Monday, September 25, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

A generalisation of the method of regression calibration – Scientific Reports


  • United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). UNSCEAR 2006 Report. Annex A. Epidemiological Studies of Radiation and Cancer. 13–322 (United Nations, New York, 2008).


    Google Scholar
     

  • Armstrong, B. et al. Radiation. A Review of Human Carcinogens. Vol. 100D. 1–341 (International Agency for Research on Cancer, Lyon, 2012).


    Google Scholar
     

  • Lubin, J. H. et al. Thyroid cancer following childhood low-dose radiation exposure: A pooled analysis of nine cohorts. J. Clin. Endocrinol. Metab. 102, 2575–2583. https://doi.org/10.1210/jc.2016-3529 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Little, M. P. et al. Leukaemia and myeloid malignancy among people exposed to low doses (<100 mSv) of ionising radiation during childhood: A pooled analysis of nine historical cohort studies. Lancet Haematol. 5, e346–e358. https://doi.org/10.1016/S2352-3026(18)30092-9 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Little, M. P. et al. Review of the risk of cancer following low and moderate doses of sparsely ionising radiation received in early life in groups with individually estimated doses. Environ. Int. 159, 106983. https://doi.org/10.1016/j.envint.2021.106983 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Little, M. P. et al. Cancer risks among studies of medical diagnostic radiation exposure in early life without quantitative estimates of dose. Sci. Total Environ. 832, 154723. https://doi.org/10.1016/j.scitotenv.2022.154723 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • National Council on Radiation Protection and Measurements (NCRP). Implications of Recent Epidemiologic Studies for the Linear-Nonthreshold Model and Radiation Protection. NCRP Commentary No 27. i–ix, 1–199 (National Council on Radiation Protection and Measurements (NCRP), Bethesda, 2018).


    Google Scholar
     

  • Berrington de Gonzalez, A. et al. Epidemiological studies of low-dose ionizing radiation and cancer: Rationale and framework for the monograph and overview of eligible studies. J. Natl. Cancer Inst. Monogr. 2020, 97–113. https://doi.org/10.1093/jncimonographs/lgaa009 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hauptmann, M. et al. Epidemiological studies of low-dose ionizing radiation and cancer: Summary bias assessment and meta-analysis. J. Natl. Cancer Inst. Monogr. 2020, 188–200. https://doi.org/10.1093/jncimonographs/lgaa010 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Linet, M. S., Schubauer-Berigan, M. K. & Berrington de Gonzalez, A. Outcome assessment in epidemiological studies of low-dose radiation exposure and cancer risks: Sources, level of ascertainment, and misclassification. J. Natl. Cancer Inst. Monogr. 2020, 154–175. https://doi.org/10.1093/jncimonographs/lgaa007 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schubauer-Berigan, M. K. et al. Evaluation of confounding and selection bias in epidemiological studies of populations exposed to low-dose, high-energy photon radiation. J. Natl. Cancer Inst. Monogr. 2020, 133–153. https://doi.org/10.1093/jncimonographs/lgaa008 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gilbert, E. S., Little, M. P., Preston, D. L. & Stram, D. O. Issues in interpreting epidemiologic studies of populations exposed to low-dose, high-energy photon radiation. J. Natl. Cancer Inst. Monogr. 2020, 176–187. https://doi.org/10.1093/jncimonographs/lgaa004 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Daniels, R. D., Kendall, G. M., Thierry-Chef, I., Linet, M. S. & Cullings, H. M. Strengths and weaknesses of dosimetry used in studies of low-dose radiation exposure and cancer. J. Natl. Cancer Inst. Monogr. 2020, 114–132. https://doi.org/10.1093/jncimonographs/lgaa001 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wakeford, R. & Tawn, E. J. The meaning of low dose and low dose-rate. J. Radiol. Prot. 30, 1–3. https://doi.org/10.1088/0952-4746/30/1/E02 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • International Commission on Radiological Protection (ICRP). The 2007 Recommendations of the International Commission on Radiological Protection ICRP publication 103. Ann. ICRP 37, 1–332. https://doi.org/10.1016/j.icrp.2007.10.003 (2007).

    Article 

    Google Scholar
     

  • Pierce, D. A., Stram, D. O. & Vaeth, M. Allowing for random errors in radiation dose estimates for the atomic bomb survivor data. Radiat. Res. 123, 275–284 (1990).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pierce, D. A., Stram, D. O., Vaeth, M. & Schafer, D. W. The errors-in-variables problem: Considerations provided by radiation dose-response analyses of the A-bomb survivor data. J. Am. Stat. Assoc. 87, 351–359. https://doi.org/10.1080/01621459.1992.10475214 (1992).

    Article 

    Google Scholar
     

  • Little, M. P. & Muirhead, C. R. Evidence for curvilinearity in the cancer incidence dose-response in the Japanese atomic bomb survivors. Int. J. Radiat. Biol. 70, 83–94 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Little, M. P. & Muirhead, C. R. Curvilinearity in the dose-response curve for cancer in Japanese atomic bomb survivors. Environ. Health Perspect. 105(Suppl 6), 1505–1509 (1997).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Little, M. P. & Muirhead, C. R. Curvature in the cancer mortality dose response in Japanese atomic bomb survivors: Absence of evidence of threshold. Int. J. Radiat. Biol. 74, 471–480 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reeves, G. K., Cox, D. R., Darby, S. C. & Whitley, E. Some aspects of measurement error in explanatory variables for continuous and binary regression models. Stat. Med. 17, 2157–2177 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Little, M. P., Deltour, I. & Richardson, S. Projection of cancer risks from the Japanese atomic bomb survivors to the England and Wales population taking into account uncertainty in risk parameters. Radiat. Environ. Biophys. 39, 241–252 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bennett, J., Little, M. P. & Richardson, S. Flexible dose-response models for Japanese atomic bomb survivor data: Bayesian estimation and prediction of cancer risk. Radiat. Environ. Biophys. 43, 233–245. https://doi.org/10.1007/s00411-004-0258-3 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Little, M. P. et al. New models for evaluation of radiation-induced lifetime cancer risk and its uncertainty employed in the UNSCEAR 2006 report. Radiat. Res. 169, 660–676. https://doi.org/10.1667/RR1091.1 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kesminiene, A. et al. Risk of thyroid cancer among Chernobyl liquidators. Radiat. Res. 178, 425–436. https://doi.org/10.1667/RR2975.1 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Little, M. P. et al. Impact of uncertainties in exposure assessment on estimates of thyroid cancer risk among Ukrainian children and adolescents exposed from the Chernobyl accident. PLoS ONE 9, e85723. https://doi.org/10.1371/journal.pone.0085723 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Little, M. P. et al. Impact of uncertainties in exposure assessment on thyroid cancer risk among persons in Belarus exposed as children or adolescents due to the Chernobyl accident. PLoS ONE 10, e0139826. https://doi.org/10.1371/journal.pone.0139826 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Allodji, R. S. et al. Simulation-extrapolation method to address errors in atomic bomb survivor dosimetry on solid cancer and leukaemia mortality risk estimates, 1950–2003. Radiat. Environ. Biophys. 54, 273–283. https://doi.org/10.1007/s00411-015-0594-5 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kwon, D., Hoffman, F. O., Moroz, B. E. & Simon, S. L. Bayesian dose-response analysis for epidemiological studies with complex uncertainty in dose estimation. Stat. Med. 35, 399–423. https://doi.org/10.1002/sim.6635 (2016).

    Article 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Little, M. P. et al. Lifetime mortality risk from cancer and circulatory disease predicted from the Japanese atomic bomb survivor Life Span Study data taking account of dose measurement error. Radiat. Res. 194, 259–276. https://doi.org/10.1667/RR15571.1 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Little, M. P. et al. Impact of uncertainties in exposure assessment on thyroid cancer risk among cleanup workers in Ukraine exposed due to the Chornobyl accident. Eur. J. Epidemiol. 37, 837–847. https://doi.org/10.1007/s10654-022-00850-z (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Wu, Y. et al. Methods to account for uncertainties in exposure assessment in studies of environmental exposures. Environ. Health 18, 31. https://doi.org/10.1186/s12940-019-0468-4 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carroll, R. J., Ruppert, D., Stefanski, L. A. & Crainiceanu, C. M. Measurement error in nonlinear models. A modern perspective. 1–488 (Chapman and Hall/CRC, Boca Raton, 2006).


    Google Scholar
     

  • Jablon, S. in ABCC Technical Report TR/23–71 (Atomic Bomb Casualty Commission, Hiroshima, 1971).

  • Pierce, D. A. & Kellerer, A. M. Adjusting for covariate errors with nonparametric assessment of the true covariate distribution. Biometrika 91, 863–876. https://doi.org/10.1093/biomet/91.4.863 (2004).

    Article 
    MathSciNet 

    Google Scholar
     

  • Pierce, D. A., Vaeth, M. & Cologne, J. B. Allowance for random dose estimation errors in atomic bomb survivor studies: A revision. Radiat. Res. 170, 118–126. https://doi.org/10.1667/RR1059.1 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Misumi, M., Furukawa, K., Cologne, J. B. & Cullings, H. M. Simulation-extrapolation for bias correction with exposure uncertainty in radiation risk analysis utilizing grouped data. J. R. Stat. Soc. Ser. C-Appl. Stat. 67, 275–289. https://doi.org/10.1111/rssc.12225 (2018).

    Article 
    MathSciNet 

    Google Scholar
     

  • Keogh, R. H. et al. STRATOS guidance document on measurement error and misclassification of variables in observational epidemiology: Part 1-Basic theory and simple methods of adjustment. Stat Med 39, 2197–2231. https://doi.org/10.1002/sim.8532 (2020).

    Article 
    MathSciNet 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shaw, P. A. et al. STRATOS guidance document on measurement error and misclassification of variables in observational epidemiology: Part 2-More complex methods of adjustment and advanced topics. Stat Med 39, 2232–2263. https://doi.org/10.1002/sim.8531 (2020).

    Article 
    MathSciNet 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hsu, W.-L. et al. The incidence of leukemia, lymphoma and multiple myeloma among atomic bomb survivors: 1950–2001. Radiat. Res. 179, 361–382. https://doi.org/10.1667/RR2892.1 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • McCullagh, P. & Nelder, J. A. Generalized linear models. 2nd edition. 1–526 (Chapman and Hall/CRC, Boca Raton, 1989).

    Book 

    Google Scholar
     

  • Little, M. P. & Muirhead, C. R. Derivation of low-dose extrapolation factors from analysis of curvature in the cancer incidence dose response in Japanese atomic bomb survivors. Int. J. Radiat. Biol. 76, 939–953 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schervish, M. J. Theory of statistics. 1–724 (Springer Verlag, Berlin, 1995)

    Book 

    Google Scholar
     

  • Simon, S. L., Hoffman, F. O. & Hofer, E. Letter to the Editor Concerning Stram et al.: “Lung Cancer in the Mayak Workers Cohort: Risk Estimation and Uncertainty Analysis”. Radiat. Res. 196, 449–451. https://doi.org/10.1667/rade-21-00106.1 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dai, C., Heng, J., Jacob, P. E. & Whiteley, N. An invitation to sequential Monte Carlo samplers. J. Am. Stat. Assoc. 117, 1587–1600. https://doi.org/10.1080/01621459.2022.2087659 (2022).

    Article 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Stayner, L. et al. A Monte Carlo maximum likelihood method for estimating uncertainty arising from shared errors in exposures in epidemiological studies of nuclear workers. Radiat. Res. 168, 757–763. https://doi.org/10.1667/RR0677.1 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Fearn, T., Hill, D. C. & Darby, S. C. Measurement error in the explanatory variable of a binary regression: Regression calibration and integrated conditional likelihood in studies of residential radon and lung cancer. Stat. Med. 27, 2159–2176. https://doi.org/10.1002/sim.3163 (2008).

    Article 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Little, M. P. et al. Association of chromosome translocation rate with low dose occupational radiation exposures in U.S. radiologic technologists. Radiat. Res. 182, 1–17. https://doi.org/10.1667/RR13413.1 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Richardson, S. & Gilks, W. R. A Bayesian approach to measurement error problems in epidemiology using conditional independence models. Am. J. Epidemiol. 138, 430–442 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Richardson, S. & Gilks, W. R. Conditional independence models for epidemiological studies with covariate measurement error. Stat. Med. 12, 1703–1722 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Clayton, D. The analysis of event history data: A review of progress and outstanding problems. Stat. Med. 7, 819–841 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472 (1992).

    Article 

    Google Scholar
     

  • Brooks, S. P. & Gelman, A. General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat. 7, 434–455. https://doi.org/10.2307/1390675 (1998).

    Article 
    MathSciNet 

    Google Scholar
     

  • Lunn, D., Spiegelhalter, D., Thomas, A. & Best, N. OpenBUGS version 3.2.3, http://www.openbugs.net/w/FrontPage (2016).

  • rjags. Bayesian graphical models using MCMC. Version 4-13 (CRAN – The Comprehensive R Archive Network, 2022).

  • Cook, J. R. & Stefanski, L. A. Simulation-extrapolation estimation in parametric measurement error models. J. Am. Stat. Assoc. 89, 1314–1328. https://doi.org/10.2307/2290994 (1994).

    Article 

    Google Scholar
     

  • simex. Version 1.8 (CRAN – The Comprehensive R Archive Network, 2019).

  • Land, C. E. et al. Accounting for shared and unshared dosimetric uncertainties in the dose response for ultrasound-detected thyroid nodules after exposure to radioactive fallout. Radiat. Res. 183, 159–173. https://doi.org/10.1667/RR13794.1 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Claeskens, G. & Hjort, N. L. Cambridge Series in Statistical and Probabilistic Mathematics. 1–312 (Cambridge University Press, 2008).


    Google Scholar
     

  • Dormann, C. F. et al. Model averaging in ecology: A review of Bayesian, information-theoretic, and tactical approaches for predictive inference. Ecol. Monogr. 88, 485–504. https://doi.org/10.1002/ecm.1309 (2018).

    Article 

    Google Scholar
     

  • Gelfand, A. E. & Dey, D. K. Bayesian model choice: Asymptotics and exact calculations. J. R. Stat. Soc. Ser. B 56, 501–514 (1994).

    MathSciNet 

    Google Scholar
     

  • Zhang, Z. et al. Correction of confidence intervals in excess relative risk models using Monte Carlo dosimetry systems with shared errors. PLoS ONE 12, e0174641. https://doi.org/10.1371/journal.pone.0174641 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stram, D. O. et al. Lung cancer in the Mayak workers cohort: Risk estimation and uncertainty analysis. Radiat. Res. 195, 334–346. https://doi.org/10.1667/RADE-20-00094.1 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Little, M. P., Patel, A., Hamada, N. & Albert, P. Analysis of cataract in relationship to occupational radiation dose accounting for dosimetric uncertainties in a cohort of U.S. radiologic technologists. Radiat. Res. 194, 153–161. https://doi.org/10.1667/RR15529.1 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Freedman, L. S., Fainberg, V., Kipnis, V., Midthune, D. & Carroll, R. J. A new method for dealing with measurement error in explanatory variables of regression models. Biometrics 60, 172–181. https://doi.org/10.1111/j.0006-341X.2004.00164.x (2004).

    Article 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Thomas, L., Stefanski, L. A. & Davidian, M. Moment adjusted imputation for multivariate measurement error data with applications to logistic regression. Comput. Stat. Data Anal. 67, 15–24. https://doi.org/10.1016/j.csda.2013.04.017 (2013).

    Article 
    MathSciNet 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thomas, L., Stefanski, L. & Davidian, M. A moment-adjusted imputation method for measurement error models. Biometrics 67, 1461–1470. https://doi.org/10.1111/j.1541-0420.2011.01569.x (2011).

    Article 
    MathSciNet 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    Stay Connected

    9FansLike
    4FollowersFollow
    0SubscribersSubscribe
    - Advertisement -spot_img

    Latest Articles

    %d bloggers like this: