Tuesday, October 3, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

A thioacetamide-induced liver fibrosis model for pre-clinical studies in microminipig – Scientific Reports


  • Bao, Y. L. et al. Animal and organoid models of liver fibrosis. Front. Physiol. 26(12), 666138 (2021).

    Article 

    Google Scholar
     

  • Delire, B., Stärkel, P. & Leclercq, I. Animal models for fibrotic liver diseases: What we have, what we need, and what is under development. J. Clin. Transl. Hepatol. 3, 53–66 (2015).

    Article 
    PubMed Central 

    Google Scholar
     

  • Salguero Palacios, R. et al. Activation of hepatic stellate cells is associated with cytokine expression in thioacetamide-induced hepatic fibrosis in mice. Lab. Invest. 88, 1192–203 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Wallace, M. C. et al. Standard operating procedures in experimental liver research: Thioacetamide model in mice and rats. Lab. Anim. 49, 21–29 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Li, X., Benjamin, I. S. & Alexander, B. Reproducible production of thioacetamide-induced macronodular cirrhosis in the rat with no mortality. J. Hepatol. 36, 488–493 (2002).

    Article 

    Google Scholar
     

  • Vidal, I. & Richert, L. The nude mouse as model for liver deficiency study and treatment and xenotransplantation. Int. J. Hepatol. 2012, 140147 (2012).

    Article 
    PubMed Central 

    Google Scholar
     

  • Inoue, T. et al. Thioacetamide-induced hepatic fibrosis in the common marmoset. Exp. Anim. 67, 321–327 (2018).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Matsuo, M. et al. Novel liver fibrosis model in Macaca fascicularis induced by thioacetamide. Sci. Rep. 10, 2450 (2020).

    Article 
    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Chatfield, K. & Morton, D. (2018). The use of non-human primates in research. In: Schroeder D, Cook J, Hirsch F, Fenet S, Muthuswamy V (eds) Ethics Dumping. SpringerBriefs in Research and Innovation Governance. Springer DOI: https://doi.org/10.1007/978-3-319-64731-9_10

  • SCHER (2009) Non-human Primates in Research and Safety Testing. Scientific Committee on Health and Environmental Risks, Health and Consumer Protection Directorate-General, European Commission. http://ec.europa.eu/health/ph_risk/committees/04_scher/docs/scher_o_110.pdf

  • Pabst, R. The pig as a model for immunology research. Cell Tissue Res. 380, 287–304 (2020).

    Article 
    PubMed Central 

    Google Scholar
     

  • Porrett, P. M. et al. First clinical-grade porcine kidney xenotransplant using a human decedent model. Am. J. Transplant. 22, 1037–1053 (2022).

    Article 

    Google Scholar
     

  • Ribitsch, I. et al. Large animal models in regenerative medicine and tissue engineering: To do or not to do. Front. Bioeng. Biotechnol. 8, 972 (2020).

    Article 
    PubMed Central 

    Google Scholar
     

  • Tajima, K. et al. Decellularization of canine kidney for three-dimensional organ regeneration. Vet. World. 13, 452–457 (2020).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Shimoda, H. et al. Decellularized liver scaffolds promote liver regeneration after partial hepatectomy. Sci. Rep. 9, 12543 (2019).

    Article 
    ADS 
    PubMed Central 

    Google Scholar
     

  • Higashi, H. et al. Transplantation of bioengineered liver capable of extended function in a preclinical liver failure model. Am. J. Transplant. 22, 731–744 (2022).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Dalgaard, L. Comparison of minipig, dog, monkey and human drug metabolism and disposition. J. Pharmacol. Toxicol. Methods 74, 80–92 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Nishi, K. et al. Prevention of chronic rejection of marginal kidney graft by using a hydrogen gas-containing preservation solution and adequate immunosuppression in a miniature pig model. Front. Immunol. 11, 626295 (2021).

    Article 
    PubMed Central 

    Google Scholar
     

  • Kawaguchi, H. et al. Reference values of hematological and biochemical parameters for the world smallest microminipigs. J. Vet. Med. Sci. 74, 933–936 (2012).

    Article 

    Google Scholar
     

  • Sakai, C. et al. Analysis of gene expression for microminipig liver transcriptomes using parallel long-read technology and short-read sequencing. Biopharm. Drug Dispos. 37, 220–232 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Hsu, H. C. et al. Enhancing survival of human hepatocytes by neonatal thymectomy and partial hepatectomy in micro-miniature pigs. Transplant. Proc. 49, 153–158 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Inomata, K. et al. A pre-clinical large animal model of sustained liver injury and regeneration stimulus. Sci. Rep. 8, 14987 (2018).

    Article 
    ADS 
    PubMed Central 

    Google Scholar
     

  • Sato, Y. et al. Development of a simple indocyanine green measurement method using an automated biochemical analyser. Ann. Clin. Biochem. 55, 491–495 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Rasband, W. S. ImageJ, U. S. National Institutes of Health. Bethesda, Maryland, http://rsb.info.nih.gov/ij/, 1997–2012.

  • Kanda, Y. Investigation of the freely available easy-to-use software “EZR” for medical statistics. Bone Marrow Transplant. 48, 452–458 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Hwang, J. et al. In situ imaging of tissue remodeling with collagen hybridizing peptides. ACS Nano 11, 9825–9835 (2017).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Amato, R., Gardin, J. F., Tooze, J. A. & Cline, J. M. Organ weights in relation to age and sex in cynomolgus monkeys (Macaca fascicularis). Toxicol. Pathol. 50, 574–590 (2022).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Francavilla, A. et al. Small-for-size liver transplanted into larger recipient: A model of hepatic regeneration. Hepatology 19, 210–216 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Utoh, R. et al. Hepatic hyperplasia associated with discordant xenogeneic parenchymal-nonparenchymal interactions in human hepatocyte-repopulated mice. Am. J. Pathol. 177, 654–665 (2010).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Elefson, S. K. et al. Assessment of visceral organ growth in pigs from birth through 150 kg. J. Anim. Sci. 99, 249 (2021).

    Article 

    Google Scholar
     

  • Janhavi, P., Divyashree, S., Sanjailal, K. P. & Muthukumar, S. P. DoseCal: A virtual calculator for dosage conversion between human and different animal species. Arch. Physiol. Biochem. 128, 426–430 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Helke, K. L. et al. Pigs in toxicology: Breed differences in metabolism and background findings. Toxicol. Pathol. 44, 575–590 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Hajovsky, H. et al. Metabolism and toxicity of thioacetamide and thioacetamide S-oxide in rat hepatocytes. Chem. Res. Toxicol. 25, 1955–1963 (2012).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Amanzada, A. et al. Induction of chemokines and cytokines before neutrophils and macrophage recruitment in different regions of rat liver after TAA administration. Lab. Invest. 94, 235–247 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Xie, L. T. et al. Value of two-dimensional shear wave elastography for assessing acute liver congestion in a bama mini-pig model. Dig. Dis. Sci. 63, 1851–1859 (2018).

    Article 

    Google Scholar
     

  • Resino, S. et al. Can serum hyaluronic acid replace simple non-invasive indexes to predict liver fibrosis in HIV/Hepatitis C coinfected patients?. BMC Infect. Dis. 10, 244 (2010).

    Article 
    PubMed Central 

    Google Scholar
     

  • Karsdal, M. A. et al. Collagen biology and non-invasive biomarkers of liver fibrosis. Liver Int. 40, 736–750 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Yang, Y. M. et al. Hyaluronan synthase 2-mediated hyaluronan production mediates Notch1 activation and liver fibrosis. Sci. Transl. Med. 11, 9284 (2019).

    Article 

    Google Scholar
     

  • Kim, S. M. et al. Hyaluronan synthase 2, a target of miR-200c, promotes carbon tetrachloride-induced acute and chronic liver inflammation via regulation of CCL3 and CCL4. Exp. Mol. Med. 54, 739–752 (2022).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Amin, Z. A., Alshawsh, M. A., Kassim, M., Ali, H. M. & Abdulla, M. A. Gene expression profiling reveals underlying molecular mechanism of hepatoprotective effect of Phyllanthus niruri on thioacetamide-induced hepatotoxicity in Sprague Dawley rats. BMC Complement. Altern. Med. 13, 160 (2013).

    Article 
    PubMed Central 

    Google Scholar
     

  • Qian, T. et al. Molecular signature predictive of long-term liver fibrosis progression to inform antifibrotic drug development. Gastroenterology 162, 1210–1225 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Barr, R. G. et al. Elastography assessment of liver fibrosis: Society of radiologists in ultrasound consensus conference statement. Radiology 276, 845–861 (2015).

    Article 

    Google Scholar
     

  • Müller, A., Machnik, F., Zimmermann, T. & Schubert, H. Thioacetamide-induced cirrhosis-like liver lesions in rats-usefulness and reliability of this animal model. Exp. Pathol. 34, 229–236 (1988).

    Article 

    Google Scholar
     

  • Takahashi, Y. & Fukusato, T. Chapter 13—Animal models of liver diseases In: Michael Conn P (ed) Animal Models for the Study of Human Disease (Second Edition). Academic Press, pp. 313–339 (2017) DOI: https://doi.org/10.1016/B978-0-12-809468-6.00013-9.

  • Bühler, R., Lindros, K. O., Nordling, A., Johansson, I. & Ingelman-Sundberg, M. Zonation of cytochrome P450 isozyme expression and induction in rat liver. Eur. J. Biochem. 204, 407–412 (1992).

    Article 

    Google Scholar
     

  • Hall, P. M., Stupans, I., Burgess, W., Birkett, D. J. & McManus, M. E. Immunohistochemical localization of NADPH-cytochrome P450 reductase in human tissues. Carcinogenesis 10, 521–530 (1989).

    Article 
    CAS 

    Google Scholar
     

  • Bhushan, B. et al. Pro-regenerative signaling after acetaminophen-induced acute liver injury in mice identified using a novel incremental dose model. Am. J. Pathol. 184, 3013–3025 (2014).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Huby, T. & Gautier, E. L. Immune cell-mediated features of non-alcoholic steatohepatitis. Nat. Rev. Immunol. 22, 429–443 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Krenkel, O. & Tacke, F. Liver macrophages in tissue homeostasis and disease. Nat. Rev. Immunol. 17, 306–321 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Ploeger, D. T. et al. Cell plasticity in wound healing: paracrine factors of M1/M2 polarized macrophages influence the phenotypical state of dermal fibroblasts. Cell Commun. Signal. 11, 29 (2013).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • De Pelsmaeker, S., Denaeghel, S., Hermans, L. & Favoreel, H. W. Identification of a porcine liver eomeshighT-betlow NK cell subset that resembles human liver resident NK cells. Front. Immunol. 10, 2561 (2019).

    Article 
    PubMed Central 

    Google Scholar
     

  • Luigi, D. Notarangelo, 9—T Cell Immunodeficiencies, Donald YM, Leung SJ. Szefler FA, Bonilla CA, Akdis HA (eds) Sampson, Pediatric Allergy: Principles and Practice (Third Edition). Elsevier (2016), pp. 80–89.e4 DOI: https://doi.org/10.1016/B978-0-323-29875-9.00009-4.

  • Markert, M. L. Chapter 8—Defects in Thymic Development: DiGeorge/CHARGE/Chromosome 22q11.2 Deletion In: Kathleen E, Sullivan E, Richard S (eds) Stiehm’s Immune Deficiencies. Academic Press, pp. 221–242 (2014) DOI: https://doi.org/10.1016/B978-0-12-405546-9.00008-X.

  • Gandillet, A. et al. Experimental models of acute and chronic liver failure in nude mice to study hepatocyte transplantation. Cell Transplant. 14, 277–290 (2005).

    Article 

    Google Scholar
     

  • Li, C. J., Yang, Z. H., Shi, X. L. & Liu, D. L. Effects of aspirin and enoxaparin in a rat model of liver fibrosis. World J. Gastroenterol. 23, 6412–6419 (2017).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Wu, S. et al. An update on animal models of liver fibrosis. Front. Med. Lausanne. 10, 1160053 (2023).

    Article 
    PubMed Central 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    Stay Connected

    9FansLike
    4FollowersFollow
    0SubscribersSubscribe
    - Advertisement -spot_img

    Latest Articles

    %d bloggers like this: