Wednesday, September 27, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

A new wave of innovations within the DNA damage response – Signal Transduction and Targeted Therapy


  • Roos, W. P., Thomas, A. D. & Kaina, B. DNA damage and the balance between survival and death in cancer biology. Nat. Rev. Cancer 16, 20–33 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Voulgaridou, G. P., Anestopoulos, I., Franco, R., Panayiotidis, M. I. & Pappa, A. DNA damage induced by endogenous aldehydes: current state of knowledge. Mutat. Res. 711, 13–27 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, R. & Zhou, P. K. DNA damage repair: historical perspectives, mechanistic pathways and clinical translation for targeted cancer therapy. Signal Transduct. Target. Ther. 6, 254 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pearl, L. H., Schierz, A. C., Ward, S. E., Al-Lazikani, B. & Pearl, F. M. Therapeutic opportunities within the DNA damage response. Nat. Rev. Cancer 15, 166–180 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brown, J. S., Sundar, R. & Lopez, J. Combining DNA damaging therapeutics with immunotherapy: more haste, less speed. Br. J. Cancer 118, 312–324 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chabanon, R. M. et al. Targeting the DNA damage response in immuno-oncology: developments and opportunities. Nat. Rev. Cancer 21, 701–717 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Surova, O. & Zhivotovsky, B. Various modes of cell death induced by DNA damage. Oncogene 32, 3789–3797 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jeggo, P. A., Pearl, L. H. & Carr, A. M. DNA repair, genome stability and cancer: a historical perspective. Nat. Rev. Cancer 16, 35–42 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Larsen, B. D. et al. Cancer cells use self-inflicted DNA breaks to evade growth limits imposed by genotoxic stress. Science 376, 476–483 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pilie, P. G., Tang, C., Mills, G. B. & Yap, T. A. State-of-the-art strategies for targeting the DNA damage response in cancer. Nat. Rev. Clin. Oncol. 16, 81–104 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Connor, M. J. Targeting the DNA Damage Response in Cancer. Mol. Cell 60, 547–560 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Huang, A., Garraway, L. A., Ashworth, A. & Weber, B. Synthetic lethality as an engine for cancer drug target discovery. Nat. Rev. Drug Discov. 19, 23–38 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ashworth, A. & Lord, C. J. Synthetic lethal therapies for cancer: what’s next after PARP inhibitors? Nat. Rev. Clin. Oncol. 15, 564–576 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lord, C. J. & Ashworth, A. PARP inhibitors: Synthetic lethality in the clinic. Science 355, 1152–1158 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gaillard, H., Garcia-Muse, T. & Aguilera, A. Replication stress and cancer. Nat. Rev. Cancer 15, 276–289 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dobbelstein, M. & Sorensen, C. S. Exploiting replicative stress to treat cancer. Nat. Rev. Drug Discov. 14, 405–423 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Forment, J. V. & O’Connor, M. J. Targeting the replication stress response in cancer. Pharmacol. Ther. 188, 155–167 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sorensen, C. S. & Syljuasen, R. G. Safeguarding genome integrity: the checkpoint kinases ATR, CHK1 and WEE1 restrain CDK activity during normal DNA replication. Nucleic Acids Res. 40, 477–486 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ngoi, N. Y. L., Pham, M. M., Tan, D. S. P. & Yap, T. A. Targeting the replication stress response through synthetic lethal strategies in cancer medicine. Trends Cancer 7, 930–957 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Begg, A. C., Stewart, F. A. & Vens, C. Strategies to improve radiotherapy with targeted drugs. Nat. Rev. Cancer 11, 239–253 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goldstein, M. & Kastan, M. B. The DNA damage response: implications for tumor responses to radiation and chemotherapy. Annu. Rev. Med. 66, 129–143 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Matulonis, U. A. & Monk, B. J. PARP inhibitor and chemotherapy combination trials for the treatment of advanced malignancies: does a development pathway forward exist? Ann. Oncol. 28, 443–447 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martorana, F., Da Silva, L. A., Sessa, C. & Colombo, I. Everything Comes with a Price: The Toxicity Profile of DNA-Damage Response Targeting Agents. Cancers (Basel) 14, 953–974 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deeks, E. D. Olaparib: first global approval. Drugs 75, 231–240 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Curtin, N. J. & Szabo, C. Poly(ADP-ribose) polymerase inhibition: past, present and future. Nat. Rev. Drug Discov. 19, 711–736 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ngoi, N. Y. L., Leo, E., O’Connor, M. J. & Yap, T. A. Development of Next-Generation Poly(ADP-Ribose) Polymerase 1-Selective Inhibitors. Cancer J. 27, 521–528 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Papeo, G. et al. Discovery of 2-[1-(4,4-Difluorocyclohexyl)piperidin-4-yl]-6-fluoro-3-oxo-2,3-dihydro-1H-isoind ole-4-carboxamide (NMS-P118): A Potent, Orally Available, and Highly Selective PARP-1 Inhibitor for Cancer Therapy. J. Med. Chem. 58, 6875–6898 (2015)..

  • Dias, M. P., Moser, S. C., Ganesan, S. & Jonkers, J. Understanding and overcoming resistance to PARP inhibitors in cancer therapy. Nat. Rev. Clin. Oncol. 18, 773–791 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Shah, S. M. et al. Therapeutic implications of germline vulnerabilities in DNA repair for precision oncology. Cancer Treat. Rev. 104, 102337 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cleary, J. M., Aguirre, A. J., Shapiro, G. I. & D’Andrea, A. D. Biomarker-Guided Development of DNA Repair Inhibitors. Mol. Cell 78, 1070–1085 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brandsma, I., Fleuren, E. D. G., Williamson, C. T. & Lord, C. J. Directing the use of DDR kinase inhibitors in cancer treatment. Expert Opin. Investig. Drugs 26, 1341–1355 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lord, C. J. & Ashworth, A. The DNA damage response and cancer therapy. Nature 481, 287–294 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Portin, P. The birth and development of the DNA theory of inheritance: sixty years since the discovery of the structure of DNA. J. Genet. 93, 293–302 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Franklin, R. E. & Gosling, R. G. Evidence for 2-chain helix in crystalline structure of sodium deoxyribonucleate. Nature 172, 156–157 (1953).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Setlow, R. B. & Carrier, W. L. The Disappearance of Thymine Dimers from DNA: An Error-Correcting Mechanism. Proc. Natl Acad. Sci. USA 51, 226–231 (1964).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cleaver, J. R. & Painter, R. B. Evidence for repair replication of HeLa cell DNA damaged by ultraviolet light. Biochim. Biophys. Acta 161, 552–554 (1968).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schuster, R. C. Dark Repair of Ultraviolet Injury in E. Coli during Deprivation of Thymine. Nature 202, 614–615 (1964).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lindahl, T. & Andersson, A. Rate of chain breakage at apurinic sites in double-stranded deoxyribonucleic acid. Biochemistry 11, 3618–3623 (1972).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lindahl, T. An N-glycosidase from Escherichia coli that releases free uracil from DNA containing deaminated cytosine residues. Proc. Natl Acad. Sci. USA 71, 3649–3653 (1974).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lindahl, T. & Nyberg, B. Heat-induced deamination of cytosine residues in deoxyribonucleic acid. Biochemistry 13, 3405–3410 (1974).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Durkacz, B. W., Omidiji, O., Gray, D. A. & Shall, S. (ADP-ribose)n participates in DNA excision repair. Nature 283, 593–596 (1980).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Walker, A. I., Hunt, T., Jackson, R. J. & Anderson, C. W. Double-stranded DNA induces the phosphorylation of several proteins including the 90 000 mol. wt. heat-shock protein in animal cell extracts. EMBO J. 4, 139–145 (1985).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Savitsky, K. et al. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 268, 1749–1753 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Walworth, N. C. & Bernards, R. rad-dependent response of the chk1-encoded protein kinase at the DNA damage checkpoint. Science 271, 353–356 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hall, E. J. From chimney sweeps to oncogenes: the quest for the causes of cancer. Radiology 179, 297–306 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Waldron, H. A. A brief history of scrotal cancer. Br. J. Ind. Med. 40, 390–401 (1983).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burdette, W. J. The significance of mutation in relation to the origin of tumors: a review. Cancer Res. 15, 201–226 (1955).

    CAS 
    PubMed 

    Google Scholar
     

  • Brookes, P. & Lawley, P. D. The reaction of mustard gas with nucleic acids in vitro and in vivo. Biochem. J. 77, 478–484 (1960).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brookes, P. & Lawley, P. D. The reaction of mono- and di-functional alkylating agents with nucleic acids. Biochem. J. 80, 496–503 (1961).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brookes, P. & Lawley, P. D. Evidence for the Binding of Polynuclear Aromatic Hydrocarbons to the Nucleic Acids of Mouse Skin: Relation between Carcinogenic Power of Hydrocarbons and Their Binding to Deoxyribonucleic Acid. Nature 202, 781–784 (1964).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lindell, B. & Sowby, D. The 1958 UNSCEAR report. J. Radiol. Prot. 28, 277–282 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Cleaver, J. E. Xeroderma pigmentosum: a human disease in which an initial stage of DNA repair is defective. Proc. Natl Acad. Sci. USA 63, 428–435 (1969).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Black, J. O. Xeroderma Pigmentosum. Head. Neck Pathol. 10, 139–144 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leach, F. S. et al. Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell 75, 1215–1225 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fishel, R. et al. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 75, 1027–1038 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bronner, C. E. et al. Mutation in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary non-polyposis colon cancer. Nature 368, 258–261 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Papadopoulos, N. et al. Mutation of a mutL homolog in hereditary colon cancer. Science 263, 1625–1629 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marabelle, A. et al. Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair-deficient cancer: results from the phase II KEYNOTE-158 study. J. Clin. Oncol. 38, 1–10 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mandal, R. et al. Genetic diversity of tumors with mismatch repair deficiency influences anti-PD-1 immunotherapy response. Science 364, 485–491 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Castilla, L. H. et al. Mutations in the BRCA1 gene in families with early-onset breast and ovarian cancer. Nat. Genet. 8, 387–391 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wooster, R. et al. Identification of the breast cancer susceptibility gene BRCA2. Nature 378, 789–792 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Easton, D. F., Bishop, D. T., Ford, D. & Crockford, G. P. Genetic linkage analysis in familial breast and ovarian cancer: results from 214 families. The Breast Cancer Linkage Consortium. Am. J. Hum. Genet. 52, 678–701 (1993).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • King, M. C., Marks, J. H. & Mandell, J. B. New York Breast Cancer Study, G. Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science 302, 643–646 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ford, D., Easton, D. F., Bishop, D. T., Narod, S. A. & Goldgar, D. E. Risks of cancer in BRCA1-mutation carriers. Breast Cancer Linkage Consortium. Lancet 343, 692–695 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deininger, P. Genetic instability in cancer: caretaker and gatekeeper genes. Ochsner J. 1, 206–209 (1999).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matthews, H. K., Bertoli, C. & de Bruin, R. A. M. Cell cycle control in cancer. Nat. Rev. Mol. Cell. Biol. 23, 74–88 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Setton, J. et al. Synthetic lethality in cancer therapeutics: the next generation. Cancer Discov. 11, 1626–1635 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brown, J. S., O’Carrigan, B., Jackson, S. P. & Yap, T. A. Targeting DNA repair in cancer: Beyond PARP inhibitors. Cancer Discov. 7, 20–37 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sancar, A. Mechanisms of DNA Repair by Photolyase and Excision Nuclease (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 55, 8502–8527 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ramirez-Gamboa, D. et al. Photolyase production and current applications: a review. Molecules 27, 5998–6014 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mishina, Y., Duguid, E. M. & He, C. Direct reversal of DNA alkylation damage. Chem. Rev. 106, 215–232 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bai, P. et al. The dual role of DNA repair protein MGMT in cancer prevention and treatment. DNA Repair (Amst.) 123, 103449 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, C. G. et al. Crystal structures of DNA/RNA repair enzymes AlkB and ABH2 bound to dsDNA. Nature 452, 961–965 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Q. et al. Rhein Inhibits AlkB Repair Enzymes and Sensitizes Cells to Methylated DNA Damage. J. Biol. Chem. 291, 11083–11093 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dianov, G. L. & Hubscher, U. Mammalian base excision repair: the forgotten archangel. Nucleic Acids Res. 41, 3483–3490 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Almeida, K. H. & Sobol, R. W. A unified view of base excision repair: lesion-dependent protein complexes regulated by post-translational modification. DNA Repair (Amst.) 6, 695–711 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Caldecott, K. W. DNA single-strand break repair and human genetic disease. Trends Cell Biol. 32, 733–745 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Caldecott, K. W. Single-strand break repair and genetic disease. Nat. Rev. Genet. 9, 619–631 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Scharer, O. D. Nucleotide excision repair in eukaryotes. Cold Spring Harb. Perspect. Biol. 5, a012609 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marteijn, J. A., Lans, H., Vermeulen, W. & Hoeijmakers, J. H. Understanding nucleotide excision repair and its roles in cancer and ageing. Nat. Rev. Mol. Cell. Biol. 15, 465–481 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, G. M. Mechanisms and functions of DNA mismatch repair. Cell Res. 18, 85–98 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Iyer, R. R., Pluciennik, A., Burdett, V. & Modrich, P. L. DNA mismatch repair: functions and mechanisms. Chem. Rev. 106, 302–323 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sale, J. E. Translesion DNA synthesis and mutagenesis in eukaryotes. Cold Spring Harb. Perspect. Biol. 5, a012708 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nepal, M., Che, R., Zhang, J., Ma, C. & Fei, P. Fanconi anemia signaling and cancer. Trends Cancer 3, 840–856 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clauson, C., Scharer, O. D. & Niedernhofer, L. Advances in understanding the complex mechanisms of DNA interstrand cross-link repair. Cold Spring Harb. Perspect. Biol. 5, a012732 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scully, R., Panday, A., Elango, R. & Willis, N. A. DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat. Rev. Mol. Cell Biol. 20, 698–714 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chapman, J. R., Taylor, M. R. & Boulton, S. J. Playing the end game: DNA double-strand break repair pathway choice. Mol. Cell 47, 497–510 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wright, W. D., Shah, S. S. & Heyer, W. D. Homologous recombination and the repair of DNA double-strand breaks. J. Biol. Chem. 293, 10524–10535 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, B., Rothenberg, E., Ramsden, D. A. & Lieber, M. R. The molecular basis and disease relevance of non-homologous DNA end joining. Nat. Rev. Mol. Cell Biol. 21, 765–781 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rossi, M. J., DiDomenico, S. F., Patel, M. & Mazin, A. V. RAD52: Paradigm of Synthetic Lethality and New Developments. Front. Genet. 12, 780293 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ramsden, D. A., Carvajal-Garcia, J. & Gupta, G. P. Mechanism, cellular functions and cancer roles of polymerase-theta-mediated DNA end joining. Nat. Rev. Mol. Cell Biol. 23, 125–140 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Suski, J. M., Braun, M., Strmiska, V. & Sicinski, P. Targeting cell-cycle machinery in cancer. Cancer Cell 39, 759–778 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Groelly, F. J., Fawkes, M., Dagg, R. A., Blackford, A. N. & Tarsounas, M. Targeting DNA damage response pathways in cancer. Nat. Rev. Cancer 23, 78–94 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Branzei, D. & Foiani, M. Regulation of DNA repair throughout the cell cycle. Nat. Rev. Mol. Cell Biol. 9, 297–308 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bai, P. Biology of Poly(ADP-Ribose) polymerases: the factotums of cell maintenance. Mol. Cell 58, 947–958 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vyas, S. et al. Family-wide analysis of poly(ADP-ribose) polymerase activity. Nat. Commun. 5, 4426 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ray Chaudhuri, A. & Nussenzweig, A. The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat. Rev. Mol. Cell Biol. 18, 610–621 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robu, M. et al. Role of poly(ADP-ribose) polymerase-1 in the removal of UV-induced DNA lesions by nucleotide excision repair. Proc. Natl Acad. Sci. USA 110, 1658–1663 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haince, J. F. et al. PARP1-dependent kinetics of recruitment of MRE11 and NBS1 proteins to multiple DNA damage sites. J. Biol. Chem. 283, 1197–1208 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mateos-Gomez, P. A. et al. Mammalian polymerase theta promotes alternative NHEJ and suppresses recombination. Nature 518, 254–257 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sinha, S., Molla, S. & Kundu, C. N. PARP1-modulated chromatin remodeling is a new target for cancer treatment. Med. Oncol. 38, 118 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jubin, T. et al. Poly ADP-ribose polymerase-1: Beyond transcription and towards differentiation. Semin. Cell Dev. Biol. 63, 167–179 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bryant, H. E. et al. PARP is activated at stalled forks to mediate Mre11-dependent replication restart and recombination. EMBO J. 28, 2601–2615 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kunze, F. A. & Hottiger, M. O. Regulating Immunity via ADP-Ribosylation: Therapeutic Implications and Beyond. Trends Immunol. 40, 159–173 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bai, P. & Canto, C. The role of PARP-1 and PARP-2 enzymes in metabolic regulation and disease. Cell Metab. 16, 290–295 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vida, A., Abdul-Rahman, O., Miko, E., Brunyanszki, A. & Bai, P. Poly(ADP-Ribose) Polymerases in Aging – Friend or Foe? Curr. Protein Pept. Sci. 17, 705–712 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Farmer, H. et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434, 917–921 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bryant, H. E. et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434, 913–917 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Syed, Y. Y. Rucaparib: First global approval. Drugs 77, 585–592 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Scott, L. J. Niraparib: First global approval. Drugs 77, 1029–1034 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Hoy, S. M. Talazoparib: First global approval. Drugs 78, 1939–1946 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Markham, A. Pamiparib: First approval. Drugs 81, 1343–1348 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, A. Fuzuloparib: First approval. Drugs 81, 1221–1226 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pommier, Y., O’Connor, M. J. & de Bono, J. Laying a trap to kill cancer cells: PARP inhibitors and their mechanisms of action. Sci. Transl. Med. 8, 362ps317 (2016).

    Article 

    Google Scholar
     

  • Murai, J. et al. Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Res. 72, 5588–5599 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen, Y., Aoyagi-Scharber, M. & Wang, B. Trapping Poly(ADP-Ribose) polymerase. J. Pharmacol. Exp. Ther. 353, 446–457 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krastev, D. B., Wicks, A. J. & Lord, C. J. PARP inhibitors – Trapped in a toxic love affair. Cancer Res. 81, 5605–5607 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Helleday, T. The underlying mechanism for the PARP and BRCA synthetic lethality: clearing up the misunderstandings. Mol. Oncol. 5, 387–393 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Strom, C. E. et al. Poly (ADP-ribose) polymerase (PARP) is not involved in base excision repair but PARP inhibition traps a single-strand intermediate. Nucleic Acids Res. 39, 3166–3175 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Murai, J. et al. Stereospecific PARP trapping by BMN 673 and comparison with olaparib and rucaparib. Mol. Cancer Ther. 13, 433–443 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mariappan, L., Jiang, X. Y., Jackson, J. & Drew, Y. Emerging treatment options for ovarian cancer: focus on rucaparib. Int. J. Women’s Health 9, 913–924 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Zandarashvili, L. et al. Structural basis for allosteric PARP-1 retention on DNA breaks. Science 368, eaax6367 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • LaFargue, C. J., Dal Molin, G. Z., Sood, A. K. & Coleman, R. L. Exploring and comparing adverse events between PARP inhibitors. Lancet Oncol. 20, e15–e28 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brown, J. S., Kaye, S. B. & Yap, T. A. PARP inhibitors: the race is on. Br. J. Cancer 114, 713–715 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, G. et al. FDA approval summary: olaparib monotherapy in patients with deleterious germline BRCA-mutated advanced ovarian cancer treated with three or more lines of chemotherapy. Clin. Cancer Res. 21, 4257–4261 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Balasubramaniam, S. et al. FDA approval summary: rucaparib for the treatment of patients with deleterious BRCA mutation-associated advanced ovarian cancer. Clin. Cancer Res. 23, 7165–7170 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moore, K. N. et al. Niraparib monotherapy for late-line treatment of ovarian cancer (QUADRA): a multicentre, open-label, single-arm, phase 2 trial. Lancet Oncol. 20, 636–648 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Poveda, A. et al. Olaparib tablets as maintenance therapy in patients with platinum-sensitive relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-Ov21): a final analysis of a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol. 22, 620–631 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mirza, M. R. et al. Niraparib maintenance therapy in platinum-sensitive, recurrent ovarian cancer. N. Engl. J. Med. 375, 2154–2164 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Coleman, R. L. et al. Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 390, 1949–1961 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sabatier, R. et al. Efficacy and safety of maintenance olaparib and bevacizumab in ovarian cancer patients aged >/=65 years from the PAOLA-1/ENGOT-ov25 trial. Eur. J. Cancer 181, 42–52 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moore, K. et al. Maintenance olaparib in patients with newly diagnosed advanced ovarian cancer. N. Engl. J. Med. 379, 2495–2505 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bellier, C. et al. Olaparib First-Line Maintenance Monotherapy in BRCA-Mutated Epithelial Ovarian Cancer: Descriptive Analysis of the First French Real-World Data Study. Drugs Real World Outcomes https://doi.org/10.1007/s40801-022-00349-9 (2023).

  • Hodgson, D. R. et al. Candidate biomarkers of PARP inhibitor sensitivity in ovarian cancer beyond the BRCA genes. Br. J. Cancer 119, 1401–1409 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mateo, J. et al. DNA-repair defects and olaparib in metastatic prostate cancer. N. Engl. J. Med. 373, 1697–1708 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abida, W. et al. Non-BRCA DNA damage repair gene alterations and response to the PARP inhibitor rucaparib in metastatic castration-resistant prostate cancer: analysis from the phase II TRITON2 Study. Clin. Cancer Res. 26, 2487–2496 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leo, E. et al. A head-to-head comparison of the properties of five clinical PARP inhibitors identifies new insights that can explain both the observed clinical efficacy and safety profiles. Proc. Am. Assoc. Cancer Res. 78, LB-273 (2018).


    Google Scholar
     

  • Farres, J. et al. PARP-2 sustains erythropoiesis in mice by limiting replicative stress in erythroid progenitors. Cell Death Differ. 22, 1144–1157 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Farres, J. et al. Parp-2 is required to maintain hematopoiesis following sublethal gamma-irradiation in mice. Blood 122, 44–54 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Menissier de Murcia, J. et al. Functional interaction between PARP-1 and PARP-2 in chromosome stability and embryonic development in mouse. EMBO J. 22, 2255–2263 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhong, Y. et al. Tankyrase inhibition causes reversible intestinal toxicity in mice with a therapeutic index < 1. Toxicol. Pathol. 44, 267–278 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alessia, M. et al. NMS-P293, a novel potent and selective PARP-1 inhibitor with high antitumor efficacy and tolerability. Proc. Am. Assoc. Cancer Res. 76, 1223 (2016).


    Google Scholar
     

  • Montagnoli, A. et al. NMS-P293, a PARP-1 selective inhibitor with no trapping activity and high CNS penetration, possesses potent in vivo efficacy and represents a novel therapeutic option for brain localized metastases and glioblastoma. Proc. Am. Assoc. Cancer Res. 78, 4843 (2018).


    Google Scholar
     

  • Illuzzi, G. et al. Preclinical characterization of AZD5305, a next generation, highly selective PARP1 inhibitor and trapper. Clin. Cancer Res. 28, 4724–4736 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gill, S. J. et al. The novel PARP1-selective inhibitor AZD5305 has reduced hematological toxicity when compared to PARP1/2 inhibitors in pre-clinical models. Proc. Am. Assoc. Cancer Res. 81, 1374 (2021).


    Google Scholar
     

  • Yap, T. A. et al. PETRA: First in class, first in human trial of the next generation PARP1-selective inhibitor AZD5305 in patients (pts) with BRCA1/2, PALB2 or RAD51C/D mutations. Proc. Am. Assoc. Cancer Res. 82, CT007 (2022).


    Google Scholar
     

  • Ghosh, A. et al. Structure-based and property-based drug design of AZD9574, a CNS penetrant PARP1 selective inhibitor and trapper. Proc. Am. Assoc. Cancer Res. 82, 6302 (2022).


    Google Scholar
     

  • Jamal, K. et al. AZD9574 is a novel, brain penetrant PARP-1 selective inhibitor with activity in an orthotopic, intracranial xenograft model with aberrant DNA repair. Proc. Am. Assoc. Cancer Res. 82, 2609 (2022).


    Google Scholar
     

  • Andy, P. et al. Evaluation of the CNS penetration of a next generation PARP inhibitor, AZD9574, in cynomolgus monkey using positron emission tomography. Proc. Am. Assoc. Cancer Res. 82, 5076 (2022).


    Google Scholar
     

  • Lecona, E. & Fernandez-Capetillo, O. Targeting ATR in cancer. Nat. Rev. Cancer 18, 586–595 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saldivar, J. C., Cortez, D. & Cimprich, K. A. The essential kinase ATR: ensuring faithful duplication of a challenging genome. Nat. Rev. Mol. Cell Biol. 18, 622–636 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cimprich, K. A. & Cortez, D. ATR: an essential regulator of genome integrity. Nat. Rev. Mol. Cell Biol. 9, 616–627 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karnitz, L. M. & Zou, L. Molecular pathways: targeting ATR in cancer therapy. Clin. Cancer Res. 21, 4780–4785 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barnieh, F. M., Loadman, P. M. & Falconer, R. A. Progress towards a clinically-successful ATR inhibitor for cancer therapy. Curr. Res. Pharmacol. Drug Discov. 2, 100017 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Knegtel, R. et al. Rational Design of 5-(4-(Isopropylsulfonyl)phenyl)-3-(3-(4-((methylamino)methyl)phenyl)isoxazol-5-yl)pyrazin-2-amine (VX-970, M6620): Optimization of Intra- and Intermolecular Polar Interactions of a New Ataxia Telangiectasia Mutated and Rad3-Related (ATR) Kinase Inhibitor. J. Med. Chem. 62, 5547–5561 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Foote, K. M. et al. Discovery and characterization of AZD6738, a potent inhibitor of ataxia telangiectasia mutated and rad3 related (ATR) kinase with application as an anticancer agent. J. Med. Chem. 61, 9889–9907 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lucking, U. et al. Damage incorporated: discovery of the potent, highly selective, orally available ATR Inhibitor BAY 1895344 with favorable pharmacokinetic properties and promising efficacy in monotherapy and in combination treatments in preclinical tumor models. J. Med. Chem. 63, 7293–7325 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Jo, U. et al. Novel and Highly Potent ATR Inhibitor M4344 Kills Cancer Cells With Replication Stress, and Enhances the Chemotherapeutic Activity of Widely Used DNA Damaging Agents. Mol. Cancer Ther. 20, 1431–1441 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng, X. et al. ATR inhibition potentiates ionizing radiation-induced interferon response via cytosolic nucleic acid-sensing pathways. EMBO J. 39, e104036 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vendetti, F. P. et al. ATR kinase inhibitor AZD6738 potentiates CD8+ T cell-dependent antitumor activity following radiation. J. Clin. Invest. 128, 3926–3940 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wengner, A. M. et al. Synergistic activity of the ATR inhibitor BAY1895344 in combination with immune checkpoint inhibitors in preclinical tumor models. Proc. Am. Assoc. Cancer Res. 79, 272 (2019).


    Google Scholar
     

  • Dillon, M. T. et al. CT084: A Phase I dose-escalation study of ATR inhibitor monotherapy with AZD6738 in advanced solid tumors (PATRIOT Part A). Proc. Am. Assoc. Cancer Res. 77, CT084 (2017).


    Google Scholar
     

  • Yap, T. A. et al. First-in-Human Trial of the Oral Ataxia Telangiectasia and RAD3-Related (ATR) Inhibitor BAY 1895344 in Patients with Advanced Solid Tumors. Cancer Discov. 11, 80–91 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fontana, E. et al. 5MO Comprehensive dose-finding strategy for single-agent RP-3500, a highly selective inhibitor of ataxia telangiectasia and Rad3-related (ATR) kinase. Ann. Oncol. 33, 5MO (2022).

    Article 

    Google Scholar
     

  • Shapiro, G. I. et al. Phase 1 study of the ATR inhibitor berzosertib in combination with cisplatin in patients with advanced solid tumours. Br. J. Cancer 125, 520–527 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gorecki, L., Andrs, M., Rezacova, M. & Korabecny, J. Discovery of ATR kinase inhibitor berzosertib (VX-970, M6620): Clinical candidate for cancer therapy. Pharmacol. Ther. 210, 107518 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Plummer, R. et al. A phase 1b study evaluating the safety and preliminary efficacy of berzosertib in combination with gemcitabine in patients with advanced non-small cell lung cancer. Lung Cancer 163, 19–26 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Konstantinopoulos, P. A. et al. Berzosertib plus gemcitabine versus gemcitabine alone in platinum-resistant high-grade serous ovarian cancer: a multicentre, open-label, randomised, phase 2 trial. Lancet Oncol. 21, 957–968 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thomas, A. et al. Therapeutic targeting of ATR yields durable regressions in small cell lung cancers with high replication stress. Cancer Cell 39, 566–579.e567 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, S. T. et al. Phase I Study of Ceralasertib (AZD6738), a Novel DNA Damage Repair Agent, in Combination with Weekly Paclitaxel in Refractory Cancer. Clin. Cancer Res. 27, 4700–4709 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, R. et al. Phase II study of ceralasertib (AZD6738) in combination with durvalumab in patients with advanced/metastatic melanoma who have failed prior anti-PD-1 therapy. Ann. Oncol. 33, 193–203 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kwon, M. et al. Phase II study of ceralasertib (AZD6738) in combination with durvalumab in patients with advanced gastric cancer. J. Immunologist. Cancer 10, e005041 (2022).


    Google Scholar
     

  • Wethington, S. L. et al. Combination of PARP and ATR inhibitors (olaparib and ceralasertib) shows clinical activity in acquired PARP inhibitor-resistant recurrent ovarian cancer. J. Clin. Onco. 39, 5516 (2021).

    Article 

    Google Scholar
     

  • Sehhoon, P. et al. The clinical efficacy of olaparib monotherapy or combination with ceralasertib (AZD6738) in relapsed small cell lung cancer. J. Clin. Onco. 39, 8562 (2021).

    Article 

    Google Scholar
     

  • Dean, E. et al. Ceralasertib (cer) in combination with olaparib (ola) in patients (pts) with advanced breast cancer (BC): Results of phase I expansion cohorts. Proc. Am. Assoc. Cancer Res. 81, PS11-18 (2021).


    Google Scholar
     

  • Wengner, A. M. et al. The Novel ATR Inhibitor BAY 1895344 Is Efficacious as Monotherapy and Combined with DNA Damage-Inducing or Repair-Compromising Therapies in Preclinical Cancer Models. Mol. Cancer Ther. 19, 26–38 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yap, T. A. et al. Phase Ib expansion trial of the safety and efficacy of the oral ataxia telangiectasia and Rad3-related (ATR) inhibitor elimusertib in advanced solid tumors with DNA damage response (DDR) defects. Proc. Am. Assoc. Cancer Res. 82, CT006 (2022).


    Google Scholar
     

  • Wengner, A. M. et al. Optimization of treatment schedule for the combination therapy of ATR inhibitor elimusertib and PARP inhibitor niraparib in preclinical tumor models. Proc. Am. Assoc. Cancer Res. 83, 311 (2023).


    Google Scholar
     

  • Yap, T. A. et al. Genomic and pathologic determinants of response to RP-3500, an ataxia telangiectasia and Rad3-related inhibitor (ATRi), in patients (pts) with DNA damage repair (DDR) loss-of-function (LOF) mutant tumors in the Phase 1/2 TRESR trial. Proc. Am. Assoc. Cancer Res. 82, CT030 (2022).


    Google Scholar
     

  • Roulston, A. et al. RP-3500: A Novel, Potent, and Selective ATR Inhibitor that is Effective in Preclinical Models as a Monotherapy and in Combination with PARP Inhibitors. Mol. Cancer Ther. 21, 245–256 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Matheson, C. J., Backos, D. S. & Reigan, P. Targeting WEE1 Kinase in Cancer. Trends Pharmacol. Sci. 37, 872–881 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Geenen, J. J. J. & Schellens, J. H. M. Molecular Pathways: Targeting the Protein Kinase Wee1 in Cancer. Clin. Cancer Res. 23, 4540–4544 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dominguez-Kelly, R. et al. Wee1 controls genomic stability during replication by regulating the Mus81-Eme1 endonuclease. J. Cell Biol. 194, 567–579 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beck, H. et al. Cyclin-dependent kinase suppression by WEE1 kinase protects the genome through control of replication initiation and nucleotide consumption. Mol. Cell Biol. 32, 4226–4236 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Y., Decker, S. J. & Sebolt-Leopold, J. Knockdown of Chk1, Wee1 and Myt1 by RNA interference abrogates G2 checkpoint and induces apoptosis. Cancer Biol. Ther. 3, 305–313 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guertin, A. D. et al. Preclinical evaluation of the WEE1 inhibitor MK-1775 as single-agent anticancer therapy. Mol. Cancer Ther. 12, 1442–1452 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hirai, H. et al. Small-molecule inhibition of Wee1 kinase by MK-1775 selectively sensitizes p53-deficient tumor cells to DNA-damaging agents. Mol. Cancer Ther. 8, 2992–3000 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rajeshkumar, N. V. et al. MK-1775, a potent Wee1 inhibitor, synergizes with gemcitabine to achieve tumor regressions, selectively in p53-deficient pancreatic cancer xenografts. Clin. Cancer Res. 17, 2799–2806 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kreahling, J. M. et al. MK1775, a selective Wee1 inhibitor, shows single-agent antitumor activity against sarcoma cells. Mol. Cancer Ther. 11, 174–182 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wright, G. et al. Dual Targeting of WEE1 and PLK1 by AZD1775 Elicits Single Agent Cellular Anticancer Activity. ACS Chem. Biol. 12, 1883–1892 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Do, K. et al. Phase I Study of Single-Agent AZD1775 (MK-1775), a Wee1 Kinase Inhibitor, in Patients With Refractory Solid Tumors. J. Clin. Oncol. 33, 3409–3415 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leijen, S. et al. Phase I Study Evaluating WEE1 Inhibitor AZD1775 As Monotherapy and in Combination With Gemcitabine, Cisplatin, or Carboplatin in Patients With Advanced Solid Tumors. J. Clin. Oncol. 34, 4371–4380 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, J. F. et al. Phase II Study of the WEE1 Inhibitor Adavosertib in Recurrent Uterine Serous Carcinoma. J. Clin. Oncol. 39, 1531–1539 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lheureux, S. et al. Adavosertib plus gemcitabine for platinum-resistant or platinum-refractory recurrent ovarian cancer: a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet 397, 281–292 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Westin, S. N. et al. EFFORT: EFFicacy Of adavosertib in parp ResisTance: A randomized two-arm non-comparative phase II study of adavosertib with or without olaparib in women with PARP-resistant ovarian cancer. J. Clin. Oncol. 39, 5505 (2021).

    Article 

    Google Scholar
     

  • Cuneo, K. C. et al. Dose Escalation Trial of the Wee1 Inhibitor Adavosertib (AZD1775) in Combination With Gemcitabine and Radiation for Patients With Locally Advanced Pancreatic Cancer. J. Clin. Oncol. 37, 2643–2650 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, P. Q. et al. Discovery of ZN-c3, a Highly Potent and Selective Wee1 Inhibitor Undergoing Evaluation in Clinical Trials for the Treatment of Cancer. J. Med. Chem. 64, 13004–13024 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • O’Dowd, C. et al. Antitumor activity of the novel oral highly selective Wee1 inhibitor Debio 0123. Proc. Am. Assoc. Cancer Res. 79, 4423 (2019).


    Google Scholar
     

  • Meric-Bernstam, F. et al. Safety and clinical activity of single-agent ZN-c3, an oral WEE1 inhibitor, in a phase 1 trial in subjects with recurrent or advanced uterine serous carcinoma (USC). Proc. Am. Assoc. Cancer Res. 82, CT029 (2022).


    Google Scholar
     

  • Pasic, A. et al. A phase 1b dose-escalation study of ZN-c3, a WEE1 inhibitor, in combination with chemotherapy (CT) in subjects with platinum-resistant or refractory ovarian, peritoneal, or fallopian tube cancer. Proc. Am. Assoc. Cancer Res. 82, CT148 (2022).


    Google Scholar
     

  • Ma, J. et al. Cyclin E1 protein overexpression sensitizes ovarian cancer cells to ZN-c3, a novel, selective and oral bioavailable inhibitor of Wee1. Proc. Am. Assoc. Cancer Res. 83, 2153 (2023).


    Google Scholar
     

  • Piggott, L., Chessex, A. V., Luong, N., Tschumi, B. & Vuagniaux, G. The WEE1 inhibitor Debio 0123 enhances the efficacy of standard of care DNA damaging agents in lung cancer models. Proc. Am. Assoc. Cancer Res. 82, 2303 (2022).


    Google Scholar
     

  • Gelderblom, H. et al. 84P Pharmacodynamic marker modulation of the selective WEE1 inhibitor Debio 0123 in patient biopsies from phase I clinical trial. Ann. Oncol. 33, 84P (2022).

    Article 

    Google Scholar
     

  • Piggott, L. et al. Debio 0123 is a selective WEE1 inhibitor that effectively penetrates the brain and demonstrates anti-tumor activity in preclinical models of glioblastoma. Proc. Am. Assoc. Cancer Res. 83, 6185 (2023).

  • Weber, A. M. & Ryan, A. J. ATM and ATR as therapeutic targets in cancer. Pharmacol. Ther. 149, 124–138 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lavin, M. F. Ataxia-telangiectasia: from a rare disorder to a paradigm for cell signalling and cancer. Nat. Rev. Mol. Cell Biol. 9, 759–769 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, J. H. & Paull, T. T. Cellular functions of the protein kinase ATM and their relevance to human disease. Nat. Rev. Mol. Cell Biol. 22, 796–814 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shiloh, Y. & Ziv, Y. The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat. Rev. Mol. Cell Biol. 14, 197–210 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alvarez-Quilon, A. et al. ATM specifically mediates repair of double-strand breaks with blocked DNA ends. Nat. Commun. 5, 3347 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Pike, K. G. The Identification of Potent, Selective, and Orally Available Inhibitors of Ataxia Telangiectasia Mutated (ATM) Kinase: The Discovery of AZD0156 (8-{6-[3-(Dimethylamino)propoxy]pyridin-3-yl}-3-methyl-1-(tetrahydro-2 H-pyran-4-yl)-1,3-dihydro-2 H-imidazo[4,5- c]quinolin-2-one. J. Med. Chem 61, 3823–3841 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Riches, L. C. et al. Pharmacology of the ATM Inhibitor AZD0156: Potentiation of Irradiation and Olaparib Responses Preclinically. Mol. Cancer Ther. 19, 13–25 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Y. et al. Adaptive oncology phase 1 study of first-in-class inhibitor of ataxia telangiectasia mutated protein kinase (ATM), in combination with olaparib. Proc. Am. Assoc. Cancer Res. 78, 4909 (2018).


    Google Scholar
     

  • Durant, S. T. et al. The brain-penetrant clinical ATM inhibitor AZD1390 radiosensitizes and improves survival of preclinical brain tumor models. Sci. Adv. 4, eaat1719 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jucaite, A. et al. Brain exposure of the ATM inhibitor AZD1390 in humans-a positron emission tomography study. Neuro Oncol. 23, 687–696 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zimmermann, A. et al. A New Class of Selective ATM Inhibitors as Combination Partners of DNA Double-Strand Break Inducing Cancer Therapies. Mol. Cancer Ther. 21, 859–870 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ali, M. et al. Small-molecule targeted therapies induce dependence on DNA double-strand break repair in residual tumor cells. Sci. Transl. Med. 14, eabc7480 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yue, X., Bai, C., Xie, D., Ma, T. & Zhou, P. K. DNA-PKcs: A Multi-Faceted Player in DNA Damage Response. Front. Genet. 11, 607428 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mohiuddin, I. S. & Kang, M. H. DNA-PK as an Emerging Therapeutic Target in Cancer. Front. Oncol. 9, 635 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, Y. F., Shih, H. Y., Shang, Z., Matsunaga, S. & Chen, B. P. DNA-PKcs is required to maintain stability of Chk1 and Claspin for optimal replication stress response. Nucleic Acids Res. 42, 4463–4473 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Woodard, R. L., Anderson, M. G. & Dynan, W. S. Nuclear extracts lacking DNA-dependent protein kinase are deficient in multiple round transcription. J. Biol. Chem. 274, 478–485 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fisher, T. S. & Zakian, V. A. Ku: a multifunctional protein involved in telomere maintenance. DNA Repair (Amst.) 4, 1215–1226 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sui, J. et al. DNA-PKcs phosphorylates hnRNP-A1 to facilitate the RPA-to-POT1 switch and telomere capping after replication. Nucleic Acids Res. 43, 5971–5983 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferguson, B. J., Mansur, D. S., Peters, N. E., Ren, H. & Smith, G. L. DNA-PK is a DNA sensor for IRF-3-dependent innate immunity. Elife 1, e00047 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blunt, T. et al. Defective DNA-dependent protein kinase activity is linked to V(D)J recombination and DNA repair defects associated with the murine scid mutation. Cell 80, 813–823 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schwartz, C., Rohr, O. & Wallet, C. Targeting the DNA-PK complex: Its rationale use in cancer and HIV-1 infection. Biochem. Pharmacol. 160, 80–91 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Damia, G. Targeting DNA-PK in cancer. Mutat. Res. 821, 111692 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, S. et al. Small molecule DNA-PK inhibitors as potential cancer therapy: a patent review (2010-present). Expert Opin. Ther. Pat. 31, 435–452 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zenke, F. T. et al. Pharmacologic Inhibitor of DNA-PK, M3814, Potentiates Radiotherapy and Regresses Human Tumors in Mouse Models. Mol. Cancer Ther. 19, 1091–1101 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fok, J. H. L. et al. AZD7648 is a potent and selective DNA-PK inhibitor that enhances radiation, chemotherapy and olaparib activity. Nat. Commun. 10, 5065 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Bussel, M. T. J. et al. A first-in-man phase 1 study of the DNA-dependent protein kinase inhibitor peposertib (formerly M3814) in patients with advanced solid tumours. Br. J. Cancer 124, 728–735 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Mau-Sorensen, M. et al. Safety, clinical activity and pharmacological biomarker evaluation of the DNA-dependent protein kinase (DNA-PK) inhibitor M3814: Results from two phase I trials. Ann. Oncol. 29, 5396 (2018).

    Article 

    Google Scholar
     

  • Bartek, J. & Lukas, J. Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell 3, 421–429 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Neizer-Ashun, F. & Bhattacharya, R. Reality CHEK: Understanding the biology and clinical potential of CHK1. Cancer Lett. 497, 202–211 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dent, P. Investigational CHK1 inhibitors in early phase clinical trials for the treatment of cancer. Expert Opin. Investig. Drugs 28, 1095–1100 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • King, C. et al. LY2606368 Causes Replication Catastrophe and Antitumor Effects through CHK1-Dependent Mechanisms. Mol. Cancer Ther. 14, 2004–2013 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Parmar, K. et al. The CHK1 Inhibitor Prexasertib Exhibits Monotherapy Activity in High-Grade Serous Ovarian Cancer Models and Sensitizes to PARP Inhibition. Clin. Cancer Res. 25, 6127–6140 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sen, T. et al. CHK1 Inhibition in Small-Cell Lung Cancer Produces Single-Agent Activity in Biomarker-Defined Disease Subsets and Combination Activity with Cisplatin or Olaparib. Cancer Res. 77, 3870–3884 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lowery, C. D. et al. Broad Spectrum Activity of the Checkpoint Kinase 1 Inhibitor Prexasertib as a Single Agent or Chemopotentiator Across a Range of Preclinical Pediatric Tumor Models. Clin. Cancer Res. 25, 2278–2289 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lowery, C. D. et al. The Checkpoint Kinase 1 Inhibitor Prexasertib Induces Regression of Preclinical Models of Human Neuroblastoma. Clin. Cancer Res. 23, 4354–4363 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hong, D. et al. Phase I Study of LY2606368, a Checkpoint Kinase 1 Inhibitor, in Patients With Advanced Cancer. J. Clin. Oncol. 34, 1764–1771 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zurcher, G. et al. A phase II study of prexasertib, a cell cycle checkpoint kinase 1 (CHK1) inhibitor, in platinum-resistant recurrent high-grade serous ovarian cancer (HGSOC) with BRCA wild-type (BRCAwt). Proc. Am. Assoc. Cancer Res. 82, CT113 (2022).


    Google Scholar
     

  • Miller, W. H. et al. A phase Ib study of oral Chk1 inhibitor LY2880070 as monotherapy in patients with advanced or metastatic cancer. J. Clin. Oncol. 38, 3579 (2020).

    Article 

    Google Scholar
     

  • Quincy, S. C. et al. A phase Ib study of oral Chk1 inhibitor LY2880070 in combination with gemcitabine in patients with advanced or metastatic cancer. J. Clin. Oncol. 38, 3581 (2020).

    Article 

    Google Scholar
     

  • Xin, G. et al. Discovery of a novel and oral CHK1 inhibitor for the treatment of solid tumors. Proc. Am. Assoc. Cancer Res. 83, 482 (2023).


    Google Scholar
     

  • Schmidt, M. et al. Regulation of G2/M Transition by Inhibition of WEE1 and PKMYT1 Kinases. Molecules 22, 2045–2061 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghelli Luserna di Rora, A., Cerchione, C., Martinelli, G. & Simonetti, G. A WEE1 family business: regulation of mitosis, cancer progression, and therapeutic target. J. Hematol. Oncol. 13, 126 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tominaga, Y., Li, C., Wang, R. H. & Deng, C. X. Murine Wee1 plays a critical role in cell cycle regulation and pre-implantation stages of embryonic development. Int. J. Biol. Sci. 2, 161–170 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gallo, D. et al. CCNE1 amplification is synthetic lethal with PKMYT1 kinase inhibition. Nature 604, 749–756 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Szychowski, J. et al. Discovery of an Orally Bioavailable and Selective PKMYT1 Inhibitor, RP-6306. J. Med. Chem. 65, 10251–10284 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, J., Zhang, L., Wang, J., Ouyang, L. & Wang, Y. Polo-like Kinase 1 Inhibitors in Human Cancer Therapy: Development and Therapeutic Potential. J. Med. Chem. 65, 10133–10160 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chiappa, M. et al. Present and Future Perspective on PLK1 Inhibition in Cancer Treatment. Front. Oncol. 12, 903016 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seki, A., Coppinger, J. A., Jang, C. Y., Yates, J. R. & Fang, G. Bora and the kinase Aurora a cooperatively activate the kinase Plk1 and control mitotic entry. Science 320, 1655–1658 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmucker, S. & Sumara, I. Molecular dynamics of PLK1 during mitosis. Mol. Cell Oncol. 1, e954507 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, M., Daniels, M. J. & Venkitaraman, A. R. Phosphorylation of BRCA2 by the Polo-like kinase Plk1 is regulated by DNA damage and mitotic progression. Oncogene 23, 865–872 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chabalier-Taste, C. et al. Polo-like kinase 1 mediates BRCA1 phosphorylation and recruitment at DNA double-strand breaks. Oncotarget 7, 2269–2283 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Z., Sun, Q. & Wang, X. PLK1, A Potential Target for Cancer Therapy. Transl. Oncol. 10, 22–32 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Lemmens, B. et al. DNA Replication Determines Timing of Mitosis by Restricting CDK1 and PLK1 Activation. Mol. Cell 71, 117–128 e113 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Watanabe, N. et al. Cyclin-dependent kinase (CDK) phosphorylation destabilizes somatic Wee1 via multiple pathways. Proc. Natl Acad. Sci. USA 102, 11663–11668 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qin, B., Gao, B., Yu, J., Yuan, J. & Lou, Z. Ataxia telangiectasia-mutated- and Rad3-related protein regulates the DNA damage-induced G2/M checkpoint through the Aurora A cofactor Bora protein. J. Biol. Chem. 288, 16139–16144 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yata, K. et al. Plk1 and CK2 act in concert to regulate Rad51 during DNA double strand break repair. Mol. Cell 45, 371–383 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peng, B. et al. PARP1 and CHK1 coordinate PLK1 enzymatic activity during the DNA damage response to promote homologous recombination-mediated repair. Nucleic Acids Res. 49, 7554–7570 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fu, Z. & Wen, D. The Emerging Role of Polo-Like Kinase 1 in Epithelial-Mesenchymal Transition and Tumor Metastasis. Cancers (Basel) 9, 131–145 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Ruf, S. et al. PLK1 (polo like kinase 1) inhibits MTOR complex 1 and promotes autophagy. Autophagy 13, 486–505 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matthess, Y., Raab, M., Knecht, R., Becker, S. & Strebhardt, K. Sequential Cdk1 and Plk1 phosphorylation of caspase-8 triggers apoptotic cell death during mitosis. Mol. Oncol. 8, 596–608 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, M., Liu, Z. & Wang, X. Exploration of the Combination of PLK1 Inhibition with Immunotherapy in Cancer Treatment. J. Oncol. 2018, 3979527 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elsayed, I. & Wang, X. PLK1 inhibition in cancer therapy: potentials and challenges. Future Med. Chem. 11, 1383–1386 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lansing, T. J. et al. In vitro biological activity of a novel small-molecule inhibitor of polo-like kinase 1. Mol. Cancer Ther. 6, 450–459 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bahassi el, M. Polo-like kinases and DNA damage checkpoint: beyond the traditional mitotic functions. Exp. Biol. Med. (Maywood) 236, 648–657 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Rudolph, D. et al. BI 6727, a Polo-like kinase inhibitor with improved pharmacokinetic profile and broad antitumor activity. Clin. Cancer Res. 15, 3094–3102 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schoffski, P. et al. A phase I, dose-escalation study of the novel Polo-like kinase inhibitor volasertib (BI 6727) in patients with advanced solid tumours. Eur. J. Cancer 48, 179–186 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Van den Bossche, J. et al. Spotlight on Volasertib: Preclinical and Clinical Evaluation of a Promising Plk1 Inhibitor. Med. Res. Rev. 36, 749–786 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Dohner, H. et al. Randomized, phase 2 trial of low-dose cytarabine with or without volasertib in AML patients not suitable for induction therapy. Blood 124, 1426–1433 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Valsasina, B. et al. NMS-P937, an orally available, specific small-molecule polo-like kinase 1 inhibitor with antitumor activity in solid and hematologic malignancies. Mol. Cancer Ther. 11, 1006–1016 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Beria, I. et al. NMS-P937, a 4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline derivative as potent and selective Polo-like kinase 1 inhibitor. Bioorg. Med. Chem. Lett. 21, 2969–2974 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weiss, G. J. et al. Phase I dose escalation study of NMS-1286937, an orally available Polo-Like Kinase 1 inhibitor, in patients with advanced or metastatic solid tumors. Invest. N. Drugs 36, 85–95 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Luo, J. et al. A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell 137, 835–848 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahn, D. H. et al. 436P Phase Ib/II study of the polo-like kinase 1 (PLK1) inhibitor, onvansertib, in combination with FOLFIRI and bevacizumab for second line treatment of KRAS-mutated metastatic colorectal cancer. Ann. Oncol. 31, 436P (2020).

    Article 

    Google Scholar
     

  • Lenz, H. J., Ridinger, M., Samuelsz, E., Smeal, T. & Ahn, D. 397P Early decreases in KRAS mutant allele frequency (MAF) predicts clinical benefit to the PLK1 inhibitor onvansertib in combination with FOLFIRI/bev in 2L treatment of metastatic colorectal carcinoma (mCRC). Ann. Oncol. 33, 397P (2022).

    Article 

    Google Scholar
     

  • Damodaran, A. P., Vaufrey, L., Gavard, O. & Prigent, C. Aurora A Kinase Is a Priority Pharmaceutical Target for the Treatment of Cancers. Trends Pharmacol. Sci. 38, 687–700 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pradhan, T., Gupta, O., Singh, G. & Monga, V. Aurora kinase inhibitors as potential anticancer agents: Recent advances. Eur. J. Med. Chem. 221, 113495 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Magnaghi-Jaulin, L., Eot-Houllier, G., Gallaud, E. & Giet, R. Aurora A Protein Kinase: To the Centrosome and Beyond. Biomolecules 9, 28–46 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Borah, N. A. & Reddy, M. M. Aurora Kinase B Inhibition: A Potential Therapeutic Strategy for Cancer. Molecules 26, 1981–2010 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, K. T., Tang, C. J. & Tang, T. K. Possible Role of Aurora-C in Meiosis. Front. Oncol. 5, 178 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, G. et al. Aurora kinase A promotes ovarian tumorigenesis through dysregulation of the cell cycle and suppression of BRCA2. Clin. Cancer Res. 16, 3171–3181 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Katayama, H. et al. Aurora kinase-A inactivates DNA damage-induced apoptosis and spindle assembly checkpoint response functions of p73. Cancer Cell 21, 196–211 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mou, P. K. et al. Aurora kinase A, a synthetic lethal target for precision cancer medicine. Exp. Mol. Med. 53, 835–847 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan, M. et al. Aurora-A Kinase: A Potent Oncogene and Target for Cancer Therapy. Med. Res. Rev. 36, 1036–1079 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Shah, K. N. et al. Aurora kinase A drives the evolution of resistance to third-generation EGFR inhibitors in lung cancer. Nat. Med. 25, 111–118 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Donnella, H. J. et al. Kinome rewiring reveals AURKA limits PI3K-pathway inhibitor efficacy in breast cancer. Nat. Chem. Biol. 14, 768–777 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xue, J. Y. et al. Rapid non-uniform adaptation to conformation-specific KRAS(G12C) inhibition. Nature 577, 421–425 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Manfredi, M. G. et al. Characterization of Alisertib (MLN8237), an investigational small-molecule inhibitor of aurora A kinase using novel in vivo pharmacodynamic assays. Clin. Cancer Res. 17, 7614–7624 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Niu, H., Manfredi, M. & Ecsedy, J. A. Scientific Rationale Supporting the Clinical Development Strategy for the Investigational Aurora A Kinase Inhibitor Alisertib in Cancer. Front. Oncol. 5, 189 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dees, E. C. et al. Phase I study of aurora A kinase inhibitor MLN8237 in advanced solid tumors: safety, pharmacokinetics, pharmacodynamics, and bioavailability of two oral formulations. Clin. Cancer Res. 18, 4775–4784 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liewer, S. & Huddleston, A. Alisertib: a review of pharmacokinetics, efficacy and toxicity in patients with hematologic malignancies and solid tumors. Expert Opin. Investig. Drugs 27, 105–112 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • O’Connor, O. A. et al. Randomized Phase III Study of Alisertib or Investigator’s Choice (Selected Single Agent) in Patients With Relapsed or Refractory Peripheral T-Cell Lymphoma. J. Clin. Oncol. 37, 613–623 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elamin, Y. Y. et al. Results of a phase 1b study of osimertinib plus sapanisertib or alisertib for osimertinib-resistant, EGFR-mutant non–small cell lung cancer (NSCLC). J. Clin. Oncol. 40, 9105 (2022).

    Article 

    Google Scholar
     

  • Du, J. et al. Aurora A-Selective Inhibitor LY3295668 Leads to Dominant Mitotic Arrest, Apoptosis in Cancer Cells, and Shows Potent Preclinical Antitumor Efficacy. Mol. Cancer Ther. 18, 2207–2219 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Toufektchan, E. & Toledo, F. The Guardian of the Genome Revisited: p53 Downregulates Genes Required for Telomere Maintenance, DNA Repair, and Centromere Structure. Cancers (Basel) 10, 135–149 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Levine, A. J. The many faces of p53: something for everyone. J. Mol. Cell Biol. 11, 524–530 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bouaoun, L. et al. TP53 Variations in Human Cancers: New Lessons from the IARC TP53 Database and Genomics Data. Hum. Mutat. 37, 865–876 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baugh, E. H., Ke, H., Levine, A. J., Bonneau, R. A. & Chan, C. S. Why are there hotspot mutations in the TP53 gene in human cancers? Cell Death Differ. 25, 154–160 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Joerger, A. C., Ang, H. C. & Fersht, A. R. Structural basis for understanding oncogenic p53 mutations and designing rescue drugs. Proc. Natl Acad. Sci. USA 103, 15056–15061 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, J. et al. Targeting mutant p53 for cancer therapy: direct and indirect strategies. J. Hematol. Oncol. 14, 157 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hassin, O. & Oren, M. Drugging p53 in cancer: one protein, many targets. Nat. Rev. Drug Discov. 22, 127–144 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boeckler, F. M. et al. Targeted rescue of a destabilized mutant of p53 by an in silico screened drug. Proc. Natl Acad. Sci. USA 105, 10360–10365 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Basse, N. et al. Toward the rational design of p53-stabilizing drugs: probing the surface of the oncogenic Y220C mutant. Chem. Biol. 17, 46–56 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wilcken, R. et al. Halogen-enriched fragment libraries as leads for drug rescue of mutant p53. J. Am. Chem. Soc. 134, 6810–6818 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bauer, M. R. et al. Harnessing Fluorine-Sulfur Contacts and Multipolar Interactions for the Design of p53 Mutant Y220C Rescue Drugs. ACS Chem. Biol. 11, 2265–2274 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bauer, M. R. et al. Targeting Cavity-Creating p53 Cancer Mutations with Small-Molecule Stabilizers: the Y220X Paradigm. ACS Chem. Biol. 15, 657–668 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Melissa, D. et al. PC14586: The first orally bioavailable small molecule reactivator of Y220C mutant p53 in clinical development. Proc. Am. Assoc. Cancer Res. 81, LB006 (2021).


    Google Scholar
     

  • Puzio-Kuter, A. M. et al. Small molecule reactivators of Y220C mutant p53 modulate tumor infiltrating leukocytes and synergize with immune checkpoint inhibitors. Proc. Am. Assoc. Cancer Res. 82, 1295 (2022).


    Google Scholar
     

  • Ecaterina Elena, D. et al. First-in-human study of PC14586, a small molecule structural corrector of Y220C mutant p53, in patients with advanced solid tumors harboring a TP53 Y220C mutation. J. Clin. Oncol. 40, 3003 (2022).

    Article 

    Google Scholar
     

  • Ceccaldi, R. et al. Homologous-recombination-deficient tumours are dependent on Poltheta-mediated repair. Nature 518, 258–262 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng, W. et al. Genetic determinants of cellular addiction to DNA polymerase theta. Nat. Commun. 10, 4286 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Higgins, G. S. & Boulton, S. J. Beyond PARP-POLtheta as an anticancer target. Science 359, 1217–1218 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, J. et al. A first-in-class Polymerase Theta Inhibitor selectively targets Homologous-Recombination-Deficient Tumors. Nat. Cancer 2, 598–610 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zatreanu, D. et al. Poltheta inhibitors elicit BRCA-gene synthetic lethality and target PARP inhibitor resistance. Nat. Commun. 12, 3636 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bubenik, M. et al. Identification of RP-6685, an Orally Bioavailable Compound that Inhibits the DNA Polymerase Activity of Poltheta. J. Med. Chem. 65, 13198–13215 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bonilla, B., Hengel, S. R., Grundy, M. K. & Bernstein, K. A. RAD51 Gene Family Structure and Function. Annu. Rev. Genet. 54, 25–46 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wassing, I. E. & Esashi, F. RAD51: Beyond the break. Semin. Cell Dev. Biol. 113, 38–46 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nalepa, G. & Clapp, D. W. Fanconi anaemia and cancer: an intricate relationship. Nat. Rev. Cancer 18, 168–185 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, F., Mazina, O. M., Zentner, I. J., Cocklin, S. & Mazin, A. V. Inhibition of homologous recombination in human cells by targeting RAD51 recombinase. J. Med. Chem. 55, 3011–3020 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lv, W., Budke, B., Pawlowski, M., Connell, P. P. & Kozikowski, A. P. Development of Small Molecules that Specifically Inhibit the D-loop Activity of RAD51. J. Med. Chem. 59, 4511–4525 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Demeyer, A., Benhelli-Mokrani, H., Chenais, B., Weigel, P. & Fleury, F. Inhibiting homologous recombination by targeting RAD51 protein. Biochim. Biophys. Acta Rev. Cancer 1876, 188597 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Day, M., Lapierre, J.-M., O’Shea, T. & Mills, K. A novel RAD51 inhibitor, CYT-0851, shows anticancer activity in preclinical models of pancreatic cancer. Proc. Am. Assoc. Cancer Res. 79, C14 (2019).


    Google Scholar
     

  • Guy, J. L., Maclay, T., Day, M., Burness, M. L. & Mills, K. RAD51 inhibition using CYT-0851, shows anti-cancer activity in cellular models of breast cancer and acts synergistically with PARP inhibitors. Proc. Am. Assoc. Cancer Res. 80, P2-05-05 (2020).


    Google Scholar
     

  • Hasham, M. G. et al. Widespread genomic breaks generated by activation-induced cytidine deaminase are prevented by homologous recombination. Nat. Immunol. 11, 820–826 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lynch, R. C. et al. First-in-human phase I/II study of CYT-0851, a first-in-class inhibitor of RAD51-mediated homologous recombination in patients with advanced solid and hematologic cancers. J. Clin. Oncol. 39, 3006 (2021).

    Article 

    Google Scholar
     

  • Garcia-Santisteban, I., Peters, G. J., Giovannetti, E. & Rodriguez, J. A. USP1 deubiquitinase: cellular functions, regulatory mechanisms and emerging potential as target in cancer therapy. Mol. Cancer 12, 91 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lim, K. S. et al. USP1 Is Required for Replication Fork Protection in BRCA1-Deficient Tumors. Mol. Cell 72, 925–941.e924 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cadzow, L. et al. KSQ-4279: A first-in-class USP1 inhibitor for the treatment of cancers with homologous recombination deficiencies. Proc. Am. Assoc. Cancer Res. 82, ND01 (2022).


    Google Scholar
     

  • Coleman, K. E. et al. USP1-trapping lesions as a source of DNA replication stress and genomic instability. Nat. Commun. 13, 1740 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harrision, D., Gravells, P., Thompson, R. & Bryant, H. E. Poly(ADP-Ribose) Glycohydrolase (PARG) vs. Poly(ADP-Ribose) Polymerase (PARP) – Function in Genome Maintenance and Relevance of Inhibitors for Anti-cancer Therapy. Front. Mol. Biosci. 7, 191 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Slade, D. PARP and PARG inhibitors in cancer treatment. Genes Dev. 34, 360–394 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pillay, N. et al. DNA Replication Vulnerabilities Render Ovarian Cancer Cells Sensitive to Poly(ADP-Ribose) Glycohydrolase Inhibitors. Cancer Cell 35, 519–533.e518 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chan, E. M. et al. WRN helicase is a synthetic lethal target in microsatellite unstable cancers. Nature 568, 551–556 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Wietmarschen, N. et al. Repeat expansions confer WRN dependence in microsatellite-unstable cancers. Nature 586, 292–298 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Behan, F. M. et al. Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens. Nature 568, 511–516 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Datta, A. et al. WRN helicase safeguards deprotected replication forks in BRCA2-mutated cancer cells. Nat. Commun. 12, 6561 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Orlovetskie, N., Serruya, R., Abboud-Jarrous, G. & Jarrous, N. Targeted inhibition of WRN helicase, replication stress and cancer. Biochim. Biophys. Acta Rev. Cancer 1867, 42–48 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peters, S., Mok, T., Passaro, A. & Janne, P. A. The Promising Evolution of Targeted Therapeutic Strategies in Cancer. Cancer Discov. 11, 810–814 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hahn, W. C. et al. An expanded universe of cancer targets. Cell 184, 1142–1155 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 12, 31–46 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chang, L., Ruiz, P., Ito, T. & Sellers, W. R. Targeting pan-essential genes in cancer: Challenges and opportunities. Cancer Cell 39, 466–479 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tuveson, D. A. Fighting the Sixth Decade of the Cancer War with Better Cancer Models. Cancer Discov. 11, 801–804 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Ray-Coquard, I. et al. Olaparib plus Bevacizumab as First-Line Maintenance in Ovarian Cancer. N. Engl. J. Med. 381, 2416–2428 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saad, F. et al. PROpel: Phase III trial of olaparib (ola) and abiraterone (abi) versus placebo (pbo) and abi as first-line (1L) therapy for patients (pts) with metastatic castration-resistant prostate cancer (mCRPC). J. Clin. Oncol. 40, 11 (2022).

    Article 

    Google Scholar
     

  • Wallez, Y. et al. Activity and tolerability of combination of trastuzumab deruxtecan with the next generation PARP1-selective inhibitor AZD5305 in preclinical models. Proc. Am. Assoc. Cancer Res. 82, 1142 (2022).


    Google Scholar
     

  • Wallez, Y. et al. Activity and tolerability of combinations of trastuzumab deruxtecan (T-DXd) with inhibitors of the DNA damage response in preclinical models. Proc. Am. Assoc. Cancer Res. 82, 5298 (2022).


    Google Scholar
     

  • Fellmann, C., Gowen, B. G., Lin, P. C., Doudna, J. A. & Corn, J. E. Cornerstones of CRISPR-Cas in drug discovery and therapy. Nat. Rev. Drug Discov. 16, 89–100 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ghandi, M. et al. Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature 569, 503–508 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blum, A., Wang, P. & Zenklusen, J. C. SnapShot: TCGA-Analyzed Tumors. Cell 173, 530 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bhattacharjee, S. & Nandi, S. Rare Genetic Diseases with Defects in DNA Repair: Opportunities and Challenges in Orphan Drug Development for Targeted Cancer Therapy. Cancers (Basel) 10, 298–318 (2018).

    Article 
    PubMed 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    Stay Connected

    9FansLike
    4FollowersFollow
    0SubscribersSubscribe
    - Advertisement -spot_img

    Latest Articles

    %d bloggers like this: