Zakeri, R. et al. The burden of proof: The current state of atrial fibrillation prevention and treatment trials. Heart Rhythm 14, 763–782. https://doi.org/10.1016/j.hrthm.2017.01.032 (2017).
Korantzopoulos, P., Kokkoris, S. & Papaioannides, D. The association of metabolic syndrome with atrial fibrillation: An emerging epidemiological and pathophysiological hypothesis. Cardiology 104, 148–149. https://doi.org/10.1159/000087636 (2005).
Tanner, R. M. et al. Association of the metabolic syndrome with atrial fibrillation among United States adults (from the REasons for Geographic and Racial Differences in Stroke [REGARDS] Study). Am. J. Cardiol. 108, 227–232. https://doi.org/10.1016/j.amjcard.2011.03.026 (2011).
Kim, Y. G. et al. Metabolic syndrome and the risk of new-onset atrial fibrillation in middle-aged east Asian men. Circ. J. 82, 1763–1769. https://doi.org/10.1253/circj.CJ-18-0113 (2018).
Kwon, C. H. et al. The impact of metabolic syndrome on the incidence of atrial fibrillation: A nationwide longitudinal cohort study in South Korea. J. Clin. Med. 8, 1095. https://doi.org/10.3390/jcm8081095 (2019).
Movahed, M.-R., Hashemzadeh, M. & Mazen Jamal, M. Diabetes mellitus is a strong, independent risk for atrial fibrillation and flutter in addition to other cardiovascular disease. Int. J. Cardiol. 105, 315–318. https://doi.org/10.1016/j.ijcard.2005.02.050 (2005).
Huxley, R. R., Filion, K. B., Konety, S. & Alonso, A. Meta-analysis of cohort and case–control studies of type 2 diabetes mellitus and risk of atrial fibrillation. Am. J. Cardiol. 108, 56–62. https://doi.org/10.1016/j.amjcard.2011.03.004 (2011).
Manolis, A. J. et al. Hypertension and atrial fibrillation: Diagnostic approach, prevention and treatment. Position paper of the Working Group “Hypertension Arrhythmias and Thrombosis” of the European Society of Hypertension. J. Hypertens. 30, 239–252. https://doi.org/10.1097/HJH.0b013e32834f03bf (2012).
Wang, T. J. et al. Obesity and the risk of new-onset atrial fibrillation. JAMA 292, 2471–2477. https://doi.org/10.1001/jama.292.20.2471 (2004).
Guan, B. et al. Blood lipid profiles and risk of atrial fibrillation: A systematic review and meta-analysis of cohort studies. J. Clin. Lipidol. 14, 133-142 e133. https://doi.org/10.1016/j.jacl.2019.12.002 (2020).
Veronese, G., Montomoli, J., Schmidt, M., Horvath-Puho, E. & Sorensen, H. T. Statin use and risk of atrial fibrillation or flutter: A population-based case–control study. Am. J. Ther. 22, 186–194. https://doi.org/10.1097/MJT.0b013e31827ab488 (2015).
Pastori, D. et al. Statin use and mortality in atrial fibrillation: A systematic review and meta-analysis of 100,287 patients. Pharmacol. Res. 165, 105418. https://doi.org/10.1016/j.phrs.2021.105418 (2021).
Lee, H. C. & Lin, Y. H. The pathogenic role of very low density lipoprotein on atrial remodeling in the metabolic syndrome. Int. J. Mol. Sci. 21, 891. https://doi.org/10.3390/ijms21030891 (2020).
Lee, H. C. et al. The role of postprandial very-low-density lipoprotein in the development of atrial remodeling in metabolic syndrome. Lipids Health Dis. 19, 210. https://doi.org/10.1186/s12944-020-01386-5 (2020).
Ding, W. Y., Protty, M. B., Davies, I. G. & Lip, G. Y. H. Relationship between lipoproteins, thrombosis and atrial fibrillation. Cardiovasc. Res. https://doi.org/10.1093/cvr/cvab017 (2021).
Lee, H. C., Akhmedov, A. & Chen, C. H. Spotlight on very-low-density lipoprotein as a driver of cardiometabolic disorders: Implications for disease progression and mechanistic insights. Front. Cardiovasc. Med. 9, 993633. https://doi.org/10.3389/fcvm.2022.993633 (2022).
Lee, H. C. et al. VLDL from metabolic syndrome individuals enhanced lipid accumulation in atria with association of susceptibility to atrial fibrillation. Int. J. Mol. Sci. 17, 134. https://doi.org/10.3390/ijms17010134 (2016).
Lee, H. C. et al. Very-low-density lipoprotein of metabolic syndrome modulates gap junctions and slows cardiac conduction. Sci. Rep. 7, 12050. https://doi.org/10.1038/s41598-017-11416-5 (2017).
Shiou, Y. L. et al. Very low-density lipoproteins of metabolic syndrome modulates STIM1, suppresses store-operated calcium entry, and deranges myofilament proteins in atrial myocytes. J. Clin. Med. 8, 881. https://doi.org/10.3390/jcm8060881 (2019).
Heijman, J., Voigt, N., Nattel, S. & Dobrev, D. Cellular and molecular electrophysiology of atrial fibrillation initiation, maintenance, and progression. Circ. Res. 114, 1483–1499. https://doi.org/10.1161/circresaha.114.302226 (2014).
Goette, A. et al. EHRA/HRS/APHRS/SOLAECE expert consensus on Atrial cardiomyopathies: Definition, characterization, and clinical implication. Europace https://doi.org/10.1093/europace/euw161 (2016).
Goldberger, J. J. et al. Evaluating the atrial myopathy underlying atrial fibrillation: Identifying the arrhythmogenic and thrombogenic substrate. Circulation 132, 278–291. https://doi.org/10.1161/CIRCULATIONAHA.115.016795 (2015).
Staerk, L., Sherer, J. A., Ko, D., Benjamin, E. J. & Helm, R. H. Atrial fibrillation: Epidemiology, pathophysiology, and clinical outcomes. Circ. Res. 120, 1501–1517. https://doi.org/10.1161/circresaha.117.309732 (2017).
Zemrak, F. et al. Left atrial structure in relationship to age, sex, ethnicity, and cardiovascular risk factors. MESA (Multi-Ethnic Study of Atherosclerosis). Circ. Cardiovasc. Imaging 10, e005379. https://doi.org/10.1161/circimaging.116.005379 (2017).
Heijman, J. et al. The value of basic research insights into atrial fibrillation mechanisms as a guide to therapeutic innovation: A critical analysis. Cardiovasc. Res. 109, 467–479. https://doi.org/10.1093/cvr/cvv275 (2016).
Shulman, E. et al. Validation of PR interval length as a criterion for development of atrial fibrillation in non-Hispanic whites African Americans and Hispanics. J. Electrocardiol. 48, 703–709. https://doi.org/10.1016/j.jelectrocard.2015.04.015 (2015).
Nielsen, J. B. et al. P-wave duration and the risk of atrial fibrillation: Results from the Copenhagen ECG Study. Heart Rhythm 12, 1887–1895. https://doi.org/10.1016/j.hrthm.2015.04.026 (2015).
Ejsing, C. S. et al. Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry. Proc. Natl. Acad. Sci. U.S.A. 106, 2136–2141. https://doi.org/10.1073/pnas.0811700106 (2009).
Surma, M. A. et al. An automated shotgun lipidomics platform for high throughput, comprehensive, and quantitative analysis of blood plasma intact lipids. Eur. J. Lipid Sci. Technol. 117, 1540–1549. https://doi.org/10.1002/ejlt.201500145 (2015).
Klose, C., Surma, M. A. & Simons, K. Organellar lipidomics—Background and perspectives. Curr. Opin. Cell Biol. 25, 406–413. https://doi.org/10.1016/j.ceb.2013.03.005 (2013).
Schmitz, G., Liebisch, G. & Langmann, T. Lipidomic strategies to study structural and functional defects of ABC-transporters in cellular lipid trafficking. FEBS Lett. 580, 5597–5610. https://doi.org/10.1016/j.febslet.2006.08.014 (2006).
Lin, W. J. et al. LipidSig: A web-based tool for lipidomic data analysis. Nucleic Acids Res. 49, W336–W345. https://doi.org/10.1093/nar/gkab419 (2021).
Lang, R. M. et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 28, 1-39 e14. https://doi.org/10.1016/j.echo.2014.10.003 (2015).
Snyder, M. L., Soliman, E. Z., Whitsel, E. A., Gellert, K. S. & Heiss, G. Short-term repeatability of electrocardiographic P wave indices and PR interval. J. Electrocardiol. 47, 257–263. https://doi.org/10.1016/j.jelectrocard.2013.11.007 (2014).
Blume, G. G. et al. Left atrial function: Physiology, assessment, and clinical implications. Eur. J. Echocardiogr. 12, 421–430. https://doi.org/10.1093/ejechocard/jeq175 (2011).
Law, S. H. et al. An updated review of lysophosphatidylcholine metabolism in human diseases. Int. J. Mol. Sci. 20, 1149. https://doi.org/10.3390/ijms20051149 (2019).
Liu, P. et al. The mechanisms of lysophosphatidylcholine in the development of diseases. Life Sci. 247, 117443. https://doi.org/10.1016/j.lfs.2020.117443 (2020).
Calzada, E., Onguka, O. & Claypool, S. M. Phosphatidylethanolamine metabolism in health and disease. Int. Rev. Cell Mol. Biol. 321, 29–88. https://doi.org/10.1016/bs.ircmb.2015.10.001 (2016).
Basu Ball, W., Neff, J. K. & Gohil, V. M. The role of nonbilayer phospholipids in mitochondrial structure and function. FEBS Lett. 592, 1273–1290. https://doi.org/10.1002/1873-3468.12887 (2018).
Reza, S., Ugorski, M. & Suchanski, J. Glucosylceramide and galactosylceramide, small glycosphingolipids with significant impact on health and disease. Glycobiology 31, 1416–1434. https://doi.org/10.1093/glycob/cwab046 (2021).
Kovilakath, A. & Cowart, L. A. Sphingolipid mediators of myocardial pathology. J. Lipid Atheroscler. 9, 23–49. https://doi.org/10.12997/jla.2020.9.1.23 (2020).
Chaurasia, B. & Summers, S. A. Ceramides in metabolism: Key lipotoxic players. Annu. Rev. Physiol. 83, 303–330. https://doi.org/10.1146/annurev-physiol-031620-093815 (2021).
Choi, R. H., Tatum, S. M., Symons, J. D., Summers, S. A. & Holland, W. L. Ceramides and other sphingolipids as drivers of cardiovascular disease. Nat. Rev. Cardiol. 18, 701–711. https://doi.org/10.1038/s41569-021-00536-1 (2021).
Lands, W. E. et al. Maintenance of lower proportions of (n-6) eicosanoid precursors in phospholipids of human plasma in response to added dietary (n-3) fatty acids. Biochim. Biophys. Acta 1180, 147–162. https://doi.org/10.1016/0925-4439(92)90063-s (1992).
Chen, L. et al. Targeting lipid droplet lysophosphatidylcholine for cisplatin chemotherapy. J. Cell Mol. Med. 24, 7187–7200. https://doi.org/10.1111/jcmm.15218 (2020).
Moessinger, C., Kuerschner, L., Spandl, J., Shevchenko, A. & Thiele, C. Human lysophosphatidylcholine acyltransferases 1 and 2 are located in lipid droplets where they catalyze the formation of phosphatidylcholine. J. Biol. Chem. 286, 21330–21339. https://doi.org/10.1074/jbc.M110.202424 (2011).
Novikoff, P. M. & Yam, A. Sites of lipoprotein particles in normal rat hepatocytes. J. Cell Biol. 76, 1–11. https://doi.org/10.1083/jcb.76.1.1 (1978).
Rong, X. et al. Lpcat3-dependent production of arachidonoyl phospholipids is a key determinant of triglyceride secretion. Elife 4, e06557. https://doi.org/10.7554/eLife.06557 (2015).
Li, Z. et al. Lysophosphatidylcholine acyltransferase 3 knockdown-mediated liver lysophosphatidylcholine accumulation promotes very low density lipoprotein production by enhancing microsomal triglyceride transfer protein expression. J. Biol. Chem. 287, 20122–20131. https://doi.org/10.1074/jbc.M111.334664 (2012).
Hui, D. Y. Phospholipase A(2) enzymes in metabolic and cardiovascular diseases. Curr. Opin. Lipidol. 23, 235–240. https://doi.org/10.1097/MOL.0b013e328351b439 (2012).
Mora, S., Akinkuolie, A. O., Sandhu, R. K., Conen, D. & Albert, C. M. Paradoxical association of lipoprotein measures with incident atrial fibrillation. Circ. Arrhythmia Electrophysiol. 7, 612–619. https://doi.org/10.1161/circep.113.001378 (2014).
Meikle, P. J. et al. Statin action favors normalization of the plasma lipidome in the atherogenic mixed dyslipidemia of MetS: Potential relevance to statin-associated dysglycemia. J. Lipid Res. 56, 2381–2392. https://doi.org/10.1194/jlr.P061143 (2015).
Jain, M. K. & Ridker, P. M. Anti-inflammatory effects of statins: Clinical evidence and basic mechanisms. Nat. Rev. Drug Discov. 4, 977–987. https://doi.org/10.1038/nrd1901 (2005).
Marston, N. A. et al. Association between triglyceride lowering and reduction of cardiovascular risk across multiple lipid-lowering therapeutic classes: A systematic review and meta-regression analysis of randomized controlled trials. Circulation 140, 1308–1317. https://doi.org/10.1161/CIRCULATIONAHA.119.041998 (2019).
Johannesen, C. D. L., Mortensen, M. B., Langsted, A. & Nordestgaard, B. G. Apolipoprotein B and non-HDL cholesterol better reflect residual risk than LDL cholesterol in statin-treated patients. J. Am. Coll. Cardiol. 77, 1439–1450. https://doi.org/10.1016/j.jacc.2021.01.027 (2021).
Vallejo-Vaz, A. J., Corral, P., Schreier, L. & Ray, K. K. Triglycerides and residual risk. Curr. Opin. Endocrinol. Diabetes Obes. 27, 95–103. https://doi.org/10.1097/MED.0000000000000530 (2020).
Fauchier, L., Clementy, N. & Babuty, D. Statin therapy and atrial fibrillation: Systematic review and updated meta-analysis of published randomized controlled trials. Curr. Opin. Cardiol. 28, 7–18. https://doi.org/10.1097/HCO.0b013e32835b0956 (2013).
Kim, S. M., Kim, J. M., Shin, D. G., Kim, J. R. & Cho, K. H. Relation of atrial fibrillation (AF) and change of lipoproteins: Male patients with AF exhibited severe pro-inflammatory and pro-atherogenic properties in lipoproteins. Clin. Biochem. 47, 869–875. https://doi.org/10.1016/j.clinbiochem.2013.10.026 (2014).
Alonso, A. et al. Blood lipids and the incidence of atrial fibrillation: The multi-ethnic study of atherosclerosis and the Framingham heart study. J. Am. Heart Assoc. 3, e001211. https://doi.org/10.1161/jaha.114.001211 (2014).
Kotronen, A. et al. Hepatic stearoyl-CoA desaturase (SCD)-1 activity and diacylglycerol but not ceramide concentrations are increased in the nonalcoholic human fatty liver. Diabetes 58, 203–208. https://doi.org/10.2337/db08-1074 (2009).
Del Greco, M. F. et al. Lipidomics, atrial conduction, and body mass index. Circ. Genom. Precis. Med. 12, e002384. https://doi.org/10.1161/CIRCGEN.118.002384 (2019).
Jung, Y. et al. Lipidomic profiling reveals free fatty acid alterations in plasma from patients with atrial fibrillation. PLoS One 13, e0196709. https://doi.org/10.1371/journal.pone.0196709 (2018).
Zhou, J. et al. Comprehensive metabolomic and proteomic analyses reveal candidate biomarkers and related metabolic networks in atrial fibrillation. Metabolomics 15, 96. https://doi.org/10.1007/s11306-019-1557-7 (2019).
Mazhar, F. et al. Intensity of and adherence to lipid-lowering therapy as predictors of major adverse cardiovascular outcomes in patients with coronary heart disease. J. Am. Heart Assoc. 11, e025813. https://doi.org/10.1161/JAHA.122.025813 (2022).
Cubeddu, L. X. & Seamon, M. J. Statin withdrawal: Clinical implications and molecular mechanisms. Pharmacotherapy 26, 1288–1296. https://doi.org/10.1592/phco.26.9.1288 (2006).
Pineda, A. & Cubeddu, L. X. Statin rebound or withdrawal syndrome: Does it exist?. Curr. Atheroscler. Rep. 13, 23–30. https://doi.org/10.1007/s11883-010-0148-x (2011).
Gertz, K. et al. Withdrawal of statin treatment abrogates stroke protection in mice. Stroke 34, 551–557. https://doi.org/10.1161/01.str.0000054055.28435.bf (2003).
Suzuki, S. “Cholesterol paradox” in atrial fibrillation. Circ. J. 75, 2749–2750. https://doi.org/10.1253/circj.cj-11-1134 (2011).