Sunday, June 4, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

A novel microRNA-182/Interleukin-8 regulatory axis controls osteolytic bone metastasis of lung cancer – Cell Death & Disease


  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

    Article 
    PubMed 

    Google Scholar
     

  • Ajona D, Ortiz-Espinosa S, Moreno H, Lozano T, Pajares MJ, Agorreta J, et al. A combined PD-1/C5a blockade synergistically protects against lung cancer growth and metastasis. Cancer discovery. 2017;7:694–703.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang M, Wu Q, Zhang J, Qin G, Yang T, Liu Y, et al. Prognostic impacts of extracranial metastasis on non-small cell lung cancer with brain metastasis: a retrospective study based on surveillance, epidemiology, and end results database. Cancer Med. 2021;10:471–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen YY, Wang PP, Fu Y, Li Q, Tian JF, Liu T, et al. Inferior outcome of bone metastasis in non-small-cell-lung-cancer patients treated with epidermal growth factor receptor inhibitors. J Bone Oncol. 2021;29:100369.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang B, Li Y, Wu Q, Xie L, Barwick B, Fu C, et al. Acetylation of KLF5 maintains EMT and tumorigenicity to cause chemoresistant bone metastasis in prostate cancer. Nat Commun. 2021;12:1714.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Esposito M, Fang C, Cook KC, Park N, Wei Y, Spadazzi C, et al. TGF-β-induced DACT1 biomolecular condensates repress Wnt signalling to promote bone metastasis. Nat Cell Biol. 2021;23:257–67.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kfoury Y, Baryawno N, Severe N, Mei S, Gustafsson K, Hirz T, et al. Human prostate cancer bone metastases have an actionable immunosuppressive microenvironment. Cancer Cell. 2021;39:1464–78.e8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bendre MS, Gaddy-Kurten D, Mon-Foote T, Akel NS, Skinner RA, Nicholas RW, et al. Expression of interleukin 8 and not parathyroid hormone-related protein by human breast cancer cells correlates with bone metastasis in vivo. Cancer Res. 2002;62:5571–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Sethi N, Dai X, Winter CG, Kang Y. Tumor-derived JAGGED1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells. Cancer Cell. 2011;19:192–205.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordón-Cardo C, et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell. 2003;3:537–49.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liang M, Ma Q, Ding N, Luo F, Bai Y, Kang F, et al. IL-11 is essential in promoting osteolysis in breast cancer bone metastasis via RANKL-independent activation of osteoclastogenesis. Cell Death Dis. 2019;10:353.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mulholland BS, Forwood MR, Morrison NA. Monocyte chemoattractant protein-1 (MCP-1/CCL2) drives activation of bone remodelling and skeletal metastasis. Curr Osteoporos Rep. 2019;17:538–47.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wong SK, Mohamad NV, Giaze TR, Chin KY, Mohamed N, Ima-Nirwana S. Prostate cancer and bone metastases: the underlying mechanisms. Int J Mol Sci. 2019;20:2587.

  • Li X, Loberg R, Liao J, Ying C, Snyder LA, Pienta KJ, et al. A destructive cascade mediated by CCL2 facilitates prostate cancer growth in bone. Cancer Res. 2009;69:1685–92.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Furesi G, Rauner M, Hofbauer LC. Emerging players in prostate cancer-bone niche communication. trends. Cancer. 2021;7:112–21.

    CAS 

    Google Scholar
     

  • Wu S, Pan Y, Mao Y, Chen Y, He Y. Current progress and mechanisms of bone metastasis in lung cancer: a narrative review. Transl Lung Cancer Res. 2021;10:439–51.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang L, Zhang LF, Wu J, Xu SJ, Xu YY, Li D, et al. IL-1β-mediated repression of microRNA-101 is crucial for inflammation-promoted lung tumorigenesis. Cancer Res. 2014;74:4720–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang LF, Lou JT, Lu MH, Gao C, Zhao S, Li B, et al. Suppression of miR-199a maturation by HuR is crucial for hypoxia-induced glycolytic switch in hepatocellular carcinoma. EMBO J. 2015;34:2671–85.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cai WL, Huang WD, Li B, Chen TR, Li ZX, Zhao CL, et al. microRNA-124 inhibits bone metastasis of breast cancer by repressing Interleukin-11. Mol Cancer. 2018;17:9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Browne G, Taipaleenmäki H, Stein GS, Stein JL, Lian JB. MicroRNAs in the control of metastatic bone disease. Trends Endocrinol Metab. 2014;25:320–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bellavia D, Salamanna F, Raimondi L, De Luca A, Carina V, Costa V, et al. Deregulated miRNAs in osteoporosis: effects in bone metastasis. Cell Mol Life Sci. 2019;76:3723–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mann M, Barad O, Agami R, Geiger B, Hornstein E. miRNA-based mechanism for the commitment of multipotent progenitors to a single cellular fate. Proc Natl Acad Sci USA. 2010;107:15804–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ell B, Mercatali L, Ibrahim T, Campbell N, Schwarzenbach H, Pantel K, et al. Tumor-induced osteoclast miRNA changes as regulators and biomarkers of osteolytic bone metastasis. Cancer Cell. 2013;24:542–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang M, Zhao M, Guo Q, Lou J, Wang L. Non-small cell lung cancer cell-derived exosomal miR-17-5p promotes osteoclast differentiation by targeting PTEN. Exp Cell Res. 2021;408:112834.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Segura MF, Hanniford D, Menendez S, Reavie L, Zou X, Alvarez-Diaz S, et al. Aberrant miR-182 expression promotes melanoma metastasis by repressing FOXO3 and microphthalmia-associated transcription factor. Proc Natl Acad Sci USA. 2009;106:1814–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu J, Lei R, Zhuang X, Li X, Li G, Lev S, et al. MicroRNA-182 targets SMAD7 to potentiate TGFbeta-induced epithelial-mesenchymal transition and metastasis of cancer cells. Nat Commun. 2016;7:13884.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seidl C, Panzitt K, Bertsch A, Brcic L, Schein S, Mack M, et al. MicroRNA-182-5p regulates hedgehog signaling pathway and chemosensitivity of cisplatin-resistant lung adenocarcinoma cells via targeting GLI2. Cancer Lett. 2020;469:266–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Y, Zhang H, Gong H, Yuan Y, Li Y, Wang C, et al. miR-182 suppresses invadopodia formation and metastasis in non-small cell lung cancer by targeting cortactin gene. J Exp Clin Cancer Res. 2018;37:141.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mei ZZ, Chen XY, Hu SW, Wang N, Ou XL, Wang J, et al. Kelch-like protein 21 (KLHL21) targets IκB kinase-β to regulate nuclear factor κ-light chain enhancer of activated B cells (NF-κB) signaling negatively. J Biol Chem. 2016;291:18176–89.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang S, Zhang LF, Zhang HW, Hu S, Lu MH, Liang S, et al. A novel miR-155/miR-143 cascade controls glycolysis by regulating hexokinase 2 in breast cancer cells. EMBO J. 2012;31:1985–98.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li F, Yuan P, Rao M, Jin CH, Tang W, Rong YF, et al. piRNA-independent function of PIWIL1 as a co-activator for anaphase promoting complex/cyclosome to drive pancreatic cancer metastasis. Nat Cell Biol. 2020;22:425–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD, et al. Genes that mediate breast cancer metastasis to lung. Nature. 2005;436:518–24.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brady JJ, Chuang CH, Greenside PG, Rogers ZN, Murray CW, Caswell DR, et al. An Arntl2-driven secretome enables lung adenocarcinoma metastatic self-sufficiency. Cancer Cell. 2016;29:697–710.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhuang X, Zhang H, Li X, Li X, Cong M, Peng F, et al. Differential effects on lung and bone metastasis of breast cancer by Wnt signalling inhibitor DKK1. Nat Cell Biol. 2017;19:1274–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee CW, Ren YJ, Marella M, Wang M, Hartke J, Couto SS. Multiplex immunofluorescence staining and image analysis assay for diffuse large B cell lymphoma. J Immunol Methods. 2020;478:112714.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kang Y. Imaging TGFβ signaling in mouse models of cancer metastasis. Methods Mol Biol. 2016;1344:219–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang H, Yu C, Gao X, Welte T, Muscarella AM, Tian L, et al. The osteogenic niche promotes early-stage bone colonization of disseminated breast cancer cells. Cancer Cell. 2015;27:193–210.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu C, Wang H, Muscarella A, Goldstein A, Zeng HC, Bae Y, et al. Intra-iliac artery injection for efficient and selective modeling of microscopic bone metastasis. J Vis Exp. 2016;26:53982.

  • Chen H, Xu L, Wang L. Expression of miR-182 and Foxo3a in patients with bladder cancer correlate with prognosis. Int J Clin Exp Pathol. 2019;12:4193–203.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Udagawa N, Koide M, Nakamura M, Nakamichi Y, Yamashita T, Uehara S, et al. Osteoclast differentiation by RANKL and OPG signaling pathways. J Bone Miner Metab. 2021;39:19–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krek A, Grün D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, et al. Combinatorial microRNA target predictions. Nat Genet. 2005;37:495–500.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120:15–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sankpal NV, Fleming TP, Gillanders WE. EpCAM modulates NF-κB signaling and interleukin-8 expression in breast cancer. Mol Cancer Res. 2013;11:418–26.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang S, Liu Z, Wang L, Zhang X. NF-kappaB signaling pathway, inflammation and colorectal cancer. Cell Mol Immunol. 2009;6:327–34.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang Y, Chung MR, Zhou S, Gong X, Xu H, Hong Y, et al. STAT3 controls osteoclast differentiation and bone homeostasis by regulating NFATc1 transcription. J Biol Chem. 2019;294:15395–407.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nutter F, Holen I, Brown HK, Cross SS, Evans CA, Walker M, et al. Different molecular profiles are associated with breast cancer cell homing compared with colonisation of bone: evidence using a novel bone-seeking cell line. Endocr Relat Cancer. 2014;21:327–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee ZH, Kim HH. Signal transduction by receptor activator of nuclear factor kappa B in osteoclasts. Biochem Biophys Res Commun. 2003;305:211–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krishnan V, Shuman LA, Sosnoski DM, Dhurjati R, Vogler EA, Mastro AM. Dynamic interaction between breast cancer cells and osteoblastic tissue: comparison of two- and three-dimensional cultures. J Cell Physiol. 2011;226:2150–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • De S, Chen J, Narizhneva NV, Heston W, Brainard J, Sage EH, et al. Molecular pathway for cancer metastasis to bone. J Biol Chem. 2003;278:39044–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu Q, Russell MR, Shahriari K, Jernigan DL, Lioni MI, Garcia FU, et al. Interleukin-1β promotes skeletal colonization and progression of metastatic prostate cancer cells with neuroendocrine features. Cancer Res. 2013;73:3297–305.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seol MA, Kim JH, Oh K, Kim G, Seo MW, Shin YK, et al. Interleukin-7 contributes to the invasiveness of prostate cancer cells by promoting epithelial-mesenchymal transition. Sci Rep. 2019;9:6917.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ogawa R, Yamamoto T, Hirai H, Hanada K, Kiyasu Y, Nishikawa G, et al. Loss of SMAD4 promotes colorectal cancer progression by recruiting tumor-associated neutrophils via the CXCL1/8-CXCR2 Axis. Clin Cancer Res. 2019;25:2887–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Timani KA, Győrffy B, Liu Y, Mohammad KS, He JJ. Tip110/SART3 regulates IL-8 expression and predicts the clinical outcomes in melanoma. Mol Cancer. 2018;17:124.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lesage J, Suarez-Carmona M, Neyrinck-Leglantier D, Grelet S, Blacher S, Hunziker W, et al. Zonula occludens-1/NF-κB/CXCL8: a new regulatory axis for tumor angiogenesis. FASEB J. 2017;31:1678–88.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sanpaolo ER, Rotondo C, Cici D, Corrado A, Cantatore FP. JAK/STAT pathway and molecular mechanism in bone remodeling. Mol Biol Rep. 2020;47:9087–96.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei Q, Lei R, Hu G. Roles of miR-182 in sensory organ development and cancer. Thorac Cancer. 2015;6:2–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miller CH, Smith SM, Elguindy M, Zhang T, Xiang JZ, Hu X, et al. RBP-J-regulated miR-182 promotes TNF-alpha-induced osteoclastogenesis. J Immunol. 2016;196:4977–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    Stay Connected

    9FansLike
    4FollowersFollow
    0SubscribersSubscribe
    - Advertisement -spot_img

    Latest Articles

    %d bloggers like this: