Thursday, June 1, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

Antimicrobial resistance gene lack in tick-borne pathogenic bacteria – Scientific Reports


  • Chala, B. & Hamde, F. Emerging and re-emerging vector-borne infectious diseases and the challenges for control: A review. Front. Public Health 9, 715759 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nolte, O. Antimicrobial resistance in the 21st century: A multifaceted challenge. Protein Peptide Lett. 21, 330–335 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Tóth, A. G. et al. Antimicrobial resistance genes in raw milk for human consumption. Sci. Rep. 10, 7464 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tóth, A. G. et al. A glimpse of antimicrobial resistance gene diversity in kefir and yoghurt. Sci. Rep. 10, 1–12 (2020).

    Article 

    Google Scholar
     

  • Tóth, A. G. et al. Mobile antimicrobial resistance genes in probiotics. Antibiotics 10, 1287 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nagy, S. Á., Tóth, A. G., Papp, M., Kaplan, S. & Solymosi, N. Antimicrobial resistance determinants in silage. Sci. Rep. 12, 1–10 (2022).

    Article 

    Google Scholar
     

  • Tóth, A. G. et al. Canine saliva as a possible source of antimicrobial resistance genes. Antibiotics 11, 1490 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tóth, A. G., Judge, M. F., Nagy, S. Á., Papp, M. & Solymosi, N. A survey on antimicrobial resistance genes of frequently used probiotic bacteria, 1901 to 2022. EuroSurveillance 28, 2200272 (2023).

    Article 

    Google Scholar
     

  • Organization, W. H., UNICEF et al. Global vector control response 2017–2030. (2017).

  • Brites-Neto, J., Duarte, K. M. R. & Martins, T. F. Tick-borne infections in human and animal population worldwide. Vet. World 8, 301 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schneider, J. G. Human ehrlichiosis: A case study. Clin. Lab. Sci. 22, 3 (2009).

    PubMed 

    Google Scholar
     

  • Billeter, S. A., Cáceres, A. G., Gonzales-Hidalgo, J., Luna-Caypo, D. & Kosoy, M. Y. Molecular detection of Bartonella species in ticks from Peru. J. Med. Entomol. 48, 1257–1260 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duan, C. et al. Complete genome sequence of rickettsia heilongjiangensis, an emerging tick-transmitted human pathogen (2011).

  • Bakken, J. S. & Dumler, J. S. Human granulocytic anaplasmosis. Infect. Dis. Clin. 29, 341–355 (2015).

    Article 

    Google Scholar
     

  • Bush, L. M. & Vazquez-Pertejo, M. T. Tick borne illness-lyme disease. Dis. Month 64, 195–212 (2018).

    Article 

    Google Scholar
     

  • Koka, H., Sang, R., Kutima, H. L. & Musila, L. Coxiella burnetii detected in tick samples from pastoral communities in kenya. BioMed Res. Int. 2018 (2018).

  • Yeni, D. K., Büyük, F., Ashraf, A. & Shah, M. Tularemia: A re-emerging tick-borne infectious disease. Folia Microbiologica 66, 1–14 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • De Coster, W., D’hert, S., Schultz, D. T., Cruts, M. & Van Broeckhoven, C. Nanopack: Visualizing and processing long-read sequencing data. Bioinformatics 34, 2666–2669 (2018).

  • Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P. A. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 37, 540–546 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vaser, R., Sović, I., Nagarajan, N. & Šikić, M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 27, 737–746 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zimin, A. V. et al. Hybrid assembly of the large and highly repetitive genome of aegilops tauschii, a progenitor of bread wheat, with the masurca mega-reads algorithm. Genome Res. 27, 787–792 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hyatt, D. et al. Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 11, 119 (2010).

    Article 

    Google Scholar
     

  • McArthur, A. G. et al. The comprehensive antibiotic resistance database. Antimicrob. Agents Chemother. 57, 3348–3357 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jia, B. et al. CARD 2017: Expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 45, D566–D573 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krawczyk, P. S., Lipinski, L. & Dziembowski, A. PlasFlow: Predicting plasmid sequences in metagenomic data using genome signatures. Nucleic Acids Res. 46, e35 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johansson, M. H. et al. Detection of mobile genetic elements associated with antibiotic resistance in Salmonella enterica using a newly developed web tool: MobileElementFinder. J. Antimicrob. Chemother. 76, 101–109 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo, J. et al. VirSorter2: A multi-classifier, expert-guided approach to detect diverse DNA and RNA viruses. Microbiome 9, 37 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feldgarden, M. et al. Amrfinderplus and the reference gene catalog facilitate examination of the genomic links among antimicrobial resistance, stress response, and virulence. Sci. Rep. 11, 1–9 (2021).

    Article 

    Google Scholar
     

  • Clausen, P. T., Zankari, E., Aarestrup, F. M. & Lund, O. Benchmarking of methods for identification of antimicrobial resistance genes in bacterial whole genome data. J. Antimicrob. Chemother. 71, 2484–2488 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Clausen, P. T., Aarestrup, F. M. & Lund, O. Rapid and precise alignment of raw reads against redundant databases with KMA. BMC Bioinform. 19, 1–8 (2018).

    Article 

    Google Scholar
     

  • R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2021).

  • Antunes, N. T., Frase, H., Toth, M. & Vakulenko, S. B. The class A \(\beta\)-lactamase FTU-1 is native to Francisella tularensis. Antimicrob. Agents Chemother. 56, 666–671 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Friendly, M. A fourfold display for 2 by 2 by k tables. Tech. Rep., Technical Report 217, Psychology Department, York University (1994).

  • Cycoń, M., Mrozik, A. & Piotrowska-Seget, Z. Antibiotics in the soil environment-degradation and their impact on microbial activity and diversity. Front. Microbiol. 10, 338 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zainab, S. M., Junaid, M., Xu, N. & Malik, R. N. Antibiotics and antibiotic resistant genes (args) in groundwater: A global review on dissemination, sources, interactions, environmental and human health risks. Water Res. 187, 116455 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, D.-W. & Cha, C.-J. Antibiotic resistome from the one-health perspective: Understanding and controlling antimicrobial resistance transmission. Expe. Mol. Med. 53, 301–309 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Rogers, S. W., Shaffer, C. E., Langen, T. A., Jahne, M. & Welsh, R. Antibiotic-resistant genes and pathogens shed by wild deer correlate with land application of residuals. EcoHealth 15, 409–425 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Dias, D., Fonseca, C., Mendo, S. & Caetano, T. A closer look on the variety and abundance of the faecal resistome of wild boar. Environ. Pollut. 292, 118406 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Allen, H. K. et al. Call of the wild: Antibiotic resistance genes in natural environments. Nat. Rev. Microbiol. 8, 251–259 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sacristán, I. et al. Antibiotic resistance genes as landscape anthropization indicators: Using a wild felid as sentinel in Chile. Sci. Total Environ. 703, 134900 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Finley, R. L. et al. The scourge of antibiotic resistance: The important role of the environment. Clin. Infect. Dis. 57, 704–710 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • D’Costa, V. M., Griffiths, E. & Wright, G. D. Expanding the soil antibiotic resistome: Exploring environmental diversity. Curr. Opin. Microbiol. 10, 481–489 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • D’Costa, V. M. et al. Antibiotic resistance is ancient. Nature 477, 457–461 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Sims, D., Sudbery, I., Ilott, N. E., Heger, A. & Ponting, C. P. Sequencing depth and coverage: Key considerations in genomic analyses. Nat. Rev. Genet. 15, 121–132 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Papp, M. & Solymosi, N. Review and comparison of antimicrobial resistance gene databases. Antibiotics 11, 339 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matei, I. A. et al. A review on the eco-epidemiology and clinical management of human granulocytic anaplasmosis and its agent in Europe. Parasites & Vectors 12, 1–19 (2019).

    Article 

    Google Scholar
     

  • Atif, F. A. Anaplasma marginale and anaplasma phagocytophilum: Rickettsiales pathogens of veterinary and public health significance. Parasitol. Res. 114, 3941–3957 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Ismail, N., Bloch, K. C. & McBride, J. W. Human ehrlichiosis and anaplasmosis. Clin. Lab. Med. 30, 261–292 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Botelho-Nevers, E., Socolovschi, C., Raoult, D. & Parola, P. Treatment of Rickettsia spp. infections: A review. Expert Rev. Anti-infective Ther. 10, 1425–1437 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Brennan, R. E. & Samuel, J. E. Evaluation of Coxiella burnetii antibiotic susceptibilities by real-time PCR assay. J. Clin. Microbiol. 41, 1869–1874 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kersh, G. J. Antimicrobial therapies for Q fever. Expert Rev. Anti-infective Ther. 11, 1207–1214 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Koetsveld, J. et al. In vitro antimicrobial susceptibility of clinical isolates of Borrelia miyamotoi. Antimicrob. Agents Chemother 62, e00419-18 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stanek, G., Wormser, G. P., Gray, J. & Strle, F. Lyme borreliosis. The Lancet 379, 461–473 (2012).

    Article 

    Google Scholar
     

  • Biswas, S. & Rolain, J.-M. Bartonella infection: Treatment and drug resistance. Futur. Microbiol. 5, 1719–1731 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Caspar, Y. & Maurin, M. Francisella tularensis susceptibility to antibiotics: A comprehensive review of the data obtained in vitro and in animal models. Front. Cell. Infect. Microbiol. 7, 122 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maurin, M., Abergel, C. & Raoult, D. DNA gyrase-mediated natural resistance to fluoroquinolones in Ehrlichia spp. Antimicrob. Agents Chemother. 45, 2098–2105 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Branger, S., Rolain, J. & Raoult, D. Evaluation of antibiotic susceptibilities of Ehrlichia canis, Ehrlichia chaffeensis, and Anaplasma phagocytophilum by real-time PCR. Antimicrob. Agents Chemother. 48, 4822–4828 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raoult, D., Torres, H. & Drancourt, M. Shell-vial assay: Evaluation of a new technique for determining antibiotic susceptibility, tested in 13 isolates of Coxiella burnetii. Antimicrob. Agents Chemother. 35, 2070–2077 (1991).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Caspar, Y., Hennebique, A. & Maurin, M. Antibiotic susceptibility of Francisella tularensis subsp. holarctica strains isolated from tularaemia patients in France between 2006 and 2016. J. Antimicrob. Chemother. 73, 687–691 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heine, H. S., Miller, L., Halasohoris, S. & Purcell, B. K. In vitro antibiotic susceptibilities of Francisella tularensis determined by broth microdilution following CLSI methods. Antimicrob. Agents Chemother. 61, e00612-17 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kreizinger, Z. et al. Antimicrobial susceptibility of Francisella tularensis subsp. holarctica strains from Hungary, Central Europe. J. Antimicrob. Chemother. 68, 370–373 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dantas, G. & Sommer, M. O. Context matters-the complex interplay between resistome genotypes and resistance phenotypes. Curr. Opin. Microbiol. 15, 577–582 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • McArthur, A. G. & Tsang, K. K. Antimicrobial resistance surveillance in the genomic age. Ann. N. Y. Acad. Sci 1388, 78–91 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Boolchandani, M., D’Souza, A. W. & Dantas, G. Sequencing-based methods and resources to study antimicrobial resistance. Nat. Rev. Genet. 20, 356–370 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pawlowski, A. C. et al. A diverse intrinsic antibiotic resistome from a cave bacterium. Nat. Commun. 7, 1–10 (2016).

    Article 

    Google Scholar
     

  • Stratton, C. W. In vitro susceptibility testing versus in vivo effectiveness. Med. Clin. 90, 1077–1088 (2006).

    CAS 

    Google Scholar
     

  • Mehta, H. H., Ibarra, D., Marx, C. J., Miller, C. R. & Shamoo, Y. Mutational switch-backs can accelerate evolution of Francisella to a combination of ciprofloxacin and doxycycline. Front. Microbiol. 13 (2022).

  • Aminov, R. I. & Mackie, R. I. Evolution and ecology of antibiotic resistance genes. FEMS Microbiol. Lett. 271, 147–161 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oz, T. et al. Strength of selection pressure is an important parameter contributing to the complexity of antibiotic resistance evolution. Mol. Biol. Evol. 31, 2387–2401 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martínez, J. L., Coque, T. M. & Baquero, F. What is a resistance gene? Ranking risk in resistomes. Nat. Rev. Microbiol. 13, 116–123 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Battilani, M., De Arcangeli, S., Balboni, A. & Dondi, F. Genetic diversity and molecular epidemiology of Anaplasma. Infect. Genet. Evol. 49, 195–211 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rikihisa, Y. Anaplasma phagocytophilum and Ehrlichia chaffeensis: Subversive manipulators of host cells. Nat. Rev. Microbiol. 8, 328–339 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Paddock, C. D. & Childs, J. E. Ehrlichia chaffeensis: A prototypical emerging pathogen. Clin. Microbiol. Rev. 16, 37–64 (2003).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cutler, S. et al. A new Borrelia on the block: Borrelia miyamotoi-a human health risk?. Eurosurveillance 24, 1800170 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wagemakers, A., Staarink, P. J., Sprong, H. & Hovius, J. W. Borrelia miyamotoi: A widespread tick-borne relapsing fever spirochete. Trends Parasitol. 31, 260–269 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Satjanadumrong, J., Robinson, M. T., Hughes, T. & Blacksell, S. D. Distribution and ecological drivers of spotted fever group Rickettsia in asia. Ecohealth 16, 611–626 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tomassone, L., Portillo, A., Nováková, M., De Sousa, R. & Oteo, J. A. Neglected aspects of tick-borne rickettsioses. Parasites & Vectors 11, 1–11 (2018).

    Article 

    Google Scholar
     

  • Schotthoefer, A. M. & Frost, H. M. Ecology and epidemiology of Lyme borreliosis. Clin. Lab. Med. 35, 723–743 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • González-Barrio, D. & Ruiz-Fons, F. Coxiella burnetii in wild mammals: A systematic review. Transbound. Emerg. Dis. 66, 662–671 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Telford, S. R. III. & Goethert, H. K. Ecology of Francisella tularensis. Annu. Rev. Entomol. 65, 351 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hayes, B. M. et al. Ticks resist skin commensals with immune factor of bacterial origin. Cell 183, 1562–1571 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Forestal, C. A. et al. Francisella tularensis has a significant extracellular phase in infected mice. J. Infect. Dis. 196, 134–137 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Yu, J.-J. et al. The presence of infectious extracellular Francisella tularensis subsp. novicida in murine plasma after pulmonary challenge. Eur. J. Clin. Microbiol. Infect. Dis. 27, 323–325 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Durão, P., Balbontín, R. & Gordo, I. Evolutionary mechanisms shaping the maintenance of antibiotic resistance. Trends Microbiol. 26, 677–691 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Martinez, J. L. General principles of antibiotic resistance in bacteria. Drug Discov. Today Technol. 11, 33–39 (2014).

    Article 
    PubMed 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    Stay Connected

    9FansLike
    4FollowersFollow
    0SubscribersSubscribe
    - Advertisement -spot_img

    Latest Articles

    %d bloggers like this: