Clauw, D. J. Fibromyalgia: A clinical review. Jama 311(15), 1547–1555. https://doi.org/10.1001/jama.2014.3266 (2014).
Galvez-Sánchez, C. M., Duschek, S. & Reyes Del Paso, G. A. Psychological impact of fibromyalgia: Current perspectives. Psychol. Res. Behav. Manag. https://doi.org/10.2147/PRBM.S178240 (2019).
Bair, M. J. & Krebs, E. E. Fibromyalgia. Ann. Intern. Med. 172(5), ITC33–ITC48. https://doi.org/10.7326/AITC202003030 (2020).
Mezhov, V., Guymer, E. & Littlejohn, G. Central sensitivity and fibromyalgia. Intern. Med. J. 51(12), 1990–1998. https://doi.org/10.1111/imj.15430 (2021).
Bhargava, J. & Hurley, J. A. Fibromyalgia. [Updated 2023 Jun 11]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-. https://www.ncbi.nlm.nih.gov/books/NBK540974/
Ozgocmen, S., Ozyurt, H., Sogut, S. & Akyol, O. Current concepts in the pathophysiology of fibromyalgia: The potential role of oxidative stress and nitric oxide. Rheumatol. Int. 26, 585–597. https://doi.org/10.1007/s00296-005-0078-z (2006).
Fusco, R. et al. Melatonin plus folic acid treatment ameliorates reserpine-induced fibromyalgia: An evaluation of pain, oxidative stress, and inflammation. Antioxidants 8(12), 628. https://doi.org/10.3390/antiox8120628 (2019).
Latremoliere, A. & Woolf, C. J. Central sensitization: A generator of pain hypersensitivity by central neural plasticity. J. Pain 10(9), 895–926. https://doi.org/10.1016/j.jpain.2009.06.012 (2009).
Woolf, C. J. Central sensitization: Implications for the diagnosis and treatment of pain. Pain 152(3), S2–S15. https://doi.org/10.1016/j.pain.2010.09.030 (2011).
Harte, S. E., Harris, R. E. & Clauw, D. J. The neurobiology of central sensitization. J. Appl. Biobehav. Res. 23(2), e12137. https://doi.org/10.1111/jabr.12137 (2018).
Clauw, D. J. (2015). Fibromyalgia and related conditions. In Mayo Clinic Proceedings (Vol. 90, No. 5, pp. 680–692). Elsevier. https://doi.org/10.1016/j.mayocp.2015.03.014
Bhattacharya, S. Reactive oxygen species and cellular defense system. Free Radic. Hum. Health Dis. https://doi.org/10.1007/978-81-322-2035-0_2 (2015).
Pizzino, G. et al. Oxidative stress: Harms and benefits for human health. Oxid. Med. Cell. Longev. https://doi.org/10.1155/2017/8416763 (2017).
Nebel, M. B. & Gracely, R. H. Neuroimaging of fibromyalgia. Rheum. Dis. Clin. 35(2), 313–327. https://doi.org/10.1016/j.rdc.2009.06.004 (2009).
Okifuji, A. & Hare, B. D. Management of fibromyalgia syndrome: Review of evidence. Pain Ther. 2, 87–104. https://doi.org/10.1007/s40122-013-0016-9 (2013).
La Rubia, M., Rus, A., Molina, F. & Del Moral, M. L. Is fibromyalgia-related oxidative stress implicated in the decline of physical and mental health status. Clin. Exp. Rheumatol. 31(6 Suppl 79), S121–S127 (2013).
Petersel, D. L., Dror, V. & Cheung, R. Central amplification and fibromyalgia: Disorder of pain processing. J. Neurosci. Res. 89(1), 29–34. https://doi.org/10.1002/jnr.22512 (2011).
Di Franco, M., Iannuccelli, C. & Valesini, G. Neuroendocrine immunology of fibromyalgia. Ann. N. Y. Acad. Sci. 1193(1), 84–90. https://doi.org/10.1111/j.1749-6632.2009.05344.x (2010).
Fidalgo, S., Ivanov, D. K. & Wood, S. H. Serotonin: From top to bottom. Biogerontology 14, 21–45. https://doi.org/10.1007/s10522-012-9406-3 (2013).
Clauw, D. J., Arnold, L. M. & McCarberg, B. H. The science of fibromyalgia. In Mayo Clinic Proceedings (Vol. 86, No. 9, pp. 907–911). (Elsevier, 2011). https://doi.org/10.4065/mcp.2011.0206.
Potvin, S., Grignon, S. & Marchand, S. Human evidence of a supra-spinal modulating role of dopamine on pain perception. Synapse 63(5), 390–402. https://doi.org/10.1002/syn.20616 (2009).
Ablin, J. N. & Buskila, D. Fibromyalgia syndrome–Novel therapeutic targets. Maturitas 75(4), 335–340. https://doi.org/10.1016/j.maturitas.2013.05.004 (2013).
Werner, F. M. & Covenas, R. Classical neurotransmitters and neuropeptides involved in major depression: A review. Int. J. Neurosci. 120(7), 455–470. https://doi.org/10.3109/00207454.2010.483651 (2010).
Marques, A. P., Santo, A. D. S. D. E., Berssaneti, A. A., Matsutani, L. A. & Yuan, S. L. K. Prevalence of fibromyalgia: Literature review update. Rev. Bras. de Reumatol. 57, 356–363. https://doi.org/10.3109/00207454.2010.483651 (2017).
Moshrif, A., Shoaeir, M. Z., Abbas, A. S., Abdel-Aziz, T. M. & Gouda, W. Evaluating gender differences in Egyptian fibromyalgia patients using the 1990, 2011, and 2016 ACR criteria. Open Access Rheumatol. Res. Rev. https://doi.org/10.2147/OARRR.S358255 (2022).
Schertzinger, M., Wesson-Sides, K., Parkitny, L. & Younger, J. Daily fluctuations of progesterone and testosterone are associated with fibromyalgia pain severity. J. Pain 19(4), 410–417. https://doi.org/10.1016/j.jpain.2017.11.013 (2018).
Pieretti, S. et al. Gender differences in pain and its relief. Ann. dell’Ist. Super. di Sanita 52(2), 184–189. https://doi.org/10.4415/ANN_16_02_09 (2016).
Eichling, P. S. & Sahni, J. Menopause related sleep disorders. J. Clin. Sleep Med. 1(03), 291–300. https://doi.org/10.5664/jcsm.26347 (2005).
Martínez-Jauand, M. et al. Age-of-onset of menopause is associated with enhanced painful and non-painful sensitivity in fibromyalgia. Clin. Rheumatol. 32, 975–981. https://doi.org/10.5664/jcsm.26347 (2013).
Araya, M., Chotai, J., Komproe, I. H. & de Jong, J. T. Gender differences in traumatic life events, coping strategies, perceived social support and sociodemographics among postconflict displaced persons in Ethiopia. Soc. Psychiatry Psychiatr Epidemiol. 42, 307–315. https://doi.org/10.1007/s00127-007-0166-3 (2007).
Webb, D. R. Animal models of human disease: Inflammation. Biochem. Pharmacol. 87(1), 121–130. https://doi.org/10.1016/j.bcp.2013.06.014 (2014).
Brum, E. S., Becker, G., Fialho, M. F. P. & Oliveira, S. M. Animal models of fibromyalgia: What is the best choice?. Pharmacol. Ther. 230, 107959. https://doi.org/10.1016/j.pharmthera.2021.107959 (2022).
Yaffe, D., Forrest, L. R. & Schuldiner, S. The ins and outs of vesicular monoamine transporters. J. Gen. Physiol. 150(5), 671–682. https://doi.org/10.1085/jgp.201711980 (2018).
Nagakura, Y. et al. Different pathophysiology underlying animal models of fibromyalgia and neuropathic pain: Comparison of reserpine-induced myalgia and chronic constriction injury rats. Behav. Brain Res. 226(1), 242–249. https://doi.org/10.1016/j.bbr.2011.09.023 (2012).
Nagakura, Y., Ito, H. & Shimizu, Y. Animal models of fibromyalgia 41–58 (INTECH Open Access Publisher, Rijeka, 2012). https://doi.org/10.5772/28409.
Jaggi, A. S. et al. A review on animal models for screening potential anti-stress agents. Neurol. Sci. 32, 993–1005. https://doi.org/10.1007/s10072-011-0770-6 (2011).
Hernandez-Leon, A., De la Luz-Cuellar, Y. E., Granados-Soto, V., González-Trujano, M. E. & Fernández-Guasti, A. Sex differences and estradiol involvement in hyperalgesia and allodynia in an experimental model of fibromyalgia. Horm. Behav. 97, 39–46. https://doi.org/10.1016/j.yhbeh.2017.10.011 (2018).
Maghsoudi, S. et al. The colorful world of carotenoids: A profound insight on therapeutics and recent trends in nano delivery systems. Crit. Rev. Food Sci. Nutr. 62(13), 3658–3697. https://doi.org/10.1080/10408398.2020.1867958 (2022).
Mapelli-Brahm, P. et al. The impact of fermentation processes on the production, retention and bioavailability of carotenoids: An overview. Trends Food Sci. Technol. 99, 389–401. https://doi.org/10.1016/j.tifs.2020.03.013 (2020).
Rostamabadi, H., Falsafi, S. R. & Jafari, S. M. Nanoencapsulation of carotenoids within lipid-based nanocarriers. J. Controll. Release 298, 38–67. https://doi.org/10.1016/j.jconrel.2019.02.005 (2019).
Failla, M. L., Huo, T. & Thakkar, S. K. In vitro screening of relative bioaccessibility of carotenoids from foods. Asia Pac. J. Clin. Nutr. 17(Suppl 1), 200–203 (2008).
Herrero, M., Cifuentes, A. & Ibáñez, E. Extraction techniques for the determination of carotenoids and vitamins in food. https://doi.org/10.1016/B978-0-12-381373-2.00133-2 (2012).
Wang, Y., Roger Illingworth, D., Connor, S. L., Barton Duell, P. & Connor, W. E. Competitive inhibition of carotenoid transport and tissue concentrations by high dose supplements of lutein, zeaxanthin and beta-carotene. Eur. J. Nutr. 49, 327–336. https://doi.org/10.1007/s00394-009-0089-8 (2010).
Chacko, B. J., Palanisamy, S., Gowrishankar, N. L., Honeypriya, J. & Sumathy, A. Effect of surfactant coating on brain targeting polymeric nanoparticles; A review. Indian J. Pharm. Sci. 80(2), 215–222. https://doi.org/10.4172/pharmaceutical-sciences.1000348 (2018).
Zhao, Y. M., Xia, A. X., Wei, Y. H., Ruan, Y. P. & Li, F. Z. Polysorbate-80 modified neurotoxin nanoparticle with its transport and cytotoxicity against blood-brain barrier. Acta Pharm. Sin. 45(10), 1312–1316 (2010).
Pardridge, W. M. The blood-brain barrier: Bottleneck in brain drug development. NeuroRx 2(1), 3–14. https://doi.org/10.1602/neurorx.2.1.3 (2005).
Wohlfart, S., Gelperina, S. & Kreuter, J. Transport of drugs across the blood–brain barrier by nanoparticles. J. Controll. Release 161(2), 264–273. https://doi.org/10.1016/j.jconrel.2011.08.017 (2012).
Elkholy, N., Hariri, M. L. M., Mohammed, H. S. & Shafaa, M. W. Lutein and β-carotene characterization in free and nanodispersion forms in terms of antioxidant activity and cytotoxicity. J. Pharm. Innovation https://doi.org/10.1007/s12247-023-09745-2 (2023).
Nagakura, Y., Oe, T., Aoki, T. & Matsuoka, N. Biogenic amine depletion causes chronic muscular pain and tactile allodynia accompanied by depression: A putative animal model of fibromyalgia. Pain 146(1–2), 26–33. https://doi.org/10.1016/j.pain.2009.05.024 (2009).
Tan, T. B. et al. Physicochemical, morphological, and cellular uptake properties of lutein nanodispersions prepared by using surfactants with different stabilizing mechanisms. Food Funct. 7(4), 2043–2051. https://doi.org/10.1039/C5FO01621E (2016).
Tan, T. B. et al. Comparing the formation of lutein nanodispersion prepared by using solvent displacement method and high-pressure valve homogenization: Effects of formulation parameters. J. Food Eng. 177, 65–71. https://doi.org/10.1016/j.jfoodeng.2015.12.020 (2016).
Elkholy, N. S., Shafaa, M. W. & Mohammed, H. S. Cationic liposome-encapsulated carotenoids as a potential treatment for fibromyalgia in an animal model. Biochim. et Biophys. Acta (BBA) Mol. Basis Dis. 1867(7), 166150. https://doi.org/10.1016/j.bbadis.2021.166150 (2021).
Kei, S. Serum lipid peroxide in cerebrovascular disorders determined by a new colorimetric method. Clin. Chim. Acta 90(1), 37–43. https://doi.org/10.1016/0009-8981(78)90081-5 (1978).
Ohkawa, H., Ohishi, N. & Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95(2), 351–358. https://doi.org/10.1016/0003-2697(79)90738-3 (1979).
Fossati, P., Prencipe, L. & Berti, G. Use of 3, 5-dichloro-2-hydroxybenzenesulfonic acid/4-aminophenazone chromogenic system in direct enzymic assay of uric acid in serum and urine. Clin. Chem. 26(2), 227–231. https://doi.org/10.1093/clinchem/26.2.227 (1980).
Aebi, H. Catalase in vitro. In Methods in enzymology (Vol. 105, pp. 121–126). (Academic Press, 1984). https://doi.org/10.1016/S0076-6879(84)05016-3.
Montgomery, H. A. C. & Dymock, J. F. Nitric oxide assay. Analyst 86, 414 (1961).
Beutler, E., Duron, O. & Kelly, M. Glutathione reagent and method-patent. J. Lab. Clin. Med 61, 882 (1963).
Ciarlone, A. E. Further modification of a fluorometric method for analyzing brain amines. Microchem. J. 23(1), 9–12. https://doi.org/10.1016/0026-265X(78)90034-6 (1978).
Liu, Y., Zhang, Y., Xing, H. H. & Liu, C. H. Evaluate the quality of tagetes ercta Petal by Fourier transform infrared spectroscopy. In 2012 Symposium on Photonics and Optoelectronics 1–3 (IEEE, 2012). https://doi.org/10.1109/SOPO.2012.6270979.
Manzoor, S., Rashid, R., Panda, B. P., Sharma, V. & Azhar, M. Green extraction of lutein from marigold flower petals, process optimization and its potential to improve the oxidative stability of sunflower oil. Ultrason. Sonochem. 85, 105994. https://doi.org/10.1016/j.ultsonch.2022.105994 (2022).
Zhao, T., Liu, F., Duan, X., Xiao, C. & Liu, X. Physicochemical properties of lutein-loaded microcapsules and their uptake via Caco-2 monolayers. Molecules 23(7), 1805. https://doi.org/10.3390/molecules23071805 (2018).
Quijano-Ortega, N. et al. FTIR-ATR spectroscopy combined with multivariate regression modeling as a preliminary approach for carotenoids determination in Cucurbita spp.. Appl. Sci. 10(11), 3722. https://doi.org/10.3390/app10113722 (2020).
He, Y., Zhao, Y., Zhang, C., Sun, C. & Li, X. Determination of ß-carotene and lutein in green tea using Fourier transform infrared spectroscopy. Trans. ASABE 62(1), 75–81. https://doi.org/10.13031/trans.12839 (2019).
Joda, B. A., Abed Al-Kadhim, Z. M., Ahmed, H. J. & Al-Khalaf, A. K. A convenient green method to synthesize β-carotene from edible carrot and nanoparticle formation. Karbala Int. J. Mod. Sci. 8(1), 20–27. https://doi.org/10.33640/2405-609X.3200 (2022).
Ammawath, W. & Yaakob, C. M. A rapid method for determination of commercial β-carotene in RBD palm olein by Fourier transform infrared spectroscopy. Asian J. Food Agro Ind. 3(4), 443–452 (2010).
Rocha, F. et al. Nanodispersions of beta-carotene: Effects on antioxidant enzymes and cytotoxic properties. Food Funct. 9(7), 3698–3706. https://doi.org/10.1039/C8FO00804C (2018).
Yin, X. et al. High-gravity-assisted synthesis of aqueous nanodispersions of organic fluorescent dyes for counterfeit labeling. AIChE J. 65(10), e16714. https://doi.org/10.1002/aic.16714 (2019).
Joshi, A. S., Gahane, A. & Thakur, A. K. Deciphering the mechanism and structural features of polysorbate 80 during adsorption on PLGA nanoparticles by attenuated total reflectance–Fourier transform infrared spectroscopy. RSC Adv. 6(110), 108545–108557. https://doi.org/10.1039/C6RA07699H (2016).
Young, A. J. & Lowe, G. L. Carotenoids—Antioxidant properties. Antioxidants 7(2), 28. https://doi.org/10.3390/antiox7020028 (2018).
Maria, A. G., Graziano, R. & Nicolantonio, D. O. Carotenoids: Potential allies of cardiovascular health?. Food Nutr. Res 59(1), 26762. https://doi.org/10.3402/fnr.v59.26762 (2015).
Tu, W., Wang, H., Li, S., Liu, Q. & Sha, H. The anti-inflammatory and anti-oxidant mechanisms of the Keap1/Nrf2/ARE signaling pathway in chronic diseases. Aging Dis. 10(3), 637. https://doi.org/10.14336/AD.2018.0513 (2019).
Tan, T. B. et al. Stability evaluation of lutein nanodispersions prepared via solvent displacement method: The effect of emulsifiers with different stabilizing mechanisms. Food Chem. 205, 155–162. https://doi.org/10.1016/j.foodchem.2016.03.008 (2016).
Ortega, A. M. & Campos, M. S. Phytochemicals in cancer treatment. In Oncological Functional Nutrition 125–160. (Academic Press, 2021). https://doi.org/10.1016/B978-0-12-819828-5.00004-8
Shukla, V. et al. Metal-induced oxidative stress level in patients with fibromyalgia syndrome and its contribution to the severity of the disease: A correlational study. J. Back Musculoskelet. Rehabilit. 34(2), 319–326. https://doi.org/10.3233/BMR-200102 (2021).
Bagis, S. et al. Free radicals and antioxidants in primary fibromyalgia: An oxidative stress disorder?. Rheumatol. Int. 25, 188–190. https://doi.org/10.1007/s00296-003-0427-8 (2005).
Eiden, L. E. & Weihe, E. VMAT2: A dynamic regulator of brain monoaminergic neuronal function interacting with drugs of abuse. Ann. N. Y. Acad. Sci. 1216(1), 86–98. https://doi.org/10.1111/j.1749-6632.2010.05906.x (2011).
Russell, I. J., Vaeroy, H., Javors, M. & Nyberg, F. Cerebrospinal fluid biogenic amine metabolites in fibromyalgia/fibrositis syndrome and rheumatoid arthritis. Arthritis Rheum. 35(5), 550–556. https://doi.org/10.1002/art.1780350509 (1992).
Scapagnini, G., Davinelli, S., Drago, F., De Lorenzo, A. & Oriani, G. Antioxidants as antidepressants: Fact or fiction?. CNS Drugs 26, 477–490. https://doi.org/10.2165/11633190-000000000-00000 (2012).
Parletta, N., Milte, C. M. & Meyer, B. J. Nutritional modulation of cognitive function and mental health. J. Nutr. Biochem. 24(5), 725–743. https://doi.org/10.1016/j.jnutbio.2013.01.002 (2013).
Herraiz, T. & Guillén, H. Monoamine oxidase-A inhibition and associated antioxidant activity in plant extracts with potential antidepressant actions. BioMed Res. Int. https://doi.org/10.1155/2018/4810394 (2018).
Bandaruk, Y., Mukai, R. & Terao, J. Cellular uptake of quercetin and luteolin and their effects on monoamine oxidase-A in human neuroblastoma SH-SY5Y cells. Toxicol. Rep. 1, 639–649. https://doi.org/10.1016/j.toxrep.2014.08.016 (2014).
Mohammed, H. S. Transcranial low-level infrared laser irradiation ameliorates depression induced by reserpine in rats. Lasers Med. Sci. 31, 1651–1656. https://doi.org/10.1007/s10103-016-2033-5 (2016).
Oken, B. S., Salinsky, M. C. & Elsas, S. Vigilance, alertness, or sustained attention: Physiological basis and measurement. Clin. Neurophysiol. 117(9), 1885–1901. https://doi.org/10.1016/j.clinph.2006.01.017 (2006).
Rodríguez-Andreu, J. et al. Cognitive impairment in patients with fibromyalgia syndrome as assessed by the mini-mental state examination. BMC Musculoskelet Disord 10(1), 1–5. https://doi.org/10.1186/1471-2474-10-162 (2009).
Bertolucci, P. H. F. & de Oliveira, F. F. Cognitive impairment in fibromyalgia. Curr. Pain Headache Rep. 17, 1–9. https://doi.org/10.1007/s11916-013-0344-9 (2013).
Fallon, N., Chiu, Y., Nurmikko, T. & Stancak, A. Altered theta oscillations in resting EEG of fibromyalgia syndrome patients. Eur. J. Pain 22(1), 49–57. https://doi.org/10.1002/ejp.1076 (2018).
Bell, I. R., Baldwin, C. M. & Schwartz, G. E. Illness from low levels of environmental chemicals: Relevance to chronic fatigue syndrome and fibromyalgia. Am. J. Med. 105(3), 74S-82S. https://doi.org/10.1016/S0002-9343(98)00162-4 (1998).
Lim, M., Kim, J. S., Kim, D. J. & Chung, C. K. Increased low-and high-frequency oscillatory activity in the prefrontal cortex of fibromyalgia patients. Front. Hum. Neurosci. 10, 111. https://doi.org/10.3389/fnhum.2016.00111 (2016).
Hargrove, J. B. et al. Quantitative electroencephalographic abnormalities in fibromyalgia patients. Clin. EEG Neurosci. 41(3), 132–139 (2010).
Burma, N. E., Leduc-Pessah, H., Fan, C. Y. & Trang, T. Animal models of chronic pain: Advances and challenges for clinical translation. J. Neurosci. Res. 95(6), 1242–1256. https://doi.org/10.1002/jnr.23768 (2017).
Oliveira, M. G. et al. α-Terpineol, a monoterpene alcohol, complexed with β-cyclodextrin exerts antihyperalgesic effect in animal model for fibromyalgia aided with docking study. Chem. Biol. Interact. 254, 54–62. https://doi.org/10.1016/j.cbi.2016.05.029 (2016).
Favero, G. et al. Oral supplementation of melatonin protects against fibromyalgia-related skeletal muscle alterations in reserpine-induced myalgia rats. Int. J. Mol. Sci. 18(7), 1389. https://doi.org/10.3390/ijms18071389 (2017).
Yao, X., Li, L., Kandhare, A. D., Mukherjee-Kandhare, A. A. & Bodhankar, S. L. Attenuation of reserpine-induced fibromyalgia via ROS and serotonergic pathway modulation by fisetin, a plant flavonoid polyphenol. Exp. Ther. Med. 19(2), 1343–1355. https://doi.org/10.3892/etm.2019.8328 (2020).