Sunday, June 4, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

A burst of genomic innovation at the origin of placental mammals mediated embryo implantation – Communications Biology


  • Lynch, V. J. et al. Ancient transposable elements transformed the uterine regulatory landscape and transcriptome during the evolution of mammalian pregnancy. Cell Rep. 10, 551–561 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kin, K. et al. The transcriptomic evolution of mammalian pregnancy: gene expression innovations in endometrial stromal fibroblasts. Genome Biol. Evol. 8, 2459–2473 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wagner, G. P. Evolutionary innovations and novelties: let us get down to business! Zool. Anz. 256, 75–81 (2015).


    Google Scholar
     

  • Hertel, J. et al. The expansion of the metazoan microRNA repertoire. BMC Genom. 7, 25 (2006).


    Google Scholar
     

  • Prochnik, S. E., Rokhsar, D. S. & Aboobaker, A. A. Evidence for a microRNA expansion in the bilaterian ancestor. Dev. Genes Evol. 217, 73–77 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Grimson, A. et al. The early origins of microRNAs and Piwi-interacting RNAs in animals. Nature 455, https://doi.org/10.1038/nature07415 (2008).

  • Keniry, A. et al. The H19 lincRNA is a developmental reservoir of miR-675 which suppresses growth and Igf1r. Nat. Cell Biol. 14, 659–665 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Munaut, C. et al. Dysregulated circulating miRNAs in preeclampsia. Biomed. Rep. 5, 686–692 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bastian, F. et al. MirGeneDB 2.0: the metazoan microRNA complement. Nucleic Acids Res. 48, 1 (2020).


    Google Scholar
     

  • Bastian, F. et al. A uniform system for the annotation of vertebrate microRNA genes and the evolution of the human microRNAome. Annu. Rev. Genet. 49, 213–242 (2015).


    Google Scholar
     

  • Ito, M. et al. A trans-homologue interaction between reciprocally imprinted miR-127 and Rtl1 regulates placenta development. Development 142, 2425–2430 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Farrokhnia, F., Aplin, J. D., Westwood, M. & Forbes, K. MicroRNA regulation of mitogenic signaling networks in the human placenta. J. Biol. Chem. 289, 30404–30416 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo, L. et al. MicroRNA-378a-5p promotes trophoblast cell survival, migration and invasion by targeting Nodal. J. Cell Sci. 125, 3124 LP–3132 (2012).


    Google Scholar
     

  • Morales-Prieto, D. M. et al. MicroRNA expression profiles of trophoblastic cells. Placenta 33, 725–734 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Tochigi, H. et al. Loss of miR-542-3p enhances IGFBP-1 expression in decidualizing human endometrial stromal cells. Sci. Rep. 7, 40001 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fu, G., Brkić, J., Hayder, H. & Peng, C. MicroRNAs in human placental development and pregnancy complications. Int. J. Mol. Sci. 14, 5519–5544 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harapan, H. & Andalas, M. The role of microRNAs in the proliferation, differentiation, invasion, and apoptosis of trophoblasts during the occurrence of preeclampsia—a systematic review. Tzu Chi Med. J. 27, 54–64 (2015).


    Google Scholar
     

  • Hosseini, M. K., Gunel, T., Gumusoglu, E., Benian, A. & Aydinli, K. MicroRNA expression profiling in placenta and maternal plasma in early pregnancy loss. Mol. Med. Rep. 17, 4941–4952 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rahman, M. L. et al. Regulation of birthweight by placenta-derived miRNAs: evidence from an arsenic-exposed birth cohort in Bangladesh. Epigenetics 13, 573–590 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • do Imperio, G. E. et al. Chorioamnionitis induces a specific signature of placental ABC transporters associated with an increase of miR-331-5p in the human preterm placenta. Cell. Physiol. Biochem. 45, 591–604 (2018).

    PubMed 

    Google Scholar
     

  • Fallen, S. et al. Extracellular vesicle RNAs reflect placenta dysfunction and are a biomarker source for preterm labour. J. Cell. Mol. Med. 22, 2760–2773 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suwen, C., Liping, S. & Guijiao, F. SP1-mediated long noncoding RNA POU3F3 accelerates the cervical cancer through miR-127-5p/FOXD1. Biomed. Pharmacother. 117, 109133 (2019).

  • Wang, D., Tang, L., Wu, H., Wang, K. & Gu, D. MiR-127-3p inhibits cell growth and invasiveness by targeting ITGA6 in human osteosarcoma. IUBMB Life 70, 411–419 (2018).

  • Ferri, C. et al. MiR-423-5p prevents MALAT1-mediated proliferation and metastasis in prostate cancer. J. Exp. Clin. Cancer Res. 41, 20 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Q., Yan, S., Yuan, Y., Ji, S. & Guo, L. miR-28-5p improved carotid artery stenosis by regulating vascular smooth muscle cell proliferation and migration. Vascular 30, 764–770 (2021).

  • Sheng, C. et al. MiR-340 promotes the proliferation of vascular smooth muscle cells by targeting von Hippel–Lindau tumor suppressor gene. J. Cardiovasc. Pharmacol. 77, 875–884 (2021).

  • Kuang, M. J. et al. CircUSP45 inhibited osteogenesis in glucocorticoid-induced osteonecrosis of femoral head by sponging miR-127-5p through PTEN/AKT signal pathway: experimental studies. Biochem. Biophys. Res. Commun. 509, 255–261 (2019).

  • Farre-Garros, R. et al. Quadriceps miR-542-3p and -5p are elevated in COPD and reduce function by inhibiting ribosomal and protein synthesis. J. Appl. Physiol. 126, 1514–1524 (2019).

  • Agarwal, V., Bell, G. W., Nam, J. W. & Bartel, D. P. Predicting effective microRNA target sites in mammalian mRNAs. Elife 4, 1–38 (2015).


    Google Scholar
     

  • Esnault, C., Cornelis, G., Heidmann, O. & Heidmann, T. Differential evolutionary fate of an ancestral primate endogenous retrovirus envelope gene, the EnvV Syncytin, captured for a function in placentation. PLoS Genet. 9, e1003400 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dunwell, T. L., Paps, J. & Holland, P. W. H. Novel and divergent genes in the evolution of placental mammals. Proc. Biol. Sci. 284, 20171357 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Than, N. G. et al. A primate subfamily of galectins expressed at the maternal–fetal interface that promote immune cell death. Proc. Natl Acad. Sci. USA 106, 9731 LP–9739736 (2009).


    Google Scholar
     

  • Yates, A. et al. Ensembl 2016. Nucleic Acids Res. 44, D710–D716 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Hauguel-de Mouzon, S. & Guerre-Millo, M. The placenta cytokine network and inflammatory signals. Placenta 27, 794–798 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Woods, L., Perez-Garcia, V. & Hemberger, M. Regulation of placental development and its impact on fetal growth—new insights from mouse models. Front. Endocrinol. 9, 570 (2018).


    Google Scholar
     

  • Gal, H. et al. Molecular pathways of senescence regulate placental structure and function. EMBO J. 38, e100849–e100849 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lynch, V. J., Leclerc, R. D., May, G. & Wagner, G. P. Transposon-mediated rewiring of gene regulatory networks contributed to the evolution of pregnancy in mammals. Nat. Genet. 43, 1154–1159 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Tian, X. et al. Evolution of telomere maintenance and tumour suppressor mechanisms across mammals. Philos. Trans. R. Soc. B Biol. Sci. 373, 20160443 (2018).


    Google Scholar
     

  • McNab, B. K. An analysis of the factors that influence the level and scaling of mammalian BMR. Comp. Biochem. Physiol. Part A 151, 5–28 (2008).


    Google Scholar
     

  • Garratt, M., Gaillard, J.-M. J., Brooks, R. C. P., Lemaitre, J.-F. & Lemaître, J.-F. Diversification of the eutherian placenta is associated with changes in the pace of life. Proc. Natl Acad. Sci. USA 110, 7760–7765 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Welch, J. J., Bininda-Emonds, O. R. P. & Bromham, L. Correlates of substitution rate variation in mammalian protein-coding sequences. BMC Evol. Biol. 8, 53 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Spencer, T. E. & Bazer, F. W. Temporal and spatial alterations in uterine estrogen receptor and progesterone receptor gene expression during the estrous cycle and early pregnancy in the Ewe1. Biol. Reprod. 53, 1527–1543 (1995).

    CAS 
    PubMed 

    Google Scholar
     

  • Godkin, J. D., Bazer, F. W., Moffatt, J., Sessions, F. & Roberts, R. M. Purification and properties of a major, low molecular weight protein released by the trophoblast of sheep blastocysts at Day 13–21. Reproduction 65, 141–150 (1982).

    CAS 

    Google Scholar
     

  • Morgan, F. J. & Canfield, R. E. Nature of the subunits of human chorionic gonadotropin. Endocrinology 88, 1045–1053 (1971).

    CAS 
    PubMed 

    Google Scholar
     

  • Tinning, H. et al. The role of CAPG in molecular communication between the embryo and the uterine endometrium: Is its function conserved in species with different implantation strategies? FASEB J. 34, 11015–11029 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Forde, N. et al. Conceptus-induced changes in the endometrial transcriptome: how soon does the cow know she is pregnant?1. Biol. Reprod. 85, 144–156 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Morgan, C. C. et al. Heterogeneous models place the root of the placental mammal phylogeny. Mol. Biol. Evol. 30, 2145–2156 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tarver, J. E. et al. The interrelationships of placental mammals and the limits of phylogenetic inference. Genome Biol. Evol. 8, 330–344 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    CAS 
    PubMed 

    Google Scholar
     

  • Giribet, G. TNT: tree analysis using new technology. Syst. Biol. 54, 176–178 (2005).


    Google Scholar
     

  • Bartel, D. P. MicroRNA target recognition and regulatory functions. Cell 136, 215–233 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mi, H., Muruganujan, A., Ebert, D., Huang, X. & Thomas, P. D. PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res. 47, D419–D426 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Fabregat, A. et al. The reactome pathway knowledgebase. Nucleic Acids Res. 44, D481–D487 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Anisimova, M. & Yang, Z. Multiple hypothesis testing to detect lineages under positive selection that affects only a few sites. Mol. Biol. Evol. 24, 1219–1228 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thompson, J. D., Plewniak, F., Ripp, R., Thierry, J.-C. & Poch, O. Towards a reliable objective function for multiple sequence alignments. J. Mol. Biol. 314, 937–951 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • Blackburne, B. P. & Whelan, S. Measuring the distance between multiple sequence alignments. Bioinformatics 28, 495–502 (2011).

    PubMed 

    Google Scholar
     

  • Webb, A. E., Walsh, T. A. & O’Connell, M. J. VESPA: very large-scale evolutionary and selective pressure analyses. PeerJ Comp. Sci. 4, e1895v1 (2016).


    Google Scholar
     

  • Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Szklarczyk, D. et al. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47, D607–D613 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Levene, H. Robust tests for equality of variances. In Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling (eds Olkin, I., et al.) 278–292 (Stanford University Press, 1960).

  • Ireland, J. J., Murphee, R. L. & Coulson, P. B. Accuracy of predicting stages of bovine estrous cycle by gross appearance of the corpus luteum. J. Dairy Sci. 63, 155–160 (1980).

    CAS 
    PubMed 

    Google Scholar
     

  • Zerbino, D. R. et al. Ensembl 2018. Nucleic Acids Res. 46, D754–D761 (2017).

    PubMed Central 

    Google Scholar
     

  • Jassal, B. et al. The reactome pathway knowledgebase. Nucleic Acids Res. 48, D498–D503 (2019).

    PubMed Central 

    Google Scholar
     

  • Constantinides, B. et al. Vespasian: genome scale detection of selective pressure variation (Version 0.5.3) [Computer software]. GitHub https://doi.org/10.5281/zenodo.5779868 (2021).

    Article 

    Google Scholar
     

  • Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B (Methodol.) 57, 289–300 (1995).


    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    Stay Connected

    9FansLike
    4FollowersFollow
    0SubscribersSubscribe
    - Advertisement -spot_img

    Latest Articles

    %d bloggers like this: