Pers, Y. M., Ruiz, M., Noel, D. & Jorgensen, C. Mesenchymal stem cells for the management of inflammation in osteoarthritis: state of the art and perspectives. Osteoarthr. Cartilage 23(11), 2027–2035 (2015).
Harasymowicz, N. S., Dicks, A., Wu, C. L. & Guilak, F. Physiologic and pathologic effects of dietary free fatty acids on cells of the joint. Ann. NY Acad. Sci. 1440(1), 36–53 (2019).
Humphries, J. M., Kuliwaba, J. S., Gibson, R. J. & Fazzalari, N. L. In situ fatty acid profile of femoral cancellous subchondral bone in osteoarthritic and fragility fracture females: Implications for bone remodelling. Bone 51(2), 218–223 (2012).
Lippiello, L., Walsh, T. & Fienhold, M. The association of lipid abnormalities with tissue pathology in human osteoarthritic articular cartilage. Metabolism 40(6), 571–576 (1991).
Plumb, M. S. & Aspden, R. M. High levels of fat and (n-6) fatty acids in cancellous bone in osteoarthritis. Lipids Health Dis 3, 12 (2004).
Apostu, D. et al. Systemic drugs with impact on osteoarthritis. Drug Metab Rev 51(4), 498–523 (2019).
Bastiaansen-Jenniskens, Y. M. et al. Monounsaturated and saturated, but not n-6 polyunsaturated fatty acids decrease cartilage destruction under inflammatory conditions: A preliminary study. Cartilage 4(4), 321–328 (2013).
Hankenson, K. D., Watkins, B. A., Schoenlein, I. A., Allen, K. G. & Turek, J. J. Omega-3 fatty acids enhance ligament fibroblast collagen formation in association with changes in interleukin-6 production. Proc Soc Exp Biol Med 223(1), 88–95 (2000).
Jerosch, J., Filler, T. & Mertens, T. The spinoglenoid ligament—An anatomic study. Z Orthop Unfall 150(2), 142–148 (2012).
Griffin, T. M. et al. Diet-induced obesity differentially regulates behavioral, biomechanical, and molecular risk factors for osteoarthritis in mice. Arthritis. Res. Ther. 12(4), R130 (2010).
Kimmerling, K. A. et al. Transgenic conversion of omega-6 to omega-3 polyunsaturated fatty acids via fat-1 reduces the severity of post-traumatic osteoarthritis. Arthritis Res. Ther. 22(1), 83 (2020).
Wu, C. L. et al. Dietary fatty acid content regulates wound repair and the pathogenesis of osteoarthritis following joint injury. Ann. Rheum. Dis. 74(11), 2076–2083 (2015).
Mustonen, A. M. et al. Anterior cruciate ligament transection alters the n-3/n-6 fatty acid balance in the lapine infrapatellar fat pad. Lipids Health Dis 18(1), 67 (2019).
Mehler, S. J., May, L. R., King, C., Harris, W. S. & Shah, Z. A prospective, randomized, double blind, placebo-controlled evaluation of the effects of eicosapentaenoic acid and docosahexaenoic acid on the clinical signs and erythrocyte membrane polyunsaturated fatty acid concentrations in dogs with osteoarthritis. Prostaglandins Leukot. Essent. Fatty Acids 109, 1–7 (2016).
Moreau, M. et al. Effects of feeding a high omega-3 fatty acids diet in dogs with naturally occurring osteoarthritis. J. Anim. Physiol. Anim. Nutr. (Berl.) 97(5), 830–837 (2013).
Roush, J. K. et al. Evaluation of the effects of dietary supplementation with fish oil omega-3 fatty acids on weight bearing in dogs with osteoarthritis. J. Am. Vet. Med. Assoc. 236(1), 67–73 (2010).
Vijarnsorn, M. et al. The effectiveness of marine based fatty acid compound (PCSO-524) and firocoxib in the treatment of canine osteoarthritis. BMC Vet. Res. 15(1), 349 (2019).
Knott, L., Avery, N. C., Hollander, A. P. & Tarlton, J. F. Regulation of osteoarthritis by omega-3 (n-3) polyunsaturated fatty acids in a naturally occurring model of disease. Osteoarthritis Cartil. 19(9), 1150–1157 (2011).
Baker, K. R. et al. Association of plasma n-6 and n-3 polyunsaturated fatty acids with synovitis in the knee: the MOST study. Osteoarthritis Cartil. 20(5), 382–387 (2012).
Gruenwald, J., Petzold, E., Busch, R., Petzold, H. P. & Graubaum, H. J. Effect of glucosamine sulfate with or without omega-3 fatty acids in patients with osteoarthritis. Adv. Ther. 26(9), 858–871 (2009).
Kraemer, W. J. et al. Effect of a cetylated fatty acid topical cream on functional mobility and quality of life of patients with osteoarthritis. J. Rheumatol. 31(4), 767–774 (2004).
Genevois, J.-P., Autefage, A., Fayolle, P., Cazieux, A., & Leprieur, Y. Traitement de l’arthrose chez le chien avec un polymère d’acide gras. Le Point Vétérinaire 17(89), avril-mai (1985).
Bauge, C. et al. Anti-inflammatory effects of an injectable copolymer of fatty acids (Ara 3000 beta(R)) in joint diseases. J. Inflamm. (Lond.) 12, 17 (2015).
Schelbergen, R. F. et al. Treatment efficacy of adipose-derived stem cells in experimental osteoarthritis is driven by high synovial activation and reflected by S100A8/A9 serum levels. Osteoarthritis Cartil. 22(8), 1158–1166 (2014).
van der Kraan, P. M., Vitters, E. L., van Beuningen, H. M., van de Putte, L. B. & van den Berg, W. B. Degenerative knee joint lesions in mice after a single intra-articular collagenase injection. A new model of osteoarthritis. J. Exp. Pathol. 71(1), 19–31 (1990).
Hintz, M., Ernest, T. L. & Kondrashov, P. Use of the contralateral knee as a control in the destabilization of medial meniscus osteoarthritis rat model. Mo Med 117(5), 457–460 (2020).
Toupet, K. et al. Survival and biodistribution of xenogenic adipose mesenchymal stem cells is not affected by the degree of inflammation in arthritis. PLoS ONE 10(1), e0114962 (2015).
Das Neves Borges, P., Vincent, T. L. & Marenzana, M. Automated assessment of bone changes in cross-sectional micro-CT studies of murine experimental osteoarthritis. PLoS ONE 12(3), e0174294 (2017).
Fang, H. & Beier, F. Mouse models of osteoarthritis: modelling risk factors and assessing outcomes. Nat. Rev. Rheumatol. 10(7), 413–421 (2014).
Mohsenifar, Z. et al. Evaluation of the effects of pulsed wave LLLT on tibial diaphysis in two rat models of experimental osteoporosis, as examined by stereological and real-time PCR gene expression analyses. Lasers Med. Sci. 31(4), 721–732 (2016).
Rieger, R., Boulocher, C., Kaderli, S. & Hoc, T. Chitosan in viscosupplementation: In vivo effect on rabbit subchondral bone. BMC Musculoskelet. Disord. 18(1), 350 (2017).
Shen, Q. et al. Effect of intra-articular hyaluronan injection on inflammation and bone remodeling in the epiphyses and metaphyses of the knee in a murine model of joint injury. Am. J. Transl. Res. 11(6), 3280–3300 (2019).
Tanaka, S., Yoshida, A., Kono, S. & Ito, M. Effectiveness of monotherapy and combined therapy with calcitonin and minodronic acid hydrate, a bisphosphonate, for early treatment in patients with new vertebral fractures: An open-label, randomized, parallel-group study. J. Orthop. Sci. 22(3), 536–541 (2017).
Wang, L. et al. Abnormal subchondral bone microstructure following steroid administration is involved in the early pathogenesis of steroid-induced osteonecrosis. Osteoporos. Int. 27(1), 153–159 (2016).
Grousson, D., Moissonnier, P. & Tusseau, C. Utilisation d’un polymère d’acides gras saturés et insaturés sodés (ARA 3000 BETA) dasn le traitement symptomatique de la dysplasie de la hanche chez le chien. Prat. Méd. Cir. Anim. Comp. 25(2), 159–167 (1990).
Calder, P. C. Omega-3 fatty acids and inflammatory processes: from molecules to man. Biochem. Soc. Trans. 45(5), 1105–1115 (2017).
Fritsch, D. A. et al. A multicenter study of the effect of dietary supplementation with fish oil omega-3 fatty acids on carprofen dosage in dogs with osteoarthritis. J. Am. Vet. Med. Assoc. 236(5), 535–539 (2010).
Roush, J. K. et al. Multicenter veterinary practice assessment of the effects of omega-3 fatty acids on osteoarthritis in dogs. J. Am. Vet. Med. Assoc. 236(1), 59–66 (2010).
Loef, M. et al. The association of plasma fatty acids with hand and knee osteoarthritis: the NEO study. Osteoarthritis Cartil. 28(2), 223–230 (2020).
Drosatos-Tampakaki, Z. et al. Palmitic acid and DGAT1 deficiency enhance osteoclastogenesis, while oleic acid-induced triglyceride formation prevents it. J. Bone Miner. Res. 29(5), 1183–1195 (2014).