP3+ gammadelta regulatory T cells in the presence of antigen stimulation. J. Immunol. 183, 3574–3577 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kouakanou, L. et al. Vitamin C supports conversion of human gammadelta T cells into FOXP3-expressing regulatory cells by epigenetic regulation. Sci. Rep. 10, 6550 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lo Presti, E. et al. Squamous cell tumors recruit gammadelta T cells producing either IL17 or IFNgamma depending on the tumor stage. Cancer Immunol. Res. 5, 397–407 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sureshbabu, S. K., Chaukar, D. & Chiplunkar, S. V. Hypoxia regulates the differentiation and anti-tumor effector functions of gammadeltaT cells in oral cancer. Clin. Exp. Immunol. 201, 40–57 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, Y. et al. A local human Vdelta1 T cell population is associated with survival in nonsmall-cell lung cancer. Nat. Cancer 3, 696–709 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pizzolato, G. et al. Single-cell RNA sequencing unveils the shared and the distinct cytotoxic hallmarks of human TCRVdelta1 and TCRVdelta2 gammadelta T lymphocytes. Proc. Natl Acad. Sci. USA 116, 11906–11915 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, Y. et al. An innate-like Vdelta1(+) gammadelta T cell compartment in the human breast is associated with remission in triple-negative breast cancer. Sci. Transl. Med. 11, eaax9364 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ponomarev, E. D. et al. Gamma delta T cell regulation of IFN-gamma production by central nervous system-infiltrating encephalitogenic T cells: correlation with recovery from experimental autoimmune encephalomyelitis. J. Immunol. 173, 1587–1595 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Conti, H. R. et al. Oral-resident natural Th17 cells and gammadelta T cells control opportunistic Candida albicans infections. J. Exp. Med. 211, 2075–2084 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park, S. G. et al. T regulatory cells maintain intestinal homeostasis by suppressing gammadelta T cells. Immunity 33, 791–803 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cui, Y. et al. Major role of gamma delta T cells in the generation of IL-17+ uveitogenic T cells. J. Immunol. 183, 560–567 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shibata, S. et al. Adiponectin regulates psoriasiform skin inflammation by suppressing IL-17 production from gammadelta-T cells. Nat. Commun. 6, 7687 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meraviglia, S. et al. Distinctive features of tumor-infiltrating gammadelta T lymphocytes in human colorectal cancer. Oncoimmunology 6, e1347742 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, C. et al. Tumor-infiltrating gammadelta T lymphocytes predict clinical outcome in human breast cancer. J. Immunol. 189, 5029–5036 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reis, B. S. et al. TCR-Vgammadelta usage distinguishes protumor from antitumor intestinal gammadelta T cell subsets. Science 377, 276–284 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mensurado, S. & Silva-Santos, B. Battle of the gammadelta T cell subsets in the gut. Trends Cancer 8, 881–883 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zakeri, N. et al. Characterisation and induction of tissue-resident gamma delta T-cells to target hepatocellular carcinoma. Nat. Commun. 13, 1372 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khairallah, C., Chu, T. H. & Sheridan, B. S. Tissue adaptations of memory and tissue-resident gamma delta T cells. Front. Immunol. 9, 2636 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Steinbach, K., Vincenti, I. & Merkler, D. Resident-memory T cells in tissue-restricted immune responses: for better or worse? Front. Immunol. 9, 2827 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Newman, A. M. et al. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 12, 453–457 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tosolini, M. et al. Assessment of tumor-infiltrating TCRVgamma9Vdelta2 gammadelta lymphocyte abundance by deconvolution of human cancers microarrays. Oncoimmunology 6, e1284723 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patil, R. S. et al. IL17 producing gammadeltaT cells induce angiogenesis and are associated with poor survival in gallbladder cancer patients. Int. J. Cancer 139, 869–881 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Rutkowski, M. R. et al. Microbially driven TLR5-dependent signaling governs distal malignant progression through tumor-promoting inflammation. Cancer Cell 27, 27–40 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Van Hede, D. et al. Human papillomavirus oncoproteins induce a reorganization of epithelial-associated gammadelta T cells promoting tumor formation. Proc. Natl Acad. Sci. USA 114, E9056–E9065 (2017).

    PubMed 

    Google Scholar
     

  • Jin, C. et al. Commensal microbiota promote lung cancer development via gammadelta T cells. Cell. 176, 998–1013.e1016 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ridker, P. M. et al. Effect of interleukin-1beta inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: exploratory results from a randomised, double-blind, placebo-controlled trial. Lancet 390, 1833–1842 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma, Y. et al. Contribution of IL-17-producing gamma delta T cells to the efficacy of anticancer chemotherapy. J. Exp. Med. 208, 491–503 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hamada, S. et al. IL-17A produced by gammadelta T cells plays a critical role in innate immunity against listeria monocytogenes infection in the liver. J. Immunol. 181, 3456–3463 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, R. et al. TNFR2(+) regulatory T cells protect against bacteremic pneumococcal pneumonia by suppressing IL-17A-producing gammadelta T cells in the lung. Cell Rep. 42, 112054 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cai, Y. et al. A critical role of the IL-1beta-IL-1R signaling pathway in skin inflammation and psoriasis pathogenesis. J. Invest. Dermatol. 139, 146–156 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kabelitz, D., Peters, C., Wesch, D. & Oberg, H. H. Regulatory functions of γδ T cells. Int. Immunopharmacol. 16, 382–387 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peters, C., Kabelitz, D. & Wesch, D. Regulatory functions of γδ T cells. Cell Mol. Life Sci. 75, 2125–2135 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peters, C., Häsler, R., Wesch, D. & Kabelitz, D. Human Vδ2 T cells are a major source of interleukin-9. Proc. Natl Acad. Sci. USA 113, 12520–12525 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peters, C., Oberg, H. H., Kabelitz, D. & Wesch, D. Phenotype and regulation of immunosuppressive Vδ2-expressing γδ T cells. Cell Mol. Life Sci. 71, 1943–1960 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Himoudi, N. et al. Human γδ T lymphocytes are licensed for professional antigen presentation by interaction with opsonized target cells. J. Immunol. 188, 1708–1716 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, X. W. et al. Impairment of antigen-presenting function of peripheral γδ T cells in patients with sepsis. Clin. Exp. Immunol. 207, 104–112 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Bagcchi, S. WHO’s Global Tuberculosis Report 2022. Lancet Microbe 4, e20 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Behar, S. M., Divangahi, M. & Remold, H. G. Evasion of innate immunity by Mycobacterium tuberculosis: is death an exit strategy? Nat. Rev. Microbiol. 8, 668–674 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chandra, P., Grigsby, S. J. & Philips, J. A. Immune evasion and provocation by Mycobacterium tuberculosis. Nat. Rev. Microbiol. 20, 750–766 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Behr, M., Schurr, E. & Gros, P. TB: screening for responses to a vile visitor. Cell. 140, 615–618 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lienhardt, C. et al. Global tuberculosis control: lessons learnt and future prospects. Nat. Rev. Microbiol. 10, 407–416 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cambier, C. J. et al. Mycobacteria manipulate macrophage recruitment through coordinated use of membrane lipids. Nature 505, 218–222 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Philips, J. A. & Ernst, J. D. Tuberculosis pathogenesis and immunity. Annu. Rev. Pathol. 7, 353–384 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cambier, C. J., Falkow, S. & Ramakrishnan, L. Host evasion and exploitation schemes of Mycobacterium tuberculosis. Cell 159, 1497–1509 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kumar, D. et al. Genome-wide analysis of the host intracellular network that regulates survival of Mycobacterium tuberculosis. Cell 140, 731–743 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vorkas, C. K. et al. Mucosal-associated invariant and gammadelta T cell subsets respond to initial Mycobacterium tuberculosis infection. JCI Insight. 3, e121899 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kulicke, C. A., Lewinsohn, D. A. & Lewinsohn, D. M. Clonal enrichments of Vdelta2- gammadelta T cells in Mycobacterium tuberculosis-infected human lungs. J. Clin. Invest. 130, 68–70 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maertzdorf, J. et al. Mycobacterium tuberculosis invasion of the human lung: first contact. Front. Immunol. 9, 1346 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Y. et al. Identification of the ligands of TCRγδ by screening the immune repertoire of γδT cells from patients with tuberculosis. Front. Immunol. 10, 2282 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • D’Souza, M. P. et al. Casting a wider net: immunosurveillance by nonclassical MHC molecules. PLoS Pathog. 15, e1007567 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van Rhijn, I. et al. A conserved human T cell population targets mycobacterial antigens presented by CD1b. Nat. Immunol. 14, 706–713 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Libero, G., Singhal, A., Lepore, M. & Mori, L. Nonclassical T cells and their antigens in tuberculosis. Cold Spring Harb. Perspect. Med. 4, a018473 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martinez-Barricarte, R. et al. Human IFN-gamma immunity to mycobacteria is governed by both IL-12 and IL-23. Sci. Immunol. 3, eaau6759 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Philippot, Q. et al. Human IL-23 is essential for IFN-gamma-dependent immunity to mycobacteria. Sci. Immunol. 8, eabq5204 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ogishi, M. et al. Inherited human ITK deficiency impairs IFN-gamma immunity and underlies tuberculosis. J. Exp. Med. 220, e20220484 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ogishi, M. et al. Inherited PD-1 deficiency underlies tuberculosis and autoimmunity in a child. Nat. Med. 27, 1646–1654 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Okada, S. et al. Impairment of immunity to Candida and Mycobacterium in humans with bi-allelic RORC mutations. Science 349, 606–613 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Papadopoulou, M. et al. Fetal public Vgamma9Vdelta2 T cells expand and gain potent cytotoxic functions early after birth. Proc. Natl Acad. Sci. USA 117, 18638–18648 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoft, D. F., Brown, R. M. & Roodman, S. T. Bacille Calmette-Guerin vaccination enhances human gamma delta T cell responsiveness to mycobacteria suggestive of a memory-like phenotype. J. Immunol. 161, 1045–1054 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Z. W. Protective immune responses of major Vgamma2Vdelta2 T-cell subset in M. tuberculosis infection. Curr. Opin. Immunol. 42, 105–112 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen, L. et al. Immunization of Vgamma2Vdelta2 T cells programs sustained effector memory responses that control tuberculosis in nonhuman primates. Proc. Natl Acad. Sci. USA 116, 6371–6378 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen, Y. et al. Adaptive immune response of Vgamma2Vdelta2+ T cells during mycobacterial infections. Science 295, 2255–2258 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen, L. et al. Fast-acting gammadelta T-cell subpopulation and protective immunity against infections. Immunol. Rev. 298, 254–263 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qaqish, A. et al. Adoptive transfer of phosphoantigen-specific gammadelta T cell subset attenuates mycobacterium tuberculosis infection in nonhuman primates. J. Immunol. 198, 4753–4763 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Z. W. Multifunctional immune responses of HMBPP-specific Vgamma2Vdelta2 T cells in M. tuberculosis and other infections. Cell Mol. Immunol. 10, 58–64 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Shen, H. et al. Adjunctive Zoledronate + IL-2 administrations enhance anti-tuberculosis Vgamma2Vdelta2 T-effector populations, and improve treatment outcome of multidrug-resistant tuberculosis(1). Emerg. Microbes Infect. 11, 1790–1805 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, C. Y. et al. Phosphoantigen/IL2 expansion and differentiation of Vgamma2Vdelta2 T cells increase resistance to tuberculosis in nonhuman primates. PLoS Pathog. 9, e1003501 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roy Chowdhury, R. et al. NK-like CD8(+) gammadelta T cells are expanded in persistent Mycobacterium tuberculosis infection. Sci. Immunol. 8, eade3525 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deeks, S. G., Overbaugh, J., Phillips, A. & Buchbinder, S. HIV infection. Nat. Rev. Dis. Primers 1, 15035 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Moir, S., Chun, T. W. & Fauci, A. S. Pathogenic mechanisms of HIV disease. Annu. Rev. Pathol. 6, 223–248 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bruchfeld, J., Correia-Neves, M. & Kallenius, G. Tuberculosis and HIV coinfection. Cold Spring Harb. Perspect. Med. 5, a017871 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bell, L. C. K. & Noursadeghi, M. Pathogenesis of HIV-1 and mycobacterium tuberculosis co-infection. Nat. Rev. Microbiol. 16, 80–90 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, H. et al. Association between Vgamma2Vdelta2 T cells and disease progression after infection with closely related strains of HIV in China. Clin. Infect. Dis. 46, 1466–1472 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hinz, T. et al. T cell receptor gamma delta repertoire in HIV-1-infected individuals. Eur. J. Immunol. 24, 3044–3049 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Z. et al. Distortion of memory Vdelta2 gammadelta T cells contributes to immune dysfunction in chronic HIV infection. Cell Mol. Immunol. 12, 604–614 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rossol, R. et al. Increase in Vdelta1+ gammadelta T cells in the peripheral blood and bone marrow as a selective feature of HIV-1 but not other virus infections. Br. J. Haematol. 100, 728–734 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harris, L. D. et al. Mechanisms underlying gammadelta T-cell subset perturbations in SIV-infected Asian rhesus macaques. Blood 116, 4148–4157 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H. & Pauza, C. D. The alpha4beta7 integrin binds HIV envelope but does not mediate bystander killing of gammadelta T cells. Blood 120, 698–699 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Restrepo, C. et al. HIV Gag-specific immune response mediated by double negative (CD3(+)CD4(-)CD8(-)) T cells in HIV-exposed seronegative individuals. J. Med. Virol. 85, 200–209 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hudspeth, K. et al. Engagement of NKp30 on Vdelta1 T cells induces the production of CCL3, CCL4, and CCL5 and suppresses HIV-1 replication. Blood 119, 4013–4016 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dobmeyer, T. S. et al. Reciprocal alterations of Th1/Th2 function in gammadelta T-cell subsets of human immunodeficiency virus-1-infected patients. Br. J. Haematol. 118, 282–288 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Li, H. et al. Depletion and dysfunction of Vgamma2Vdelta2 T cells in HIV disease: mechanisms, impacts and therapeutic implications. Cell Mol. Immunol. 10, 42–49 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Martini, F. et al. Acute human immunodeficiency virus replication causes a rapid and persistent impairment of Vgamma9Vdelta2 T cells in chronically infected patients undergoing structured treatment interruption. J. Infect. Dis. 186, 847–850 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Poonia, B. & Pauza, C. D. Gamma delta T cells from HIV+ donors can be expanded in vitro by zoledronate/interleukin-2 to become cytotoxic effectors for antibody-dependent cellular cytotoxicity. Cytotherapy 14, 173–181 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Garrido, C. et al. Gammadelta T cells: an immunotherapeutic approach for HIV cure strategies. JCI Insight. 3, e120121 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kazer, S. W. et al. Integrated single-cell analysis of multicellular immune dynamics during hyperacute HIV-1 infection. Nat. Med. 26, 511–518 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, S. et al. An atlas of immune cell exhaustion in HIV-infected individuals revealed by single-cell transcriptomics. Emerg. Microbes Infect. 9, 2333–2347 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pauza, C. D. et al. gammadelta T cells in HIV disease: past, present, and future. Front. Immunol. 5, 687 (2014).

    PubMed 

    Google Scholar
     

  • El-Sadr, W. M., Vasan, A. & El-Mohandes, A. Facing the new Covid-19 reality. N. Engl. J. Med. 388, 385–387 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • V’Kovski, P. et al. Coronavirus biology and replication: implications for SARS-CoV-2. Nat. Rev. Microbiol. 19, 155–170 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Zhu, N. et al. A novel Coronavirus from patients with Pneumonia in China, 2019. N. Engl. J. Med. 382, 727–733 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cai, Y. et al. Structural basis for enhanced infectivity and immune evasion of SARS-CoV-2 variants. Science 373, 642–648 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vogel, G. New subvariants are masters of immune evasion. Science 376, 679–680 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thorne, L. G. et al. Evolution of enhanced innate immune evasion by SARS-CoV-2. Nature 602, 487–495 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Q. et al. Alarming antibody evasion properties of rising SARS-CoV-2 BQ and XBB subvariants. Cell 186, 279–286.e278 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, L. et al. The signal pathways and treatment of cytokine storm in COVID-19. Sig. Transduct. Target Ther. 6, 255 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Fajgenbaum, D. C. & June, C. H. Cytokine storm. N. Engl. J. Med. 383, 2255–2273 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cron, R. Q., Caricchio, R. & Chatham, W. W. Calming the cytokine storm in COVID-19. Nat. Med. 27, 1674–1675 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Carter, M. J. et al. Peripheral immunophenotypes in children with multisystem inflammatory syndrome associated with SARS-CoV-2 infection. Nat. Med. 26, 1701–1707 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Odak, I. et al. Reappearance of effector T cells is associated with recovery from COVID-19. EBioMedicine 57, 102885 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wilk, A. J. et al. A single-cell atlas of the peripheral immune response in patients with severe COVID-19. Nat. Med. 26, 1070–1076 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lucas, C. et al. Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature 584, 463–469 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fears, A. C. et al. The dynamics of gammadelta T cell responses in nonhuman primates during SARS-CoV-2 infection. Commun. Biol. 5, 1380 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, X. et al. Host-derived lipids orchestrate pulmonary gammadelta T cell response to provide early protection against influenza virus infection. Nat. Commun. 12, 1914 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Su, Y. et al. Multi-Omics resolves a sharp disease-state shift between mild and moderate COVID-19. Cell 183, 1479–1495.e1420 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, L. et al. Dynamic blood single-cell immune responses in patients with COVID-19. Sig. Transduct. Target Ther. 6, 110 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ren, X. et al. COVID-19 immune features revealed by a large-scale single-cell transcriptome atlas. Cell 184, 1895–1913.e1819 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jameson, J. M. gammadelta T cells: a disappearing act with a big reveal. J. Exp. Med. 215, 2962–2963 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sandrock, I. et al. Genetic models reveal origin, persistence and non-redundant functions of IL-17-producing gammadelta T cells. J. Exp. Med. 215, 3006–3018 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jee, M. H., Mraz, V., Geisler, C. & Bonefeld, C. M. gammadelta T cells and inflammatory skin diseases. Immunol. Rev. 298, 61–73 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bugaut, H. & Aractingi, S. Major role of the IL17/23 axis in psoriasis supports the development of new targeted therapies. Front. Immunol. 12, 621956 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, S. H. et al. Pellino-1 promotes intrinsic activation of skin-resident IL-17A-producing T cells in psoriasis. J. Allergy Clin. Immunol. 151, 1317–1328 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ueharaguchi, Y. et al. Thromboxane A(2) facilitates IL-17A production from Vgamma4(+) gammadelta T cells and promotes psoriatic dermatitis in mice. J. Allergy Clin. Immunol. 142, 680–683.e682 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, T. et al. p38alpha signaling in Langerhans cells promotes the development of IL-17-producing T cells and psoriasiform skin inflammation. Sci. Signal. 11, eaao1685 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Cibrian, D. et al. CD69 controls the uptake of L-tryptophan through LAT1-CD98 and AhR-dependent secretion of IL-22 in psoriasis. Nat. Immunol. 17, 985–996 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, Q. et al. Roles of mTORC1 and mTORC2 in controlling gammadelta T1 and gammadelta T17 differentiation and function. Cell Death Differ. 27, 2248–2262 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cai, Y. et al. Differential roles of the mTOR-STAT3 signaling in dermal gammadelta T cell effector function in skin inflammation. Cell Rep. 27, 3034–3048.e3035 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ramirez-Valle, F., Gray, E. E. & Cyster, J. G. Inflammation induces dermal Vgamma4+ gammadeltaT17 memory-like cells that travel to distant skin and accelerate secondary IL-17-driven responses. Proc. Natl Acad. Sci. USA 112, 8046–8051 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, N. et al. Dynamic trafficking patterns of IL-17-producing gammadelta T cells are linked to the recurrence of skin inflammation in psoriasis-like dermatitis. EBioMedicine 82, 104136 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nguyen, C. T. et al. Peripheral gammadelta T cells regulate neutrophil expansion and recruitment in experimental psoriatic arthritis. Arthritis Rheumatol. 74, 1524–1534 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khmaladze, I. et al. Mannan induces ROS-regulated, IL-17A-dependent psoriasis arthritis-like disease in mice. Proc. Natl Acad. Sci. USA 111, E3669–E3678 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Riol-Blanco, L. et al. Nociceptive sensory neurons drive interleukin-23-mediated psoriasiform skin inflammation. Nature 510, 157–161 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, S. et al. Selective targeting of PI3Kdelta suppresses human IL-17-producing T cells and innate-like lymphocytes and may be therapeutic for IL-17-mediated diseases. J. Autoimmun. 111, 102435 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pinget, G. V. et al. Immune modulation of monocytes dampens the IL-17(+) gammadelta T cell response and associated psoriasis pathology in mice. J. Invest. Dermatol. 140, 2398–2407.e2391 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Soley, B. D. S. et al. B(1) and B(2) kinin receptor blockade improves psoriasis-like disease. Br. J. Pharmacol. 177, 3535–3551 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, S. et al. Hyperforin ameliorates imiquimod-induced psoriasis-like murine skin inflammation by modulating IL-17A-producing gammadelta T cells. Front. Immunol. 12, 635076 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mortier, C. et al. RORgammat inhibition ameliorates IL-23 driven experimental psoriatic arthritis by predominantly modulating gammadelta-T cells. Rheumatology (Oxford) 62, 3169–3178 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Cibrian, D. et al. Targeting L-type amino acid transporter 1 in innate and adaptive T cells efficiently controls skin inflammation. J. Allergy Clin. Immunol. 145, 199–214.e111 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han, Y. et al. IL-38 ameliorates skin inflammation and limits IL-17 production from gammadelta T cells. Cell Rep. 27, 835–846.e835 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Getschman, A. E. et al. Protein engineering of the chemokine CCL20 prevents psoriasiform dermatitis in an IL-23-dependent murine model. Proc. Natl Acad. Sci. USA 114, 12460–12465 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, J. et al. Adverse events associated with anti-IL-17 agents for psoriasis and psoriatic arthritis: a systematic scoping review. Front. Immunol. 14, 993057 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lonnberg, A. S., Zachariae, C. & Skov, L. Targeting of interleukin-17 in the treatment of psoriasis. Clin. Cosmet Investig. Dermatol. 7, 251–259 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saunte, D. M., Mrowietz, U., Puig, L. & Zachariae, C. Candida infections in patients with psoriasis and psoriatic arthritis treated with interleukin-17 inhibitors and their practical management. Br. J. Dermatol. 177, 47–62 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi, Z. et al. Short-term exposure to a western diet induces psoriasiform dermatitis by promoting accumulation of IL-17A-producing gammadelta T cells. J. Invest. Dermatol. 140, 1815–1823 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakamizo, S. et al. High fat diet exacerbates murine psoriatic dermatitis by increasing the number of IL-17-producing gammadelta T cells. Sci. Rep. 7, 14076 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bielecki, P. et al. Skin-resident innate lymphoid cells converge on a pathogenic effector state. Nature 592, 128–132 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, J. et al. Single-cell transcriptomics applied to emigrating cells from psoriasis elucidate pathogenic versus regulatory immune cell subsets. J. Allergy Clin. Immunol. 148, 1281–1292 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reynolds, G. et al. Developmental cell programs are co-opted in inflammatory skin disease. Science 371, eaba6500 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Y. et al. Classification of human chronic inflammatory skin disease based on single-cell immune profiling. Sci. Immunol. 7, eabl9165 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fukushima, K. et al. Immunohistochemical characterization, distribution, and ultrastructure of lymphocytes bearing T-cell receptor gamma/delta in inflammatory bowel disease. Gastroenterology 101, 670–678 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Catalan-Serra, I., Sandvik, A. K., Bruland, T. & Andreu-Ballester, J. C. Gammadelta T cells in Crohn’s disease: a new player in the disease pathogenesis? J. Crohns Colitis 11, 1135–1145 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Yeung, M. M. et al. Characterisation of mucosal lymphoid aggregates in ulcerative colitis: immune cell phenotype and TcR-gammadelta expression. Gut 47, 215–227 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McVay, L. D. et al. Changes in human mucosal gamma delta T cell repertoire and function associated with the disease process in inflammatory bowel disease. Mol. Med. 3, 183–203 (1997).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoffmann, J. C. et al. Role of T lymphocytes in rat 2,4,6-trinitrobenzene sulphonic acid (TNBS) induced colitis: increased mortality after gammadelta T cell depletion and no effect of alphabeta T cell depletion. Gut 48, 489–495 (2001).

    Article 
    CAS 
    PubMed