Sunday, June 4, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

A kidney-brain neural circuit drives progressive kidney damage and heart failure – Signal Transduction and Targeted Therapy


  • McCullough, P. A. et al. Confirmation of a heart failure epidemic: findings from the Resource Utilization Among Congestive Heart Failure (REACH) study. J Am Coll Cardiol 39, 60–69 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Spahillari, A. et al. Ideal cardiovascular health, cardiovascular remodeling, and heart failure in blacks: the jackson heart study. Circulation. Heart failure 10, e003682 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McCullough, P. A., Bakris, G. L., Owen, W. F. Jr., Klassen, P. S. & Califf, R. M. Slowing the progression of diabetic nephropathy and its cardiovascular consequences. Am. Heart J. 148, 243–251 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Pitt, B. et al. Cardiovascular events with finerenone in kidney disease and type 2 diabetes. N. Engl. J. Med. 385, 2252–2263 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Damman, K., Voors, A. A., Navis, G., van Veldhuisen, D. J. & Hillege, H. L. The cardiorenal syndrome in heart failure. Prog. Cardiovasc. Dis. 54, 144–153 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Bock, J. S. & Gottlieb, S. S. Cardiorenal syndrome: new perspectives. Circulation 121, 2592–2600 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Ahmad, T. et al. Worsening renal function in patients with acute heart failure undergoing aggressive diuresis is not associated with tubular injury. Circulation 137, 2016–2028 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McCullough, P. A. et al. Pathophysiology of the cardiorenal syndromes: executive summary from the eleventh consensus conference of the Acute Dialysis Quality Initiative (ADQI). Contrib. Nephrol 182, 82–98 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Pitt, B. et al. Spironolactone for heart failure with preserved ejection fraction. N. Engl. J. Med. 370, 1383–1392 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arendse, L. B. et al. Novel therapeutic approaches targeting the renin-angiotensin system and associated peptides in hypertension and heart failure. Pharmacol. Rev. 71, 539–570 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patel, K. P., Katsurada, K. & Zheng, H. Cardiorenal syndrome: the role of neural connections between the heart and the kidneys. Circ Res. 130, 1601–1617 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hartupee, J. & Mann, D. L. Neurohormonal activation in heart failure with reduced ejection fraction. Nat Rev Cardiol 14, 30–38 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Braunwald, E. & Bristow, M. R. Congestive heart failure: fifty years of progress. Circulation 102, Iv14–Iv23 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Osborn, J. W., Tyshynsky, R. & Vulchanova, L. Function of renal nerves in kidney physiology and pathophysiology. Annu Rev Physiol 83, 429–450 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Damman, K. & Testani, J. M. The kidney in heart failure: an update. Eur. Heart J. 36, 1437–1444 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Veiga, A. C., Milanez, M. I. O., Campos, R. R., Bergamaschi, C. T. & Nishi, E. E. The involvement of renal afferents in the maintenance of cardiorenal diseases. Am. J. Physiol. Regul. Integr Comp. Physiol. 320, R88–R93 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solano-Flores, L. P., Rosas-Arellano, M. P. & Ciriello, J. Fos induction in central structures after afferent renal nerve stimulation. Brain Res. 753, 102–119 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nishi, E. E. et al. Stimulation of renal afferent fibers leads to activation of catecholaminergic and non-catecholaminergic neurons in the medulla oblongata. Auton. Neurosci. 204, 48–56 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sharp, T. E. 3rd & Lefer, D. J. Renal denervation to treat heart failure. Annu Rev Physiol 83, 39–58 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao, W. et al. A salt-induced reno-cerebral reflex activates renin-angiotensin systems and promotes CKD progression. J. Am. Soc. Nephrol. 26, 1619–1633 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng, H., Katsurada, K., Liu, X., Knuepfer, M. M. & Patel, K. P. Specific afferent renal denervation prevents reduction in neuronal nitric oxide synthase within the paraventricular nucleus in rats with chronic heart failure. Hypertension 72, 667–675 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Booth, L. C. et al. Renal, cardiac, and autonomic effects of catheter-based renal denervation in ovine heart failure. Hypertension 78, 706–715 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Davies, J. E. et al. First-in-man safety evaluation of renal denervation for chronic systolic heart failure: primary outcome from REACH-Pilot study. Int. J. Cardiol. 162, 189–192 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Polhemus, D. J. et al. Renal sympathetic denervation protects the failing heart via inhibition of neprilysin activity in the kidney. J. Am. Coll. Cardiol. 70, 2139–2153 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Sharp, T. E. 3rd et al. Renal denervation prevents heart failure progression via inhibition of the renin-angiotensin system. J. Am. Coll. Cardiol. 72, 2609–2621 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Xu, B., Zheng, H., Liu, X. & Patel, K. P. Activation of afferent renal nerves modulates RVLM-projecting PVN neurons. Am. J. Physiol. Heart Circ. Physiol. 308, H1103–H1111 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Calaresu, F. R. & Ciriello, J. Renal afferent nerves affect discharge rate of medullary and hypothalamic single units in the cat. J. Auton. Nerv. Syst. 3, 311–320 (1981).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wyss, J. M. & Donovan, M. K. A direct projection from the kidney to the brainstem. Brain Res. 298, 130–134 (1984).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, L. et al. A visual circuit related to habenula underlies the antidepressive effects of light therapy. Neuron 102, 128–142.e128 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han, W. et al. A neural circuit for gut-induced reward. Cell 175, 665–678 e623 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zingg, B. et al. AAV-mediated anterograde transsynaptic tagging: mapping corticocollicular input-defined neural pathways for defense behaviors. Neuron 93, 33–47 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zingg, B., Peng, B., Huang, J., Tao, H. W. & Zhang, L. I. Synaptic specificity and application of anterograde transsynaptic AAV for probing neural circuitry. J. Neurosci. 40, 3250–3267 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nomura, K. et al. [Na(+)] increases in body fluids sensed by central Nax induce sympathetically mediated blood pressure elevations via H(+)-dependent activation of ASIC1a. Neuron 101, 60–75.e66 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Matsuda, T. et al. Distinct neural mechanisms for the control of thirst and salt appetite in the subfornical organ. Nat. Neurosci. 20, 230–241 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Premer, C., Lamondin, C., Mitzey, A., Speth, R. C. & Brownfield, M. S. Immunohistochemical localization of AT1a, AT1b, and AT2 angiotensin II receptor subtypes in the rat adrenal, pituitary, and brain with a perspective commentary. Int. J. Hypertens. 2013, 175428 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mangiapane, M. L. & Simpson, J. B. Subfornical organ: forebrain site of pressor and dipsogenic action of angiotensin II. Am. J. Physiol. 239, R382–R389 (1980).

    CAS 
    PubMed 

    Google Scholar
     

  • Qian, J. F. et al. Angiotensinogen gene expression is stimulated by the cAMP-responsive element binding protein in opossum kidney cells. J. Am. Soc. Nephrol. 8, 1072–1079 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Altarejos, J. Y. et al. The Creb1 coactivator Crtc1 is required for energy balance and fertility. Nat. Med. 14, 1112–1117 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weiss, M. L., Chowdhury, S. I., Patel, K. P., Kenney, M. J. & Huang, J. Neural circuitry of the kidney: NO-containing neurons. Brain Res. 919, 269–282 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cano, G., Card, J. P. & Sved, A. F. Dual viral transneuronal tracing of central autonomic circuits involved in the innervation of the two kidneys in rat. J. Comp. Neurol 471, 462–481 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Nijima, A. Afferent discharges from arterial mechanoreceptors in the kidney of the rabbit. J. Physiol. 219, 477–485 (1971).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao, W. et al. Reno-cerebral reflex activates the renin-angiotensin system, promoting oxidative stress and renal damage after ischemia-reperfusion injury. Antioxid Redox Signal 27, 415–432 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Veelken, R. & Schmieder, R. E. Renal denervation–implications for chronic kidney disease. Nat. Rev. Nephrol. 10, 305–313 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Husain-Syed, F. et al. Congestive nephropathy: a neglected entity? Proposal for diagnostic criteria and future perspectives. ESC Heart Failure 8, 183–203 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Mullens, W. et al. Evaluation of kidney function throughout the heart failure trajectory – a position statement from the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Failure 22, 584–603 (2020).

    Article 

    Google Scholar
     

  • Sullivan, R. D., Mehta, R. M., Tripathi, R., Reed, G. L. & Gladysheva, I. P. Renin activity in heart failure with reduced systolic function–new insights. Int. J. Mol. Sci. 20, 3182 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schiller, A. M., Pellegrino, P. R. & Zucker, I. H. The renal nerves in chronic heart failure: efferent and afferent mechanisms. Front Physiol. 6, 224 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Booth, L. C., May, C. N. & Yao, S. T. The role of the renal afferent and efferent nerve fibers in heart failure. Front Physiol. 6, 270 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao, W. et al. Contrast-enhanced ultrasound for assessing renal perfusion impairment and predicting acute kidney injury to chronic kidney disease progression. Antioxid. Redox Signal. 27, 1397–1411 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ashton, N., Clarke, C. G., Eddy, D. E. & Swift, F. V. Mechanisms involved in the activation of ischemically sensitive, afferent renal nerve mediated reflex increases in hind-limb vascular resistance in the anesthetized rabbit. Can. J. Physiol. Pharmacol. 72, 637–643 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, B. S. & Leenen, F. H. The brain renin-angiotensin-aldosterone system: a major mechanism for sympathetic hyperactivity and left ventricular remodeling and dysfunction after myocardial infarction. Curr. Heart Fail Rep. 6, 81–88 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, H. W. et al. Mineralocorticoid and angiotensin II type 1 receptors in the subfornical organ mediate angiotensin II – induced hypothalamic reactive oxygen species and hypertension. Neuroscience 329, 112–121 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krum, H. et al. Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet 373, 1275–1281 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Symplicity, H. T. N. I. et al. Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN-2 Trial): a randomised controlled trial. Lancet 376, 1903–1909 (2010).

    Article 

    Google Scholar
     

  • Gao, J. Q., Xie, Y., Yang, W., Zheng, J. P. & Liu, Z. J. Effects of percutaneous renal sympathetic denervation on cardiac function and exercise tolerance in patients with chronic heart failure. Rev. Port. Cardiol. 36, 45–51 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Drozdz, T. et al. Renal denervation in patients with symptomatic chronic heart failure despite resynchronization therapy: a pilot study. Postepy Kardiol Interwencyjnej 15, 240–246 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • DiBona, G. F. & Kopp, U. C. Neural control of renal function. Physiol. Rev. 77, 75–197 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Clayton, S. C., Haack, K. K. & Zucker, I. H. Renal denervation modulates angiotensin receptor expression in the renal cortex of rabbits with chronic heart failure. Am. J. Physiol. Renal Physiol. 300, F31–F39 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Matsusaka, T. et al. Angiotensin receptor blocker protection against podocyte-induced sclerosis is podocyte angiotensin II type 1 receptor-independent. Hypertension 55, 967–973 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fan, Q. et al. Dectin-1 contributes to myocardial ischemia/reperfusion injury by regulating macrophage polarization and neutrophil infiltration. Circulation 139, 663–678 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lopes, N. R. et al. Afferent innervation of the ischemic kidney contributes to renal dysfunction in renovascular hypertensive rats. Pflugers Arch. 472, 325–334 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, Y., Wei, S. G., Weiss, R. M. & Felder, R. B. Angiotensin II Type 1a receptors in the subfornical organ modulate neuroinflammation in the hypothalamic paraventricular nucleus in heart failure rats. Neuroscience 381, 46–58 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    Stay Connected

    9FansLike
    4FollowersFollow
    0SubscribersSubscribe
    - Advertisement -spot_img

    Latest Articles

    %d bloggers like this: