Friday, September 22, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

A new static visual field test algorithm: the Ambient Interactive ZEST (AIZE) – Scientific Reports


  • Keltner, J. L., Johnson, C. A. & Lewis, R. A. Quantitative office perimetry. Ophthalmology 92(7), 862–872 (1985).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bengtsson, B., Heijl, A. & Olsson, J. Evaluation of a new threshold visual field strategy, SITA, in normal subjects. Swedish interactive thresholding algorithm. Acta Ophthalmol. Scand. 76(2), 165–169 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bengtsson, B. & Heijl, A. Evaluation of a new perimetric threshold strategy, SITA, in patients with manifest and suspect glaucoma. Acta Ophthalmol. Scand. 76(3), 268–272 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heijl, A. & Drance, S. M. Changes in differential threshold in patients with glaucoma during prolonged perimetry. Br. J. Ophthalmol. 67, 512–516 (1983).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hudson, C., Wild, J. M. & O’Neill, E. C. Fatigue effects during a single session of automated static threshold perimetry. Invest. Ophthalmol. Vis. Sci. 35, 268–280 (1994).

    CAS 
    PubMed 

    Google Scholar
     

  • Johnson, C. A., Adams, C. W. & Lewis, R. A. Fatigue effects in automated perimetry. Appl. Opt. 27, 1030–1037 (1988).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Olsson, J., Bengtsson, B., Heijl, A. & Rootzen, H. An improved method to estimate frequency of false positive answers in computerized perimetry. Acta Ophthalmol. Scand. 75(2), 181–183 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heijl, A. & Krakau, C. E. An automatic perimeter for glaucoma visual field screening and control. Construction and clinical cases. Albert Von Grafes Arch. Klin. Exp. Ophthalmol. 197(1), 13–23 (1975).

    Article 
    CAS 

    Google Scholar
     

  • Olsson, J. & Rootzen, H. An image model for quantal response analysis in perimetry. Scand. J. Stat. 8, 375–387 (1994).

    MathSciNet 
    MATH 

    Google Scholar
     

  • Chong, L. X., McKendrick, A. M., Ganeshrao, S. B. & Turpin, A. Customized, automated stimulus location choice for assessment of visual field defects introduction of goanna. Invest. Ophthalmol. Vis. Sci. 55, 3265–3274 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Rubinstein, N. J., McKendrick, A. M. & Turpin, A. Incorporating spatial models in visual field test procedures. Transl. Vis. Sci. Technol. 5, 7 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gardiner, S. K., Swanson, W. H., Goren, D., Mansberger, S. L. & Derirel, S. Assessment of the relaiability of standard automated perimetry in regions of glaucomatous damage. Ophthalmology 121(7), 1359–1369 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Numata, T. et al. Exploring test-retest variability using high-resolution perimetry. Transl. Vis. Sci. Technol. 6(5), 8 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heijl, A. & Krakau, C. E. An automated static perimeter, design and pilot study. Acta Ophtalmol. (Copenh.) 53(3), 293–310 (1975).

    Article 
    CAS 

    Google Scholar
     

  • Frankhauser, F., Spahr, J. & Babie, H. Some aspects of the automation of perimetry. Surv. Ophthalmol. 22(2), 131–141 (1977).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Anderson, D. R. & Patella, V. M. (eds) Automated Static Perimetry (Mosby, 1999).


    Google Scholar
     

  • Yohannan, J. et al. Evidence-based criteria for assessment of visual field reliability. Ophthalmology 124(11), 1612–1620 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Katz, J. & Sommer, A. Reliability index of automated perimetric test. Arch. Ophthalmol. 106(9), 1252–1254 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bengtsson, B. & Heijl, A. False-negative responses in glaucoma perimetry: Indicators pf patient performance or test reliability?. Invest. Ophthalmol. Vsi. Sci. 41(8), 2201–2204 (2000).

    CAS 

    Google Scholar
     

  • Matsumoto, C. et al. Visual field testing with head mounted perimeter ‘imo’. PLoS ONE 11(8), e0161974 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kimura, T., Nomoto, H. & Matsumoto, C. Comparison of head-mounted perimeter (imo) and humphrey field analyzer. Clin. Ophthalmol. 13, 501–513 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sakamoto, M. et al. Agreement in the detection of chiasmal and postchiasmal visual field defects between imo binocular random single-eye test and Humphrey monocular test. Jpn. J. Ophthalmol. 66(5), 413–424 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gardiner, S. K., Crabb, D. P., Fitzke, F. W. & Hitchings, R. A. Reducing noise in suspected glaucomatous visual fields by using a new spatial filter. Vis. Res. 44(8), 839–848 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Lamparter, J. et al. The influence of intersubject variability in ocular anatomical variables on the mapping of retinal locations to the retinal nerve fiber layer and optic nerve head. Invest. Ophthalmol. Vsi. Sci. 54, 6074–6082 (2013).

    Article 

    Google Scholar
     

  • Turpin, A., Sampson, G. P. & McKendrick, A. M. Combining ganglion cell topology and data of patients with glaucoma to determine a structure-function map. Invest. Ophthalmol. Vsi. Sci. 50, 3249–3256 (2009).

    Article 

    Google Scholar
     

  • Chauhan, B. C. & Burgoyne, C. F. From clinical examination of the optic disc to clinical assessment of the optic nerve head: A paradigm change. Am. J. Ophthalmol. 156, 218–227 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • King-Smith, P. E., Grigsby, S. S., Vingrys, A. J., Benes, S. C. & Supowit, A. Efficient and unbiased modifications of the QUEST threshold method: Theory, simulations, experimental evaluation and practical implementation. Vis. Res. 34(7), 885–912 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bryan, S. R., Vermeer, K. A., Eilers, P. H., Lemij, H. G. & Lesaffre, E. M. Robust and censored modeling and prediction of progression in glaucomatous visual fields. Invest. Ophthalmol. Vis. Sci. 54, 6694–6700 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Erler, N. S. et al. Optimizing structure–function relationship by maximizing correspondence between glaucomatous visual fields and mathematical retinal nerve fiber models optimization of structural RNFL models on visual fields. Invest. Ophthalmol. Vis. Sci. 55, 2350–2357 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Henson, D. B., Chaudry, S., Artes, P. H., Faragher, E. B. & Ansons, A. Response variability in the visual field: Comparison of optic neuritis, glaucoma, ocular hypertension, and normal eyes. Invest. Ophthalmol. Vis. Sci. 41, 417–421 (2000).

    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    Stay Connected

    9FansLike
    4FollowersFollow
    0SubscribersSubscribe
    - Advertisement -spot_img

    Latest Articles

    %d bloggers like this: