Saturday, June 3, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

APOE ɛ4, but not polygenic Alzheimer’s disease risk, is related to longitudinal decrease in hippocampal brain activity in non-demented individuals – Scientific Reports


  • Scheltens, P. et al. Alzheimer’s disease. Lancet 397, 1577–1590 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nyberg, L. et al. Biological and environmental predictors of heterogeneity in neurocognitive ageing: Evidence from Betula and other longitudinal studies. Ageing Res. Rev. https://doi.org/10.1016/j.arr.2020.101184 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Serrano-Pozo, A., Das, S. & Hyman, B. T. APOE and Alzheimer’s disease: Advances in genetics, pathophysiology, and therapeutic approaches. Lancet Neurol. 20, 68–80 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Montagne, A. et al. APOE4 leads to blood–brain barrier dysfunction predicting cognitive decline. Nature 581, 71–76 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kunkle, B. W. et al. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat. Genet. 51, 414–430 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jansen, I. E. et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat. Genet. 51, 404–413 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bellou, E., Stevenson-Hoare, J. & Escott-Price, V. Polygenic risk and pleiotropy in neurodegenerative diseases. Neurobiol. Dis. 142, 104953 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kauppi, K., Rönnlund, M., Nordin Adolfsson, A., Pudas, S. & Adolfsson, R. Effects of polygenic risk for Alzheimer’s disease on rate of cognitive decline in normal aging. Transl. Psychiatry https://doi.org/10.1038/s41398-020-00934-y (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, J.-Q., Tan, L., Wang, H.-F., Tan, M.-S., Tan, L., Xu, W. et al. Risk factors for predicting progression from mild cognitive impairment to Alzheimer’s disease: A systematic review and meta-analysis of cohort studies. J. Neurol. Neurosurg. Psychiatry 1–9 (2016).

  • Murray, A. N., Chandler, H. L. & Lancaster, T. M. Multimodal hippocampal and amygdala subfield volumetry in polygenic risk for Alzheimer’s disease. Neurobiol. Aging 98, 33–41 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Foley, S. F. et al. Multimodal brain imaging reveals structural differences in Alzheimer’s disease polygenic risk carriers: A study in healthy young adults. Biol. Psychiatry 81, 154–161 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Foo, H. et al. Associations between Alzheimer’s disease polygenic risk scores and hippocampal subfield volumes in 17,161 UK Biobank participants. Neurobiol. Aging 98, 108–115 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Gorbach, T. et al. Longitudinal association between hippocampus atrophy and episodic-memory decline in non-demented APOE ε4 carriers. Alzheimer’s Dement. Diagn. Assess. Dis. Monit. 12, 1–9 (2020).


    Google Scholar
     

  • Machulda, M. M. et al. Comparison of memory fMRI response among normal, MCI, and Alzheimer’s patients. Neurology 61, 500–506 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Johnson, S. C. et al. Activation of brain regions vulnerable to Alzheimer’s disease: The effect of mild cognitive impairment. Neurobiol. Aging 27, 1604–1612 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Petrella, J. R. et al. Mild cognitive impairment: Evaluation with 4-T functional MR imaging. Radiology 240, 177–186 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Dickerson, B. C. et al. Medial temporal lobe function and structure in mild cognitive impairment. Ann. Neurol. 56, 27–35 (2004).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dickerson, B. C. et al. Increased hippocampal activation in mild cognitive impairment compared to normal aging and AD. Neurology 65, 404–411 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Celone, K. A. et al. Alterations in memory networks in mild cognitive impairment and Alzheimer’s disease: An independent component analysis. J. Neurosci. 26, 10222–10231 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hämäläinen, A. et al. Increased fMRI responses during encoding in mild cognitive impairment. Neurobiol. Aging 28, 1889–1903 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Kircher, T. T. et al. Hippocampal activation in patients with mild cognitive impairment is necessary for successful memory encoding. J. Neurol. Neurosurg. Psychiatry 78, 812–818 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yassa, M. A. et al. High-resolution structural and functional MRI of hippocampal CA3 and dentate gyrus in patients with amnestic mild cognitive impairment. Neuroimage 51, 1242–1252 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Filippini, N. et al. Distinct patterns of brain activity in young carriers of the APOE-ε4 allele. Proc. Natl. Acad. Sci. U. S. A. 106, 7209–7214 (2009).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trachtenberg, A. J., Filippini, N. & Mackay, C. E. The effects of APOE-ε4 on the BOLD response. Neurobiol. Aging 33, 323–334 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bookheimer, S. Y. et al. Patterns of brain activation in people at risk for Alzheimer’s disease. N. Engl. J. Med. 343, 450–456 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trivedi, M. A. et al. fMRI activation during episodic encoding and metacognitive appraisal across the lifespan: Risk factors for Alzheimer’s disease. Neuropsychologia 46, 1667–1678 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Dennis, N. A. et al. Temporal lobe functional activity and connectivity in young adult APOE ε4 carriers. Alzheimer’s Dement. 6, 303–311 (2010).

    Article 

    Google Scholar
     

  • Adamson, M. M., Hutchinson, J. B., Shelton, A. L., Wagner, A. D. & Taylor, J. L. Reduced hippocampal activity during encoding in cognitively normal adults carrying the APOE e{open}4 allele. Neuropsychologia 49, 2448–2455 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chandler, H. L., Hodgetts, C. J., Caseras, X., Murphy, K. & Lancaster, T. M. Polygenic risk for Alzheimer’s disease shapes hippocampal scene-selectivity. Neuropsychopharmacology 45, 1171–1178 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiao, E. et al. Late-onset Alzheimer’s disease polygenic risk profile score predicts hippocampal function. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2, 673–679 (2017).

    PubMed 

    Google Scholar
     

  • Nyberg, L., Andersson, M., Lundquist, A., Salami, A. & Wåhlin, A. Frontal contribution to hippocampal hyperactivity during memory encoding in aging. Front. Mol. Neurosci. 12, 1–11 (2019).

    Article 

    Google Scholar
     

  • American Psychiatric Association. Diagnostic and statistical manual of mental disorders (4th ed., Text Revision), Text Revision (2000).

  • Rönnlund, M., Sundström, A., Adolfsson, R. & Nilsson, L. G. Subjective memory impairment in older adults predicts future dementia independent of baseline memory performance: Evidence from the Betula prospective cohort study. Alzheimer’s Dement. 11, 1385–1392 (2015).

    Article 

    Google Scholar
     

  • Nilsson, L.-G. et al. Betula: A prospective cohort study on memory, health and aging. Aging Neuropsychol. Cogn. 11, 134–148 (2004).

    Article 

    Google Scholar
     

  • Persson, J., Kalpouzos, G., Nilsson, L., Ryberg, M. & Nyberg, L. Preserved hippocampus activation in normal aging as revealed by fMRI. Hippocampus 21, 753–766 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Pudas, S. et al. Brain characteristics of individuals resisting age-related cognitive decline over two decades. J. Neurosci. 15, 8668–8677 (2013).

    Article 

    Google Scholar
     

  • Ashburner, J. A fast diffeomorphic image registration algorithm. Neuroimage 38, 95–113 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Poppenk, J., Evensmoen, H. R., Moscovitch, M. & Nadel, L. Long-axis specialization of the human hippocampus. Trends Cogn. Sci. 17, 230–240 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • The 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature 526, 68–74 (2016).

    Article 

    Google Scholar
     

  • Howie, B., Fuchsberger, C., Stephens, M., Marchini, J. & Abecasis, G. R. Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. Nat. Genet. 44, 955–959 (2013).

    Article 

    Google Scholar
     

  • O’Donoghue, M. C., Murphy, S. E., Zamboni, G., Nobre, A. C. & Mackay, C. E. APOE genotype and cognition in healthy individuals at risk of alzheimer’s disease: A review. Cortex 104, 103–123 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Talwar, P., Kushwaha, S., Chaturvedi, M., Mahajan, V. Systematic review of different neuroimaging correlates in mild cognitive impairment and Alzheimer’s disease. Clin. Neuroradiol. 953–967 (2021).

  • Li, H. J. et al. Toward systems neuroscience in mild cognitive impairment and Alzheimer’s disease: A meta-analysis of 75 fMRI studies. Hum. Brain Mapp. 36, 1217–1232 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Halliday, M. R. et al. Accelerated pericyte degeneration and blood-brain barrier breakdown in apolipoprotein E4 carriers with Alzheimer’s disease. J. Cereb. Blood Flow Metab. 36, 216–227 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wåhlin, A. & Nyberg, L. At the heart of cognitive functioning in aging. Trends Cogn. Sci. 23, 717–720 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Iadecola, C. The neurovascular unit coming of age: A journey through neurovascular coupling in health and disease. Neuron 96(17–42), 48 (2017).


    Google Scholar
     

  • Martens, Y. A. et al. ApoE cascade hypothesis in the pathogenesis of Alzheimer’s disease and related dementias. Neuron 110, 1304–1317 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nyberg, L. Functional brain imaging of episodic memory decline in ageing. J. Intern. Med. 281, 65–74 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tromp, D., Dufour, A., Lithfous, S., Pebayle, T. & Després, O. Episodic memory in normal aging and Alzheimer disease: Insights from imaging and behavioral studies. Ageing Res. Rev. 24, 232–262 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Salami, A., Eriksson, J. & Nyberg, L. Opposing effects of aging on large-scale brain systems for memory encoding and cognitive control. J. Neurosci. 32, 10749–10757 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pu-Ting, X. et al. Specific regional transcription of apolipoprotein E in human brain neurons. Am. J. Pathol. 154, 601–611 (1999).

    Article 

    Google Scholar
     

  • Zhang, Q., Sidorenko, J., Couvy-duchesne, B., Marioni, R. E., Wright, M. J., Goate, A. M., et al. Risk prediction of late-onset Alzheimer’s disease implies an oligogenic architecture. Nat. Commun. 1–11 (2020).

  • Hill, W. D., Marioni, R. E., Maghzian, O., Ritchie, S. J., Hagenaars, S. P., McIntosh, A. M., et al. A combined analysis of genetically correlated traits identifies 187 loci and a role for neurogenesis and myelination in intelligence. Mol. Psychiatry 1–13 (2018).

  • Jack, C. R. et al. Prevalence of biologically vs clinically defined alzheimer spectrum entities using the national institute on aging-Alzheimer’s association research framework. JAMA Neurol. 55905, 1–10 (2019).


    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    Stay Connected

    9FansLike
    4FollowersFollow
    0SubscribersSubscribe
    - Advertisement -spot_img

    Latest Articles

    %d bloggers like this: