Sunday, June 4, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

A study on computer vision for facial emotion recognition – Scientific Reports


  • Vo, T. H., Lee, G. S., Yang, H. J. & Kim, S. H. Pyramid with super resolution for in-the-wild facial expression recognition. IEEE Access 8, 131988–132001 (2020).

    Article 

    Google Scholar
     

  • Mehrabian, A. Nonverbal communication (Aldine Transaction, 2007).

  • Ekman, P. Darwin, deception, and facial expression. Ann. N. Y. Acad. Sci. 1000, 205–2 (Kortli & Jridi, 2020) (2006).

  • Farzaneh, A. H. & Qi, X. Facial expression recognition in the wild via deep attentive center loss in 2021 IEEE winter conference on applications of computer vision (WACV) 2401–2410 (IEEE, 2021).

  • Alnuaim, A. A. et al. Human-computer interaction for recognizing speech emotions using multilayer perceptron classifier. J. Healthc. Eng. 2022, 6005446 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumari, H. M. L. S. Facial expression recognition using convolutional neural network along with data augmentation and transfer learning (2022).

  • Ekman, P., Dalgleish, T. & Power, M. Handbook of cognition and emotion (Wiley, 1999).

  • Ekman, P. Are there basic emotions?. Psychol. Rev. 99, 550–553 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Russell, J. A. A circumplex model of affect. J. Pers. Soc. Psychol. 39, 1161–1178 (1980).

    Article 

    Google Scholar
     

  • Goodfellow, I. J. et al. Challenges in representation learning: A report on three machine learning contests in Neural information processing (eds. Lee, M., Hirose, A., Hou, Z. & Kil, R) 117–124 (Springer, 2013).

  • Maithri, M. et al. Automated emotion recognition: Current trends and future perspectives. Comput. Method Prog. Biomed. 215, 106646 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Li, S. & Deng, W. Deep facial expression recognition: A survey. IEEE Trans. Affect. Comput. 13, 1195–1215 (2022).

    Article 

    Google Scholar
     

  • Canal, F. Z. et al. A survey on facial emotion recognition techniques: A state-of-the-art literature review. Inf. Sci. 582, 593–617 (2022).

    Article 

    Google Scholar
     

  • He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition in 2016 IEEE conference on computer vision and pattern recognition (CVPR) 770–778 (IEEE, 2016).

  • Mollahosseini, A., Hasani, B. & Mahoor, M. H. AffectNet: A database for facial expression, valence, and arousal computing in the wild. IEEE Trans. Affect. Comput. 10, 18–31 (2019).

    Article 

    Google Scholar
     

  • Schoneveld, L. & Othmani, A. Towards a general deep feature extractor for facial expression recognition in 2021 IEEE international conference on image processing (ICIP) 2339–2342 (IEEE, 2021).

  • Rajan, V., Brutti, A. & Cavallaro, A. Is cross-attention preferable to self-attention for multi-modal emotion recognition? in ICASSP 2022–2022 IEEE international conference on acoustics, speech and signal processing (ICASSP) 4693–4697 (IEEE, 2022).

  • Zhuang, X., Liu, F., Hou, J., Hao, J. & Cai, X. Transformer-based interactive multi-modal attention network for video sentiment detection. Neural Process. Lett. 54, 1943–1960 (2022).

    Article 

    Google Scholar
     

  • Zhang, Y., Wang, C., Ling, X. & Deng, W. Learn from all: Erasing attention consistency for noisy label facial expression recognition in Lecture notes in computer science (eds. Avidan, S., Brostow, G., Cissé, M., Farinella, G. M. & Hassner T.) 418–434 (Springer, 2022).

  • Savchenko, A. V., Savchenko, L. V. & Makarov, I. Classifying emotions and engagement in online learning based on a single facial expression recognition neural network. IEEE Trans. Affect. Comput. 13, 2132–2143 (2022).

    Article 

    Google Scholar
     

  • Fan, Y., Lam, J. C. K. & Li, V. O. K. Multi-region ensemble convolutional neural network for facial expression recognition in Artificial neural networks and machine learning—ICANN 2018 (eds. Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L. & Maglogiannis, I.) 84–94 (Springer International Publishing, 2018).

  • Wang, Z., Zeng, F., Liu, S. & Zeng, B. OAENet: Oriented attention ensemble for accurate facial expression recognition. Pattern Recognit. 112, 107694 (2021).

    Article 

    Google Scholar
     

  • Schoneveld, L., Othmani, A. & Abdelkawy, H. Leveraging recent advances in deep learning for audio-Visual emotion recognition. Pattern Recognit. Lett. 146, 1–7 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Hwooi, S. K. W., Othmani, A. & Sabri, A. Q. M. Deep learning-based approach for continuous affect prediction from facial expression images in valence-arousal space. IEEE Access 10, 96053–96065 (2022).

    Article 

    Google Scholar
     

  • Sun, L., Lian, Z., Tao, J., Liu, B. & Niu, M. Multi-modal continuous dimensional emotion recognition using recurrent neural network and self-attention mechanism in Proceedings of the 1st international on multimodal sentiment analysis in real-life media challenge and workshop 27–34 (ACM, 2020).

  • Allognon, S. O. C., de S. Britto, A. & Koerich, A. L. Continuous emotion recognition via deep convolutional autoencoder and support vector regressor in 2020 international joint conference on neural networks (IJCNN) 1–8 (IEEE, 2020).

  • Huang, C. Combining convolutional neural networks for emotion recognition in 2017 IEEE MIT undergraduate research technology conference (URTC) 1–4 (IEEE, 2017).

  • Mao, J. et al. POSTER V2: A simpler and stronger facial expression recognition network. arXiv preprint arXiv:2301.12149 (2023).

  • Le, N. et al. Uncertainty-aware label distribution learning for facial expression recognition in 2023 IEEE/CVF winter conference on applications of computer vision (WACV) 6088–6097 (IEEE, 2023).

  • Singh, S. & Prasad, S. V. A. V. Techniques and challenges of face recognition: A critical review. Proc. Comput. Sci. 143, 536–543 (2018).

    Article 

    Google Scholar
     

  • Kortli, Y., Jridi, M., Falou, A. A. & Atri, M. Face recognition systems: A survey. Sensors (Basel, Switzerland) 20, 342 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Shirazi, M. S. & Bati, S. Evaluation of the off-the-shelf CNNs for facial expression recognition in Lecture notes in networks and systems (ed. Arai, K.) 466–473 (Springer, 2022).

  • Chen, D., Wen, G., Li, H., Chen, R. & Li, C. Multi-relations aware network for in-the-wild facial expression recognition. IEEE Trans. Circuits Syst. Video Technol. https://doi.org/10.1109/tcsvt.2023.3234312 (2023).

    Article 

    Google Scholar
     

  • Heidari, N. & Iosifidis, A. Learning diversified feature representations for facial expression recognition in the wild. arXiv preprint arXiv:2210.09381 (2022).

  • Beaudry, O., Roy-Charland, A., Perron, M., Cormier, I. & Tapp, R. Featural processing in recognition of emotional facial expressions. Cogn. Emot. 28, 416–432 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Bhattacharyya, A. et al. A deep learning model for classifying human facial expressions from infrared thermal images. Sci. Rep. 11, 20696 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alp, N. & Ozkan, H. Neural correlates of integration processes during dynamic face perception. Sci. Rep. 12, 118 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Siddiqi, M. H. Accurate and robust facial expression recognition system using real-time YouTube-based datasets. Appl. Intell. 48, 2912–2929 (2018).

    Article 

    Google Scholar
     

  • Li, S., Deng, W. H. & Du, J. P. Reliable crowdsourcing and deep locality-preserving learning for expression recognition in the wild in 2017 IEEE conference on computer vision and pattern recognition (CVPR) 2584–2593 (IEEE, 2017).

  • Hu, J., Shen, L. & Sun, G. Squeeze-and-excitation networks in 2018 IEEE/CVF conference on computer vision and pattern recognition 7132–7141 (IEEE, 2018).

  • Chen, C. C., Cho, S. L. & Tseng, R. Y. Taiwan corpora of Chinese emotions and relevant psychophysiological data-Behavioral evaluation norm for facial expressions of professional performer. Chin. J. Psychol. 55, 439–454 (2013).


    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    Stay Connected

    9FansLike
    4FollowersFollow
    0SubscribersSubscribe
    - Advertisement -spot_img

    Latest Articles

    %d bloggers like this: