Tuesday, October 3, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

Amino acid metabolism in health and disease – Signal Transduction and Targeted Therapy


  • Horton, H. R. et al. (eds) Principles of Biochemistry (Pearson Press, 2006).

  • Latham, M. C. (ed) Human Nutrition in the Developing World (Food & Agriculture Org. Press, 1997).

  • Vettore, L., Westbrook, R. L. & Tennant, D. A. New aspects of amino acid metabolism in cancer. Br. J. Cancer 122, 150–156 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lieu, E. L., Nguyen, T., Rhyne, S. & Kim, J. Amino acids in cancer. Exp. Mol. Med. 52, 15–30 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, L., Sadighi Akha, A. A., Miller, R. A. & Harper, J. M. Life-span extension in mice by preweaning food restriction and by methionine restriction in middle age. J. Gerontol. A Biol. Sci. Med. Sci. 64, 711–722 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Miller, R. A. et al. Methionine-deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF-I and insulin levels, and increases hepatocyte MIF levels and stress resistance. Aging Cell 4, 119–125 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Orentreich, N., Matias, J. R., DeFelice, A. & Zimmerman, J. A. Low methionine ingestion by rats extends life span. J. Nutr. 123, 269–274 (1993).

    CAS 
    PubMed 

    Google Scholar
     

  • Zimmerman, J. A., Malloy, V., Krajcik, R. & Orentreich, N. Nutritional control of aging. Exp. Gerontol. 38, 47–52 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choi, B. H. & Coloff, J. L. The diverse functions of non-essential amino acids in cancer. Cancers 11, 675 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Newgard, C. B. Metabolomics and metabolic diseases: where do we stand? Cell Metab. 25, 43–56 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • White, P. J. et al. Insulin action, type 2 diabetes, and branched-chain amino acids: a two-way street. Mol. Metab. 52, 101261 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, B. et al. Mitochondrial aspartate regulates TNF biogenesis and autoimmune tissue inflammation. Nat. Immunol. 22, 1551–1562 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruzzo, E. K. et al. Deficiency of asparagine synthetase causes congenital microcephaly and a progressive form of encephalopathy. Neuron. 80, 429–441 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alfadhel, M. et al. Asparagine synthetase deficiency: new inborn errors of metabolism. JIMD Rep. 22, 11–16 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ben-Salem, S. et al. Asparagine synthetase deficiency detected by whole exome sequencing causes congenital microcephaly, epileptic encephalopathy and psychomotor delay. Metab. Brain Dis. 30, 687–694 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Palmer, E. E. et al. Asparagine Synthetase Deficiency causes reduced proliferation of cells under conditions of limited asparagine. Mol. Genet. Metab. 116, 178–186 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seidahmed, M. Z. et al. Hyperekplexia, microcephaly and simplified gyral pattern caused by novel ASNS mutations, case report. BMC Neurol. 16, 105 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gataullina, S. et al. Epileptic phenotype of two siblings with asparagine synthesis deficiency mimics neonatal pyridoxine-dependent epilepsy. Neuropediatrics 47, 399–403 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Piao, L. et al. Cardiac glutaminolysis: a maladaptive cancer metabolism pathway in the right ventricle in pulmonary hypertension. J. Mol. Med. 91, 1185–1197 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Böger, R. H. The emerging role of asymmetric dimethylarginine as a novel cardiovascular risk factor. Cardiovasc. Res. 59, 824–833 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Young, V. R. Adult amino acid requirements: the case for a major revision in current recommendations. J. Nutr. 124, 1517S–1523S (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Furst, P. & Stehle, P. What are the essential elements needed for the determination of amino acid requirements in humans? J. Nutr. 134, 1558S–1565S (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Sakami, W. & Harrington, H. Amino acid metabolism. Annu. Rev. Biochem. 32, 355–398 (1963).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brosnan, J. T. Glutamate, at the interface between amino acid and carbohydrate metabolism. J. Nutr. 130, 988S–990S (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Forsberg, H. & Ljungdahl, P. O. Sensors of extracellular nutrients in Saccharomyces cerevisiae. Curr. Genet. 40, 91–109 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Christie, G. R., Hyde, R. & Hundal, H. S. Regulation of amino acid transporters by amino acid availability. Curr. Opin. Clin. Nutr. Metab. Care 4, 425–431 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hediger, M. A., Clémençon, B., Burrier, R. E. & Bruford, E. A. The ABCs of membrane transporters in health and disease (SLC series): introduction. Mol. Asp. Med. 34, 95–107 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Bröer, S. Adaptation of plasma membrane amino acid transport mechanisms to physiological demands. Pflügers Arch. 444, 457–466 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Hyde, R., Taylor, P. M. & Hundal, H. S. Amino acid transporters: roles in amino acid sensing and signalling in animal cells. Biochem. J. 373, 1–18 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kandasamy, P., Gyimesi, G., Kanai, Y. & Hediger, M. A. Amino acid transporters revisited: New views in health and disease. Trends Biochem. Sci. 43, 752–789 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ou, D. et al. Dietary supplementation with zinc oxide decreases expression of the stem cell factor in the small intestine of weanling pigs. J. Nutr. Biochem. 18, 820–826 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marc Rhoads, J. & Wu, G. Glutamine, arginine, and leucine signaling in the intestine. Amino Acids 37, 111–122 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jobgen, W. S., Fried, S. K., Fu, W. J., Meininger, C. J. & Wu, G. Regulatory role for the arginine-nitric oxide pathway in metabolism of energy substrates. J. Nutr. Biochem. 17, 571–588 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Galli, F. Amino acid and protein modification by oxygen and nitrogen species. Amino Acids 42, 1–4 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mannick, J. Regulation of apoptosis by protein S-nitrosylation. Amino Acids 32, 523 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liao, X. H., Majithia, A., Huang, X. & Kimmel, A. R. Growth control via TOR kinase signaling, an intracellular sensor of amino acid and energy availability, with crosstalk potential to proline metabolism. Amino Acids 35, 761–770 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Escobar, J. et al. Regulation of cardiac and skeletal muscle protein synthesis by individual branched-chain amino acids in neonatal pigs. Am. J. Physiol. – Endocrinol. Metab. 290, E612–E621 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meijer, A. J. & Dubbelhuis, P. F. Amino acid signalling and the integration of metabolism. Biochem. Biophys. Res. Commun. 313, 397–403 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yao, K. et al. Dietary arginine supplementation increases mTOR signaling activity in skeletal muscle of neonatal pigs. J. Nutr. 138, 867–872 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, G. & Morris, S. M. Jr. Arginine metabolism: nitric oxide and beyond. Biochem. J. 336, 1–17 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sinclair, L. V. et al. Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. Nat. Immunol. 14, 500–508 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, G. K. et al. Tryptophan deprivation sensitizes activated T cells to apoptosis prior to cell division. Immunology. 107, 452–460 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Munn, D. H. et al. GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity 22, 633–642 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rodriguez, P. C., Quiceno, D. G. & Ochoa, A. C. L-arginine availability regulates T-lymphocyte cell-cycle progression. Blood 109, 1568–1573 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ichihara, A. & Koyama, E. Transaminase of branched chain amino acids. I. Branched chain amino acids-alpha-ketoglutarate transaminase. J. Biochem. 59, 160–169 (1966).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wolfson, R. L. et al. Sestrin2 is a leucine sensor for the mTORC1 pathway. Science 351, 43–48 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Buse, M. G., Atwell, R. & Mancusi, V. In vitro effect of branched chain amino acids on the ribosomal cycle in muscles of fasted rats. Horm. Metab. Res. 11, 289–292 (1979).

    CAS 
    PubMed 

    Google Scholar
     

  • Skaper, S. D., Molden, D. P. & Seegmiller, J. E. Maple syrup urine disease: branched-chain amino acid concentrations and metabolism in cultured human lymphoblasts. Biochem. Genet. 14, 527–539 (1976).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Calder, P. C. Branched-chain amino acids and immunity. J. Nutr. 136, 288S–293S (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Budhathoki, S. et al. Association of plasma concentrations of branched-chain amino acids with risk of colorectal adenoma in a large Japanese population. Ann. Oncol. 28, 818–823 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mayers, J. R. et al. Elevation of circulating branched-chain amino acids is an early event in human pancreatic adenocarcinoma development. Nat. Med. 20, 1193–1198 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mayers, J. R. et al. Tissue of origin dictates branched-chain amino acid metabolism in mutant Kras-driven cancers. Science 353, 1161–1165 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lei, M. Z. et al. Acetylation promotes BCAT2 degradation to suppress BCAA catabolism and pancreatic cancer growth. Signal Transduct. Target Ther. 5, 70 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, J.-T. et al. BCAT2-mediated BCAA catabolism is critical for development of pancreatic ductal adenocarcinoma. Nat. Cell Biol. 22, 167–174 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shafei, M. A. et al. BCATc modulates crosstalk between the PI3K/Akt and the Ras/ERK pathway regulating proliferation in triple negative breast cancer. Oncotarget 11, 1971 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Holmstrom, S. R. & Olive, K. P. Protein breakdown precedes pancreatic tumor development. Nat. Med. 20, 1097–1099 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, Z. et al. Tumour-reprogrammed stromal BCAT1 fuels branched-chain ketoacid dependency in stromal-rich PDAC tumours. Nat. Metab. 2, 775–792 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Y. et al. BCKDK alters the metabolism of non-small cell lung cancer. Transl. Lung Cancer Res. 10, 4459–4476 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chi, R. et al. Elevated BCAA suppresses the development and metastasis of breast cancer. Front. Oncol. 12, 887257 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shafei, M. A. et al. Differential expression of the BCAT isoforms between breast cancer subtypes. Breast Cancer 28, 592–607 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, L. & Han, J. Branched-chain amino acid transaminase 1 (BCAT1) promotes the growth of breast cancer cells through improving mTOR-mediated mitochondrial biogenesis and function. Biochem. Biophys. Res. Commun. 486, 224–231 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Silva, L. S. et al. Branched‐chain ketoacids secreted by glioblastoma cells via MCT 1 modulate macrophage phenotype. EMBO Rep. 18, 2172–2185 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, B. et al. Regulation of branched-chain amino acid metabolism by hypoxia-inducible factor in glioblastoma. Cell Mol. Life Sci. 78, 195–206 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, B. et al. Targeting BCAT1 combined with alpha-ketoglutarate triggers metabolic synthetic lethality in glioblastoma. Cancer Res. 82, 2388–2402 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goto, M. et al. Structural determinants for branched-chain aminotransferase isozyme-specific inhibition by the anticonvulsant drug gabapentin. J. Biol. Chem. 280, 37246–37256 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Conway, M. E., Coles, S. J., Islam, M. M. & Hutson, S. M. Regulatory control of human cytosolic branched-chain aminotransferase by oxidation and S-glutathionylation and its interactions with redox sensitive neuronal proteins. Biochemistry 47, 5465–5479 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, D. et al. The adverse metabolic effects of branched-chain amino acids are mediated by isoleucine and valine. Cell Metab. 33, 905–922.e906 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • White, P. J. et al. The BCKDH kinase and phosphatase integrate BCAA and lipid metabolism via regulation of ATP-citrate lyase. Cell Metab. 27, 1281–1293.e1287 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, Q.-X. et al. BCAA–BCKA axis regulates WAT browning through acetylation of PRDM16. Nat. Metab. 4, 106–122 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kitaura, Y. et al. Antihypertensive drug valsartan as a novel BDK inhibitor. Pharmacol. Res. 167, 105518 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, H. et al. Catabolic defect of branched-chain amino acids promotes heart failure. Circulation. 133, 2038–2049 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ogawa, T. et al. Downregulation of extramitochondrial BCKDH and its uncoupling from AMP deaminase in type 2 diabetic OLETF rat hearts. Physiol. Rep. 11, e15608 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Plauth, M. et al. Characteristic pattern of free amino acids in plasma and skeletal muscle in stable hepatic cirrhosis. Hepatogastroenterology 37, 135–139 (1990).

    CAS 
    PubMed 

    Google Scholar
     

  • Holecek, M. Ammonia and amino acid profiles in liver cirrhosis: effects of variables leading to hepatic encephalopathy. Nutrition 31, 14–20 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van den Berg, E. H. et al. Non-alcoholic fatty liver disease and risk of incident type 2 diabetes: role of circulating branched-chain amino acids. Nutrients 11, 705 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tajiri, K. & Shimizu, Y. Branched-chain amino acids in liver diseases. Transl. Gastroenterol. Hepatol. 3, 47 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Honda, M. et al. Malnutrition impairs interferon signaling through mTOR and FoxO pathways in patients with chronic hepatitis C. Gastroenterology 141, 128–140.e122 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Singh Tejavath, A. et al. Impact of Branched Chain Amino Acid on Muscle Mass, Muscle Strength, Physical Performance, Combined Survival, and Maintenance of Liver Function Changes in Laboratory and Prognostic Markers on Sarcopenic Patients With Liver Cirrhosis (BCAAS Study): A Randomized Clinical Trial. Front. Nutr. 8, 715795 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alvestrand, A., Furst, P. & Bergstrom, J. Plasma and muscle free amino acids in uremia: influence of nutrition with amino acids. Clin. Nephrol. 18, 297–305 (1982).

    CAS 
    PubMed 

    Google Scholar
     

  • Schauder, P. et al. Blood levels of branched-chain amino acids and alpha-ketoacids in uremic patients given keto analogues of essential amino acids. Am. J. Clin. Nutr. 33, 1660–1666 (1980).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kumar, M. A. et al. Branched chain amino acid profile in early chronic kidney disease. Saudi J. Kidney Dis. Transpl. 23, 1202–1207 (2012).

    PubMed 

    Google Scholar
     

  • Suliman, M. E. et al. Inflammation contributes to low plasma amino acid concentrations in patients with chronic kidney disease. Am. J. Clin. Nutr. 82, 342–349 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grimble, R. F. Nutritional modulation of immune function. Proc. Nutr. Soc. 60, 389–397 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cano, N. J., Fouque, D. & Leverve, X. M. Application of branched-chain amino acids in human pathological states: renal failure. J. Nutr. 136, 299S–307S (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • GDR, H. B., Sharon, N. & Australia, E. W. Nomenclature and symbolism for amino acids and peptides. Pure Appl. Chem. 56, 595–624 (1984).

    Article 

    Google Scholar
     

  • Berg, J. M., Tymoczko, J. L. & Stryer, L. (eds) Biochemistry (W. H. Freeman. Press, 2002).

  • Krall, A. S. et al. Asparagine promotes cancer cell proliferation through use as an amino acid exchange factor. Nat. Commun. 7, 11457 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matlashewski, G. et al. Isolation and characterization of a human p53 cDNA clone: expression of the human p53 gene. EMBO J. 3, 3257–3262 (1984).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Isobe, M. et al. Localization of gene for human p53 tumour antigen to band 17p13. Nature 320, 84–85 (1986).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kern, S. E. et al. Identification of p53 as a sequence-specific DNA-binding protein. Science 252, 1708–1711 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deng, L. et al. p53-mediated control of aspartate-asparagine homeostasis dictates LKB1 activity and modulates cell survival. Nat. Commun. 11, 1755 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garcia-Bermudez, J. et al. Aspartate is a limiting metabolite for cancer cell proliferation under hypoxia and in tumours. Nat. Cell Biol. 20, 775–781 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sullivan, L. B. et al. Aspartate is an endogenous metabolic limitation for tumour growth. Nat. Cell Biol. 20, 782–788 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, J. et al. SLC1A3 contributes to L-asparaginase resistance in solid tumors. EMBO J. 38, e102147 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, L. et al. SLC1A3 promotes gastric cancer progression via the PI3K/AKT signalling pathway. J. Cell. Mol. Med. 24, 14392–14404 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wong, C. C. et al. SLC25A22 promotes proliferation and survival of colorectal cancer cells with KRAS mutations and xenograft tumor progression in mice via intracellular synthesis of aspartate. Gastroenterology 151, 945–960.e946 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Knott, S. R. et al. Asparagine bioavailability governs metastasis in a model of breast cancer. Nature 554, 378–381 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gwinn, D. M. et al. Oncogenic KRAS regulates amino acid homeostasis and asparagine biosynthesis via ATF4 and alters sensitivity to L-asparaginase. Cancer Cell 33, 91–107.e106 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hope, H. C. et al. Coordination of asparagine uptake and asparagine synthetase expression modulates CD8+ T cell activation. JCI Insight 6, e137761 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, J. et al. Asparagine enhances LCK signalling to potentiate CD8+ T-cell activation and anti-tumour responses. Nat. Cell Biol. 23, 75–86 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Williams, R. T. et al. ZBTB1 regulates asparagine synthesis and leukemia cell response to L-asparaginase. Cell Metab. 31, 852–861.e856 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cools, J. Improvements in the survival of children and adolescents with acute lymphoblastic leukemia. Haematologica 97, 635 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haskell, C. M. et al. L-asparaginase: therapeutic and toxic effects in patients with neoplastic disease. N. Engl. J. Med. 281, 1028–1034 (1969).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hays, J. L. et al. A phase II clinical trial of polyethylene glycol-conjugated L-asparaginase in patients with advanced ovarian cancer: early closure for safety. Mol. Clin. Oncol. 1, 565–569 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tong, W. H. et al. Toxicity of very prolonged PEGasparaginase and Erwinia asparaginase courses in relation to asparaginase activity levels with a special focus on dyslipidemia. Blood 124, 2256 (2014).

    Article 

    Google Scholar
     

  • Heitink-Polle, K. M. et al. High incidence of symptomatic hyperammonemia in children with acute lymphoblastic leukemia receiving pegylated asparaginase. JIMD Rep. 7, 103–108 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Grigoryan, R. S. et al. Changes of amino acid serum levels in pediatric patients with higher-risk acute lymphoblastic leukemia (CCG-1961). Vivo 18, 107–112 (2004).

    CAS 

    Google Scholar
     

  • Feldmann, M., Brennan, F. M. & Maini, R. N. Role of cytokines in rheumatoid arthritis. Annu. Rev. Immunol. 14, 397–440 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maini, R. N. & Taylor, P. C. Anti-cytokine therapy for rheumatoid arthritis. Annu. Rev. Med. 51, 207–229 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • FDA, U. & FDA. FDA requires warnings about increased risk of serious heart-related events, cancer, blood clots, and death for JAK inhibitors that treat certain chronic inflammatory conditions. FDA, (2021).

  • Dhillon, S. Tofacitinib: a review in rheumatoid arthritis. Drugs 77, 1987–2001 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rogler, G. Efficacy of JAK inhibitors in Crohn’s Disease. J. Crohns Colitis 14, S746–S754 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Alrifai, M. T. & Alfadhel, M. Worsening of seizures after asparagine supplementation in a child with asparagine synthetase deficiency. Pediatr. Neurol. 58, 98–100 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Hawkins, R. A., O’Kane, R. L., Simpson, I. A. & Vina, J. R. Structure of the blood-brain barrier and its role in the transport of amino acids. J. Nutr. 136, 218S–226S (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tang, W., Liu, D., Traynelis, S. F. & Yuan, H. Positive allosteric modulators that target NMDA receptors rectify loss-of-function GRIN variants associated with neurological and neuropsychiatric disorders. Neuropharmacology 177, 108247 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • XiangWei, W., Jiang, Y. & Yuan, H. De novo mutations and rare variants occurring in NMDA receptors. Curr. Opin. Physiol. 2, 27–35 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Liang, R., Robb, F. T. & Onstott, T. C. Aspartic acid racemization and repair in the survival and recovery of hyperthermophiles after prolonged starvation at high temperature. FEMS Microbiol. Ecol. 97, fiab112 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Errico, F. et al. D-aspartate prevents corticostriatal long-term depression and attenuates schizophrenia-like symptoms induced by amphetamine and MK-801. J. Neurosci. 28, 10404–10414 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Errico, F. et al. A role for D-aspartate oxidase in schizophrenia and in schizophrenia-related symptoms induced by phencyclidine in mice. Transl. Psychiatry 5, e512–e512 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sacchi, S. et al. Olanzapine, but not clozapine, increases glutamate release in the prefrontal cortex of freely moving mice by inhibiting D-aspartate oxidase activity. Sci. Rep. 7, 46288 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meyers, L. D., Hellwig, J. P. & Otten, J. J. Dietary Reference Intakes: the Essential Guide to Nutrient Requirements (National Academies Press, 2006).

  • Newsholme, P. et al. Glutamine and glutamate as vital metabolites. Braz. J. Med. Biol. 36, 153–163 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Corbet, C. & Feron, O. Metabolic and mind shifts: from glucose to glutamine and acetate addictions in cancer. Curr. Opin. Clin. Nutr. Metab. Care 18, 346–353 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuneva, M. et al. Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells. J. Cell Biol. 178, 93–105 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cruzat, V. et al. Glutamine: metabolism and immune function, supplementation and clinical translation. Nutrients 10, 1564 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiao, D. et al. The glutamine-alpha-ketoglutarate (AKG) metabolism and its nutritional implications. Amino Acids 48, 2067–2080 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoo, H. C., Yu, Y. C., Sung, Y. & Han, J. M. Glutamine reliance in cell metabolism. Exp. Mol. Med. 52, 1496–1516 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, L., Venneti, S. & Nagrath, D. Glutaminolysis: a hallmark of cancer metabolism. Annu. Rev. Biomed. Eng. 19, 163–194 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mukha, A. et al. GLS-driven glutamine catabolism contributes to prostate cancer radiosensitivity by regulating the redox state, stemness and ATG5-mediated autophagy. Theranostics 11, 7844–7868 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amaya, M. L. et al. The STAT3-MYC axis promotes survival of leukemia stem cells by regulating SLC1A5 and oxidative phosphorylation. Blood 139, 584–596 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tajan, M. et al. A role for p53 in the adaptation to glutamine starvation through the expression of SLC1A3. Cell Metab. 28, 721–736.e726 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kilberg, M. S., Shan, J. & Su, N. ATF4-dependent transcription mediates signaling of amino acid limitation. Trends Endocrinol. Metab. 20, 436–443 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, W. et al. RBMS1 regulates lung cancer ferroptosis through translational control of SLC7A11. J. Clin. Investig. 131, e152067 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Timmerman, L. A. et al. Glutamine sensitivity analysis identifies the xCT antiporter as a common triple-negative breast tumor therapeutic target. Cancer Cell 24, 450–465 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koppula, P., Zhang, Y., Zhuang, L. & Gan, B. Amino acid transporter SLC7A11/xCT at the crossroads of regulating redox homeostasis and nutrient dependency of cancer. Cancer Commun. 38, 1–13 (2018).

    Article 

    Google Scholar
     

  • Zhang, L. et al. Overexpression of SLC7A11: a novel oncogene and an indicator of unfavorable prognosis for liver carcinoma. Future Oncol. 14, 927–936 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Badgley, M. A. et al. Cysteine depletion induces pancreatic tumor ferroptosis in mice. Science 368, 85–89 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Márquez, J., Matés, J. M. & Campos-Sandoval, J. A. Glutaminases. Adv. Neurobiol. 13, 133–171 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Li, Y. et al. GOT2 silencing promotes reprogramming of glutamine metabolism and sensitizes hepatocellular carcinoma to glutaminase inhibitors. Cancer Res. 82, 3223–3235 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, L. et al. A glutaminase isoform switch drives therapeutic resistance and disease progression of prostate cancer. Proc. Natl Acad. Sci. USA 118, e2012748118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, S. et al. Targeting glutamine dependence through GLS1 inhibition suppresses ARID1A-inactivated clear cell ovarian carcinoma. Nat. Cancer 2, 189–200 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shain, A. H. & Pollack, J. R. The spectrum of SWI/SNF mutations, ubiquitous in human cancers. PLoS ONE 8, e55119 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kadoch, C. et al. Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. Nat. Genet. 45, 592–601 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Best, S. A. et al. Glutaminase inhibition impairs CD8 T cell activation in STK11-/Lkb1-deficient lung cancer. Cell Metab. 34, 874–887.e876 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, Y. et al. 5-Fluorouracil enhances the antitumor activity of the glutaminase inhibitor CB-839 against PIK3CA-mutant colorectal cancers. Cancer Res. 80, 4815–4827 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, C. H. et al. Telaglenastat plus everolimus in advanced renal cell carcinoma: a randomized, double-blinded, placebo-controlled, phase II ENTRATA trial. Clin. Cancer Res. 28, 3248–3255 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meric-Bernstam, F. et al. Telaglenastat plus cabozantinib or everolimus for advanced or metastatic renal cell carcinoma: an open-label phase I trial. Clin. Cancer Res. 28, 1540–1548 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dong, S. et al. Efficacy of glutamine in treating severe acute pancreatitis: a systematic review and meta-analysis. Front. Nutr. 9, 865102 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yong, L., Lu, Q. P., Liu, S. H. & Fan, H. Efficacy of glutamine-enriched nutrition support for patients with severe acute pancreatitis: a meta-analysis. J. Parenter. Enter. Nutr. 40, 83–94 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, X. et al. Glutamine supported early enteral therapy for severe acute pancreatitis: a systematic review and meta-analysis. Asia Pac. J. Clin. Nutr. 29, 253–261 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Asrani, V. et al. Glutamine supplementation in acute pancreatitis: a meta-analysis of randomized controlled trials. Pancreatology 13, 468–474 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rastgoo, S. et al. Glutamine supplementation enhances the effects of a low FODMAP diet in irritable bowel syndrome management. Front. Nutr. 8, 746703 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arribas-López, E. et al. The effect of amino acids on wound healing: a systematic review and meta-analysis on arginine and glutamine. Nutrients 13, 2498 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heyland, D. K. et al. A randomized trial of enteral glutamine for treatment of burn injuries. N. Engl. J. Med. 387, 1001–1010 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dollet, L. et al. Glutamine regulates skeletal muscle immunometabolism in type 2 diabetes. Diabetes 71, 624–636 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Songbo, M. et al. Oxidative stress injury in doxorubicin-induced cardiotoxicity. Toxicol. Lett. 307, 41–48 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Todorova, V. K., Kaufmann, Y., Hennings, L. & Klimberg, V. S. Oral glutamine protects against acute doxorubicin-induced cardiotoxicity of tumor-bearing rats. J. Nutr. 140, 44–48 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, J. et al. Beneficial effects of Oridonin on myocardial ischemia/reperfusion injury: insight gained by metabolomic approaches. Eur. J. Pharmacol. 861, 172587 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Einstein, F. H. et al. Enhanced activation of a “nutrient-sensing” pathway with age contributes to insulin resistance. FASEB J. 22, 3450–3457 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Petrus, P. et al. Glutamine links obesity to inflammation in human white adipose tissue. Cell Metab. 31, 375–390.e311 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Q., Taegtmeyer, H. & Wang, Z. V. Diverging consequences of hexosamine biosynthesis in cardiovascular disease. J. Mol. Cell Cardiol. 153, 104–105 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Doglioni, C. et al. Covid-19 interstitial pneumonia: histological and immunohistochemical features on cryobiopsies. Respiration 100, 488–498 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Páez-Franco, J. C. et al. Metabolomics analysis reveals a modified amino acid metabolism that correlates with altered oxygen homeostasis in COVID-19 patients. Sci. Rep. 11, 1–12 (2021).

    Article 

    Google Scholar
     

  • Obayan, A. Overview of the rationale for L-glutamine treatment in moderate-severe COVID-19 infection. J. Infect. Dis. Epidemiol. 7, 23937 (2021). 10.


    Google Scholar
     

  • Cengiz, M. et al. Effect of oral l-Glutamine supplementation on Covid-19 treatment. Clin. Nutr. Exp. 33, 24–31 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mohajeri, M., Horriatkhah, E. & Mohajery, R. The effect of glutamine supplementation on serum levels of some inflammatory factors, oxidative stress, and appetite in COVID-19 patients: a case–control study. Inflammopharmacology 29, 1769–1776 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luiking, Y. C., Ten Have, G. A., Wolfe, R. R. & Deutz, N. E. Arginine de novo and nitric oxide production in disease states. Am. J. Physiol. Endocrinol. Metab. 303, E1177–1189 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morris, S. M. Jr. Enzymes of arginine metabolism. J. Nutr. 134, 2743S–2747S, discussion 2765S-2767S (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Frezza, C. & Mauro, C. Editorial: The metabolic challenges of immune cells in health and disease. Front. Immunol. 6, 293 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stechmiller, J. K., Childress, B. & Cowan, L. Arginine supplementation and wound healing. Nutr. Clin. Pract. 20, 52–61 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Witte, M. B. & Barbul, A. Arginine physiology and its implication for wound healing. Wound Repair Regen. 11, 419–423 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Blanc, R. S. & Richard, S. Arginine methylation: the coming of age. Mol. Cell. 65, 8–24 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McBride, A. E. & Silver, P. A. State of the arg: protein methylation at arginine comes of age. Cell 106, 5–8 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bedford, M. T. & Clarke, S. G. Protein arginine methylation in mammals: who, what, and why. Mol. Cell 33, 1–13 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Husson, A. et al. Argininosuccinate synthetase from the urea cycle to the citrulline-NO cycle. Eur. J. Biochem. 270, 1887–1899 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hajji, N. et al. Arginine deprivation alters microglial polarity and synergizes with radiation to eradicate non-arginine-auxotrophic glioblastoma tumors. J. Clin. Investig. 132, e142137 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fiedler, T. et al. Arginine deprivation by arginine deiminase of Streptococcus pyogenes controls primary glioblastoma growth in vitro and in vivo. Cancer Biol. Ther. 16, 1047–1055 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thongkum, A. et al. The combination of arginine deprivation and 5-fluorouracil improves therapeutic efficacy in argininosuccinate synthetase negative hepatocellular carcinoma. Int. J. Mol. Sci. 18, 1175 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Missiaen, R. et al. GCN2 inhibition sensitizes arginine-deprived hepatocellular carcinoma cells to senolytic treatment. Cell Metab. 34, 1151–1167.e1157 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, R. H. et al. Arginine deiminase as a novel therapy for prostate cancer induces autophagy and caspase-independent apoptosis. Cancer Res. 69, 700–708 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bowles, T. L. et al. Pancreatic cancer cell lines deficient in argininosuccinate synthetase are sensitive to arginine deprivation by arginine deiminase. Int. J. Cancer 123, 1950–1955 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Di Costanzo, L. et al. Expression, purification, assay, and crystal structure of perdeuterated human arginase I. Arch. Biochem. Biophys. 465, 82–89 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morris, S. M. Jr. Regulation of enzymes of the urea cycle and arginine metabolism. Annu. Rev. Nutr. 22, 87–105 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hackett, C. S. et al. Expression quantitative trait loci and receptor pharmacology implicate Arg1 and the GABA-A receptor as therapeutic targets in neuroblastoma. Cell Rep. 9, 1034–1046 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mao, F.-y et al. CD45+ CD33lowCD11bdim myeloid-derived suppressor cells suppress CD8 + T cell activity via the IL-6/IL-8-arginase I axis in human gastric cancer. Cell Death Dis. 9, 763 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Su, X. et al. Breast cancer-derived GM-CSF regulates arginase 1 in myeloid cells to promote an immunosuppressive microenvironment. J. Clin. Invest. 131, 131 (2021).

    Article 

    Google Scholar
     

  • Sousa, M. S., Latini, F. R., Monteiro, H. P. & Cerutti, J. M. Arginase 2 and nitric oxide synthase: Pathways associated with the pathogenesis of thyroid tumors. Free Radic. Biol. Med. 49, 997–1007 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vasquez-Dunddel, D. et al. STAT3 regulates arginase-I in myeloid-derived suppressor cells from cancer patients. J. Clin. Invest. 123, 1580–1589 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, Y. et al. Arginase‐II promotes melanoma migration and adhesion through enhancing hydrogen peroxide production and STAT3 signaling. J. Cell. Physiol. 235, 9997–10011 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Steggerda, S. M. et al. Inhibition of arginase by CB-1158 blocks myeloid cell-mediated immune suppression in the tumor microenvironment. J. Immunother. Cancer 5, 1–18 (2017).

    Article 

    Google Scholar
     

  • Chiou, Y. S. et al. Piceatannol prevents colon cancer progression via dual-targeting to M2-polarized tumor-associated macrophages and the TGF-beta1 positive feedback signaling pathway. Mol. Nutr. Food Res. 66, e2200248 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Chiang, K. et al. PRMT5 is a critical regulator of breast cancer stem cell function via histone methylation and FOXP1 expression. Cell Rep. 21, 3498–3513 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin, Y. et al. Targeting methyltransferase PRMT5 eliminates leukemia stem cells in chronic myelogenous leukemia. J. Clin. Invest. 126, 3961–3980 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bao, X. et al. CSNK1a1 regulates PRMT1 to maintain the progenitor state in self-renewing somatic tissue. Dev. Cell 43, 227–239.e225 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, S. H. et al. A feedback loop comprising PRMT7 and miR-24-2 interplays with Oct4, Nanog, Klf4 and c-Myc to regulate stemness. Nucleic Acids Res. 44, 10603–10618 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, T. Y., Lee, S. H., Dhar, S. S. & Lee, M. G. Protein arginine methyltransferase 7-mediated microRNA-221 repression maintains Oct4, Nanog, and Sox2 levels in mouse embryonic stem cells. J. Biol. Chem. 293, 3925–3936 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jeong, H. C. et al. PRMT8 controls the pluripotency and mesodermal fate of human embryonic stem cells by enhancing the PI3K/AKT/SOX2 axis. Stem Cells 35, 2037–2049 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, L. et al. Arginine and lysine methylation of MRPS23 promotes breast cancer metastasis through regulating OXPHOS. Oncogene 40, 3548–3563 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, Q. et al. PRMT inhibition induces a viral mimicry response in triple-negative breast cancer. Nat. Chem. Biol. 18, 821–830 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong, F. et al. PRMT2 links histone H3R8 asymmetric dimethylation to oncogenic activation and tumorigenesis of glioblastoma. Nat. Commun. 9, 4552 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han, X. et al. Expression of PRMT5 correlates with malignant grade in gliomas and plays a pivotal role in tumor growth in vitro. J. Neurooncol. 118, 61–72 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Banasavadi-Siddegowda, Y. K. et al. PRMT5-PTEN molecular pathway regulates senescence and self-renewal of primary glioblastoma neurosphere cells. Oncogene 36, 263–274 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, T. et al. PRMT6 methylation of RCC1 regulates mitosis, tumorigenicity, and radiation response of glioblastoma stem cells. Mol. Cell. 81, 1276–1291.e1279 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, C. et al. Loss of PRMT7 reprograms glycine metabolism to selectively eradicate leukemia stem cells in CML. Cell Metab. 34, 818–835.e817 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Durante, W., Johnson, F. K. & Johnson, R. A. Arginase: a critical regulator of nitric oxide synthesis and vascular function. Clin. Exp. Pharmacol. Physiol. 34, 906–911 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harada, D. et al. Oral administration of l-ornithine increases the content of both collagen constituting amino acids and polyamines in mouse skin. Biochem. Biophys. Res. Commun. 512, 712–715 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, S. et al. Osteocalcin induces proliferation via positive activation of the PI3K/Akt, P38 MAPK pathways and promotes differentiation through activation of the GPRC6A-ERK1/2 pathway in C2C12 myoblast cells. Cell. Physiol. Biochem. 43, 1100–1112 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Davids, M. & Teerlink, T. Plasma concentrations of arginine and asymmetric dimethylarginine do not reflect their intracellular concentrations in peripheral blood mononuclear cells. Metabolism 62, 1455–1461 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bronte, V. et al. L-arginine metabolism in myeloid cells controls T-lymphocyte functions. Trends Immunol. 24, 302–306 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Randell, J. C. et al. Effects of substitutions of arginine residues on the basic surface of herpes simplex virus UL42 support a role for DNA binding in processive DNA synthesis. J. Virol. 79, 12025–12034 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coburn, L. A. et al. L-arginine supplementation improves responses to injury and inflammation in dextran sulfate sodium colitis. PLoS ONE 7, e33546 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi, H. P. et al. Supplemental L-arginine enhances wound healing following trauma/hemorrhagic shock. Wound Repair Regen. 15, 66–70 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Witte, M. B., Thornton, F. J., Tantry, U. & Barbul, A. L-Arginine supplementation enhances diabetic wound healing: involvement of the nitric oxide synthase and arginase pathways. Metabolism 51, 1269–1273 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chapman, B. R., Mills, K. J., Pearce, L. M. & Crowe, T. C. Use of an arginine‐enriched oral nutrition supplement in the healing of pressure ulcers in patients with spinal cord injuries: an observational study. Nutr. Diet. 68, 208–213 (2011).

    Article 

    Google Scholar
     

  • Zhu, R. et al. Arginine reduces glycation in gamma(2) subunit of AMPK and pathologies in Alzheimer’s disease model mice. Cells 11, 3520 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Degrush, E. et al. Cumulative effect of simvastatin, L-arginine, and tetrahydrobiopterin on cerebral blood flow and cognitive function in Alzheimer’s disease. Alzheimers Res. Ther. 14, 134 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clemons, G. A. et al. Protein arginine methyltransferase 4 modulates nitric oxide synthase uncoupling and cerebral blood flow in Alzheimer’s disease. J. Cell Physiol. https://doi.org/10.1002/jcp.30858. (2022) Epub ahead of print.

  • Cottrill, K. A. et al. Exacerbation-prone pediatric asthma is associated with arginine, lysine, and methionine pathway alterations. J. Allergy Clin. Immunol. 151, 118–127.e110 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Althoff, M. D. et al. Differences in L-arginine metabolism and asthma morbidity among asthma patients with and without obstructive sleep apnea. Respir. Res. 23, 1–8 (2022).

    Article 

    Google Scholar
     

  • Liao, S. Y. et al. l-Arginine supplementation in severe asthma. JCI Insight 5, e137777 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zimmermann, N. et al. Dissection of experimental asthma with DNA microarray analysis identifies arginase in asthma pathogenesis. J. Clin. Invest. 111, 1863–1874 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Holguin, F. et al. L-Citrulline increases nitric oxide and improves control in obese asthmatics. JCI Insight 4, e131733 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gunes Gunsel, G. et al. The arginine methyltransferase PRMT7 promotes extravasation of monocytes resulting in tissue injury in COPD. Nat. Commun. 13, 1303 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahn, B.-Y. et al. PRMT7 ablation in cardiomyocytes causes cardiac hypertrophy and fibrosis through β-catenin dysregulation. Cell. Mol. Life Sci. 79, 99 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pyun, J. H. et al. Inducible Prmt1 ablation in adult vascular smooth muscle leads to contractile dysfunction and aortic dissection. Exp. Mol. Med. 53, 1569–1579 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y. et al. PRMT4 inhibitor TP-064 impacts both inflammatory and metabolic processes without changing the susceptibility for early atherosclerotic lesions in male apolipoprotein E knockout mice. Atherosclerosis 338, 23–29 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, Q. et al. PRMT1 upregulated by epithelial proinflammatory cytokines participates in COX2 expression in fibroblasts and chronic antigen-induced pulmonary inflammation. J. Immunol. 195, 298–306 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eram, M. S. et al. A potent, selective, and cell-active inhibitor of human type I protein arginine methyltransferases. ACS Chem. Biol. 11, 772–781 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ferla, M. P. & Patrick, W. M. Bacterial methionine biosynthesis. Microbiology 160, 1571–1584 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aitken, S. M., Lodha, P. H. & Morneau, D. J. The enzymes of the transsulfuration pathways: active-site characterizations. Biochim. Biophys. Acta 1814, 1511–1517 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Auger, S., Yuen, W., Danchin, A. & Martin-Verstraete, I. The metIC operon involved in methionine biosynthesis in Bacillus subtilis is controlled by transcription antitermination. Microbiology 148, 507–518 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seiflein, T. A. & Lawrence, J. G. Two transsulfurylation pathways in Klebsiella pneumoniae. J. Bacteriol. 188, 5762–5774 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pinnen, F. et al. Codrugs linking L-dopa and sulfur-containing antioxidants: new pharmacological tools against Parkinson’s disease. J. Med. Chem. 52, 559–563 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fernandes, H. et al. Amino acid deprivation using enzymes as a targeted therapy for cancer and viral infections. Expert Opin. Ther. Pat. 27, 283–297 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sanderson, S. M., Gao, X., Dai, Z. & Locasale, J. W. Methionine metabolism in health and cancer: a nexus of diet and precision medicine. Nat. Rev. Cancer 19, 625–637 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Z. et al. Methionine is a metabolic dependency of tumor-initiating cells. Nat. Med. 25, 825–837 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mavrakis, K. J. et al. Disordered methionine metabolism in MTAP/CDKN2A-deleted cancers leads to dependence on PRMT5. Science 351, 1208–1213 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marjon, K. et al. MTAP deletions in cancer create vulnerability to targeting of the MAT2A/PRMT5/RIOK1 axis. Cell Rep. 15, 574–587 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, J. T. et al. Dietary folate drives methionine metabolism to promote cancer development by stabilizing MAT IIA. Signal Transduct. Target Ther. 7, 192 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kalev, P. et al. MAT2A inhibition blocks the growth of MTAP-deleted cancer cells by reducing PRMT5-dependent mRNA splicing and inducing DNA damage. Cancer Cell 39, 209–224.e211 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sachamitr, P. et al. PRMT5 inhibition disrupts splicing and stemness in glioblastoma. Nat. Commun. 12, 979 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sugimura, T., Birnbaum, S. M., Winitz, M. & Greenstein, J. P. Quantitative nutritional studies with water-soluble, chemically defined diets. VII. Nitrogen balance in normal and tumor-bearing rats following forced feeding. Arch. Biochem. Biophys. 81, 439–447 (1959).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, T. et al. Methionine deficiency facilitates antitumour immunity by altering m(6)A methylation of immune checkpoint transcripts. Gut 72, 501–511 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cunningham, A. et al. Dietary methionine starvation impairs acute myeloid leukemia progression. Blood 140, 2037–2052 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bian, Y. et al. Cancer SLC43A2 alters T cell methionine metabolism and histone methylation. Nature 585, 277–282 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, Q. et al. HNF4alpha regulates sulfur amino acid metabolism and confers sensitivity to methionine restriction in liver cancer. Nat. Commun. 11, 3978 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alshawsh, M. A. et al. A comparison of the gene expression profiles of non-alcoholic fatty liver disease between animal models of a high-fat diet and methionine-choline-deficient diet. Molecules 27, 858 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar, A. et al. High levels of dietary methionine improves sitagliptin-induced hepatotoxicity by attenuating oxidative stress in hypercholesterolemic rats. Nutr. Metab. 17, 2 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lu, S. C. & Mato, J. M. S-adenosylmethionine in liver health, injury, and cancer. Physiol. Rev. 92, 1515–1542 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Watson, W. H., Burke, T. J., Doll, M. A. & McClain, C. J. S‐Adenosylhomocysteine inhibits NF‐κ B‐mediated gene expression in hepatocytes and confers sensitivity to TNF cytotoxicity. Alcohol. Clin. Exp. Res. 38, 889–896 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ganesan, M. et al. Creatine supplementation does not prevent the development of alcoholic steatosis. Alcohol. Clin. Exp. Res. 40, 2312–2319 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Halsted, C. H. B-Vitamin dependent methionine metabolism and alcoholic liver disease. Clin. Chem. Lab. Med. 51, 457–465 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Anstee, Q. M. & Day, C. P. S-adenosylmethionine (SAMe) therapy in liver disease: a review of current evidence and clinical utility. J. Hepatol. 57, 1097–1109 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • King, A. L. et al. The methyl donor S-adenosylmethionine prevents liver hypoxia and dysregulation of mitochondrial bioenergetic function in a rat model of alcohol-induced fatty liver disease. Redox Biol. 9, 188–197 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, W. et al. Betaine attenuates chronic alcohol‑induced fatty liver by broadly regulating hepatic lipid metabolism. Mol. Med. Rep. 16, 5225–5234 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murray, B. et al. Methionine adenosyltransferase α1 is targeted to the mitochondrial matrix and interacts with cytochrome P450 2E1 to lower its expression. Hepatology 70, 2018–2034 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barbier-Torres, L. et al. Depletion of mitochondrial methionine adenosyltransferase α1 triggers mitochondrial dysfunction in alcohol-associated liver disease. Nat. Commun. 13, 557 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ramalingam, H. et al. A methionine-Mettl3-N6-methyladenosine axis promotes polycystic kidney disease. Cell Metab. 33, 1234–1247.e1237 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cooke, D., Ouattara, A. & Ables, G. P. Dietary methionine restriction modulates renal response and attenuates kidney injury in mice. FASEB J. 32, 693–702 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lamichhane, S. et al. Circulating metabolites in progression to islet autoimmunity and type 1 diabetes. Diabetologia 62, 2287–2297 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng, X. et al. Hydrogen sulfide from adipose tissue is a novel insulin resistance regulator. Biochem. Biophys. Res. Commun. 380, 153–159 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wanders, D. et al. Transcriptional impact of dietary methionine restriction on systemic inflammation: relevance to biomarkers of metabolic disease during aging. BioFactors 40, 13–26 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weichselbaum, R. R., Liang, H., Deng, L. & Fu, Y.-X. Radiotherapy and immunotherapy: a beneficial liaison? Nat. Rev. Clin. Oncol. 14, 365–379 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zou, W., Wolchok, J. D. & Chen, L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers, and combinations. Sci. Transl. Med. 8, 328rv324–328rv324 (2016).

    Article 

    Google Scholar
     

  • Ma, N. et al. Nutrients mediate intestinal bacteria–mucosal immune crosstalk. Front. Immunol. 9, 5 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng, Y. et al. Anergic T cells are metabolically anergic. J. Immunol. 183, 6095–6101 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hidayat, S. et al. Inhibition of amino acid-mTOR signaling by a leucine derivative induces G1 arrest in Jurkat cells. Biochem. Biophys. Res. Commun. 301, 417–423 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yao, C.-c et al. Accumulation of branched-chain amino acids reprograms glucose metabolism in CD8 + T cells with enhanced effector function and anti-tumor response. Cell Rep. 42, 112186 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Z. et al. Leucine-tRNA-synthase-2-expressing B cells contribute to colorectal cancer immunoevasion. Immunity 55, 1067–1081.e1068 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ikeda, K. et al. Slc3a2 mediates branched-chain amino-acid-dependent maintenance of regulatory T cells. Cell Rep. 21, 1824–1838 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Y. et al. SLC7A5 is a lung adenocarcinoma-specific prognostic biomarker and participates in forming immunosuppressive tumor microenvironment. Heliyon 8, e10866 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, Q. et al. Bioinformatics prediction and in vivo verification identify SLC7A5 as immune infiltration related biomarker in breast cancer. Cancer Manag. Res. 14, 2545–2559 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eckerle, S. et al. Gene expression profiling of isolated tumour cells from anaplastic large cell lymphomas: insights into its cellular origin, pathogenesis and relation to Hodgkin lymphoma. Leukemia 23, 2129–2138 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yi, L. et al. Enrichment of branched chain amino acid transaminase 1 correlates with multiple biological processes and contributes to poor survival of IDH1 wild-type gliomas. Aging 13, 3645 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Silva, L. S. et al. Branched-chain ketoacids secreted by glioblastoma cells via MCT1 modulate macrophage phenotype. EMBO Rep. 18, 2172–2185 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mo, B.-Y. et al. The underlying molecular mechanism and identification of transcription factor markers for laryngeal squamous cell carcinoma. Bioengineered 12, 208–224 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, H. et al. Aspartate metabolism facilitates IL-1β production in inflammatory macrophages. Front. Immunol. 12, 753092 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jha, A. K. et al. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 42, 419–430 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bailis, W. et al. Distinct modes of mitochondrial metabolism uncouple T cell differentiation and function. Nature 571, 403–407 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Newsholme, P. Why is L-glutamine metabolism important to cells of the immune system in health, postinjury, surgery or infection? J. Nutr. 131, 2515S–2522S (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Curi, R. et al. Glutamine‐dependent changes in gene expression and protein activity. Cell Biochem. Funct. 23, 77–84 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roth, E. et al. Regulative potential of glutamine—relation to glutathione metabolism. Nutrition 18, 217–221 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hiscock, N. et al. Glutamine supplementation further enhances exercise-induced plasma IL-6. J. Appl. Physiol. 95, 145–148 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Edwards, D. N. et al. Selective glutamine metabolism inhibition in tumor cells improves antitumor T lymphocyte activity in triple-negative breast cancer. J. Clin. Investig. 131, e140100 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fu, Q. et al. Tumor-associated macrophage-derived interleukin-23 interlinks kidney cancer glutamine addiction with immune evasion. Eur. Urol. 75, 752–763 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, W.-H. et al. Enhancing the efficacy of glutamine metabolism inhibitors in cancer therapy. Trends Cancer 7, 790–804 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johnson, M. O. et al. Distinct regulation of Th17 and Th1 cell differentiation by glutaminase-dependent metabolism. Cell 175, 1780–1795.e1719 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rais, R. et al. Discovery of 6-diazo-5-oxo-l-norleucine (DON) prodrugs with enhanced CSF delivery in monkeys: a potential treatment for glioblastoma. J. Med. Chem. 59, 8621–8633 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leone, R. D. et al. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science 366, 1013–1021 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oh, M.-H. et al. Targeting glutamine metabolism enhances tumor-specific immunity by modulating suppressive myeloid cells. J. Clin. Investig. 130, 3865–3884 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Byun, J.-K. et al. Inhibition of glutamine utilization synergizes with immune checkpoint inhibitor to promote antitumor immunity. Mol. Cell 80, 592–606.e598 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Q. et al. Inhibitor of glutamine metabolism V9302 promotes ROS-induced autophagic degradation of B7H3 to enhance antitumor immunity. J. Biol. Chem. 298, 101753 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Osunkoya, B., Adler, W. & Smith, R. Effect of arginine deficiency on synthesis of DNA and immunoglobulin receptor of Burkitt lymphoma cells. Nature 227, 398–399 (1970).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Daly, J. M. et al. Immune and metabolic effects of arginine in the surgical patient. Ann. Surg. 208, 512 (1988).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bower, R. H. et al. Early enteral administration of a formula (Impact) supplemented with arginine, nucleotides, and fish oil in intensive care unit patients: results of a multicenter, prospective, randomized, clinical trial. Crit. Care Med. 23, 436–449 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Powell-Tuck, J. Nutritional interventions in critical illness. Proc. Nutr. Soc. 66, 16–24 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • De Waele, E., Malbrain, M. L. & Spapen, H. Nutrition in sepsis: a bench-to-bedside review. Nutrients 12, 395 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weissman, A. M. et al. Tyrosine phosphorylation of the human T cell antigen receptor zeta-chain: activation via CD3 but not CD2. J. Immunol. 141, 3532–3536 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rodriguez, P. C. et al. Regulation of T cell receptor CD3zeta chain expression by L-arginine. J. Biol. Chem. 277, 21123–21129 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Minami, Y., Weissman, A. M., Samelson, L. E. & Klausner, R. D. Building a multichain receptor: synthesis, degradation, and assembly of the T-cell antigen receptor. Proc. Natl Acad. Sci. USA 84, 2688–2692 (1987).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bansal, V. et al. Citrulline can preserve proliferation and prevent the loss of CD3 ζ chain under conditions of low arginine. J. Parenter. Enter. Nutr. 28, 423–430 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Fletcher, M. et al. l-Arginine depletion blunts antitumor T-cell responses by inducing myeloid-derived suppressor cellssuppression of T-cell responses by L-arginine depletion. Cancer Res. 75, 275–283 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, P. et al. Amino acids and immune function. Br. J. Nutr. 98, 237–252 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martí, I. et al. Mitochondrial arginase-2 is a cell‑autonomous regulator of CD8 + T cell function and antitumor efficacy. JCI insight 4, e132975 (2019).

    Article 

    Google Scholar
     

  • Lowe, M. M. et al. Regulatory T cells use arginase 2 to enhance their metabolic fitness in tissues. JCI insight 4, e129756 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aaboe Jørgensen, M. et al. Arginase 1–based immune modulatory vaccines induce anticancer immunity and synergize with Anti–PD-1 checkpoint blockadeARG1 vaccines induce antitumor immunity in combo with anti–PD-1. Cancer Tmmunol. Res. 9, 1316–1326 (2021).

    Article 

    Google Scholar
     

  • Fedoriw, A. et al. Inhibiting type I arginine methyltransferase activity promotes T cell–mediated antitumor immune responses. Cancer Immunol. Res. 10, 420–436 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng, N.-N. et al. Combining protein arginine methyltransferase inhibitor and anti-programmed death-ligand-1 inhibits pancreatic cancer progression. World J. Gastroenterol. 26, 3737 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fu, L. et al. A mitochondrial STAT3-methionine metabolism axis promotes ILC2-driven allergic lung inflammation. J. Allergy Clin. Immunol. 149, 2091–2104 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo, R. et al. Methionine metabolism controls the b cell ebv epigenome and viral latency. Cell Metab. 34, 1280–1297.e1289 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saini, N. et al. Methionine uptake via the SLC43A2 transporter is essential for regulatory T-cell survival. Life Sci. Alliance 5, e202201663 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hung, M. H. et al. Tumor methionine metabolism drives T-cell exhaustion in hepatocellular carcinoma. Nat. Commun. 12, 1455 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y. et al. Activation of MAT2A-RIP1 signaling axis reprograms monocytes in gastric cancer. J. Immunother. Cancer 9, e001364 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Daou, N. et al. A novel, multitargeted endogenous metabolic modulator composition impacts metabolism, inflammation, and fibrosis in nonalcoholic steatohepatitis-relevant primary human cell models. Sci. Rep. 11, 11861 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chakravarthy, M. et al. Mechanistic insights into the multimodal effects of AXA1125 in T2D subjects with NAFLD. Hepatology 70, 1264A–1264A (2019).


    Google Scholar
     

  • Harrison, S. A. et al. Safety, tolerability, and biologic activity of AXA1125 and AXA1957 in subjects with nonalcoholic fatty liver disease. Am. J. Gastroenterol. 116, 2399 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, Z. et al. BCATc inhibitor 2 ameliorated mitochondrial dysfunction and apoptosis in oleic acid-induced non-alcoholic fatty liver disease model. Front. Pharmacol. 13, 1025551 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vanweert, F. et al. A randomized placebo-controlled clinical trial for pharmacological activation of BCAA catabolism in patients with type 2 diabetes. Nat. Commun. 13, 3508 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Okano, N. et al. First-in-human phase I study of JPH203, an L-type amino acid transporter 1 inhibitor, in patients with advanced solid tumors. Invest. N. Drugs 38, 1495–1506 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Romeike, B. F. et al. Action and efficacy of p-[131I] iodo-L-phenylalanine on primary human glioma cell cultures and rats with C6-gliomas. Anticancer Res. 24, 3971–3976 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Filss, C. P. et al. Flare phenomenon in O-(2-18F-fluoroethyl)-l-tyrosine PET after resection of gliomas. J. Nucl. Med. 61, 1294–1299 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rosenzweig, A., Blenis, J. & Gomes, A. P. Beyond the Warburg effect: how do cancer cells regulate one-carbon metabolism? Front. Cell Dev. Biol. 6, 90 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hayashi, R. J. et al. Successful outcomes of newly diagnosed T lymphoblastic lymphoma: results from Children’s Oncology Group AALL0434. J. Clin. Oncol. 38, 3062 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, T. et al. A randomized phase I study to evaluate the safety, tolerability, and pharmacokinetics of recombinant Erwinia asparaginase (JZP‐458) in healthy adult volunteers. J. Clin. Transl. Sci. 14, 870–879 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Maese, L. et al. Recombinant Erwinia asparaginase (JZP458) in acute lymphoblastic leukemia: results from the phase 2/3 AALL1931 study. Blood 141, 704–712 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yau, T. et al. A phase 1 study of pegylated recombinant arginase (PEG-BCT-100) in combination with systemic chemotherapy (capecitabine and oxaliplatin)[PACOX] in advanced hepatocellular carcinoma patients. Invest. N. Drugs 40, 314–321 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Lorentzen, C. L. et al. Arginase-1 targeting peptide vaccine in patients with metastatic solid tumors–A phase I trial. Front. Immunol. 13, 1023023 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chang, K.-Y. et al. Phase 1b study of pegylated arginine deiminase (ADI-PEG 20) plus Pembrolizumab in advanced solid cancers. Oncoimmunology 10, 1943253 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hall, P. E. et al. A Phase I Study of Pegylated Arginine Deiminase (Pegargiminase), Cisplatin, and Pemetrexed in Argininosuccinate Synthetase 1-Deficient Recurrent High-grade GliomaArginine Deprivation Therapy in Recurrent High-grade Gliomas. Clin. Cancer Res. 25, 2708–2716 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jensen-Pergakes, K. et al. SAM-competitive PRMT5 inhibitor PF-06939999 demonstrates antitumor activity in splicing dysregulated NSCLC with decreased liability of drug resistance discovery of SAM-competitive PRMT5 inhibitor PF-06939999. Mol. Cancer Ther. 21, 3–15 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fedoriw, A. et al. Anti-tumor activity of the type I PRMT inhibitor, GSK3368715, synergizes with PRMT5 inhibition through MTAP loss. Cancer Cell 36, 100–114.e125 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pore, N. et al. Discovery and development of MEDI7247, a novel pyrrolobenzodiazepine (PBD)-based antibody drug conjugate targeting ASCT2, for treating hematological cancers. Blood 132, 4071 (2018).

    Article 

    Google Scholar
     

  • Atkinson, S. J., Evans, L. & Scott, J. S. A patent review of MAT2a inhibitors (2018–2021). Expert Opin. Ther. Pat. 32, 1043–1053 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Konteatis, Z. et al. Discovery of AG-270, a first-in-class oral MAT2A inhibitor for the treatment of tumors with homozygous MTAP deletion. J. Med. Chem. 64, 4430–4449 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huckaba, C. E. & Keyes, F. G. The accuracy of estimation of hydrogen peroxide by potassium permanganate titration. J. Am. Chem. Soc. 70, 1640–1644 (1948).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Folkman, J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat. Med. 1, 27–30 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Towbin, H. et al. Proteomics-based target identification: bengamides as a new class of methionine aminopeptidase inhibitors. J. Biol. Chem. 278, 52964–52971 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dumez, H. et al. A phase I and pharmacokinetic study of LAF389 administered to patients with advanced cancer. Anti-Cancer Drugs 18, 219–225 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, J. et al. Tumor suppression by a rationally designed reversible inhibitor of methionine aminopeptidase-2. Cancer Res. 63, 7861–7869 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Morowitz, M. J. et al. Methionine aminopeptidase 2 inhibition is an effective treatment strategy for neuroblastoma in preclinical models. Clin. Cancer Res. 11, 2680–2685 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sheppard, G. S. et al. Discovery and optimization of anthranilic acid sulfonamides as inhibitors of methionine aminopeptidase-2: a structural basis for the reduction of albumin binding. J. Med. Chem. 49, 3832–3849 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kawai, M. et al. Development of sulfonamide compounds as potent methionine aminopeptidase type II inhibitors with antiproliferative properties. Bioorg. Med. Chem. Lett. 16, 3574–3577 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tucker, L. et al. Ectopic expression of methionine aminopeptidase-2 causes cell transformation and stimulates proliferation. Oncogene 27, 3967–3976 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tabe, Y., Lorenzi, P. L. & Konopleva, M. Amino acid metabolism in hematologic malignancies and the era of targeted therapy. Blood 134, 1014–1023 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hillier, J. et al. The BCAT1 CXXC motif provides protection against ROS in acute myeloid leukaemia cells. Antioxidants 11, 683 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hattori, A. et al. Cancer progression by reprogrammed BCAA metabolism in myeloid leukaemia. Nature 545, 500–504 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brunetti-Pierri, N. et al. Phenylbutyrate therapy for maple syrup urine disease. Hum. Mol. Genet. 20, 631–640 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, W. et al. Stromal control of cystine metabolism promotes cancer cell survival in chronic lymphocytic leukaemia. Nat. Cell Biol. 14, 276–286 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ehsanipour, E. A. et al. Adipocytes cause leukemia cell resistance to L-asparaginase via release of glutamine. Cancer Res. 73, 2998–3006 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bertero, T. et al. Tumor-stroma mechanics coordinate amino acid availability to sustain tumor growth and malignancy. Cell Metab. 29, 124–140.e110 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schellekens, H. Immunogenicity of therapeutic proteins: clinical implications and future prospects. Clin. Ther. 24, 1720–1740 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    Stay Connected

    9FansLike
    4FollowersFollow
    0SubscribersSubscribe
    - Advertisement -spot_img

    Latest Articles

    %d bloggers like this: