Saturday, September 23, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

Association of the human gut microbiota with vascular stiffness – Scientific Reports


  • Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Karlsson, F. H. et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498, 99–103 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jamshidi, P. et al. Is there any association between gut microbiota and type 1 diabetes? A systematic review. Gut. Pathog. 11, 49 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • John, G. K. & Mullin, G. E. The gut microbiome and obesity. Curr. Oncol. Rep. 18, 45 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Lee, C. J., Sears, C. L. & Maruthur, N. Gut microbiome and its role in obesity and insulin resistance. Ann. N.Y. Acad. Sci. 1461, 37–52 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Li, J. et al. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome 5, 14 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan, Q. et al. Alterations of the gut microbiome in hypertension. Front. Cell Infect. Microbiol. 7, 381 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Avery, E. G. et al. The gut microbiome in hypertension: Recent advances and future perspectives. Circ. Res. 128, 934–950 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, H. et al. Alterations in the gut microbiome and metabolism with coronary artery disease severity. Microbiome 7, 68 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trøseid, M., Andersen, G. Ø., Broch, K. & Hov, J. R. The gut microbiome in coronary artery disease and heart failure: Current knowledge and future directions. EBioMedicine 52, 102649 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Toya, T. et al. Coronary artery disease is associated with an altered gut microbiome composition. PLoS ONE 15, e0227147 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gregory, J. C. et al. Transmission of atherosclerosis susceptibility with gut microbial transplantation. J. Biol. Chem. 290, 5647–5660 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roncal, C. et al. Trimethylamine-N-Oxide (TMAO) predicts cardiovascular mortality in peripheral artery disease. Sci. Rep. 9, 15580 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van den Munckhof, I. C. L. et al. Role of gut microbiota in chronic low-grade inflammation as potential driver for atherosclerotic cardiovascular disease: a systematic review of human studies: Impact of gut microbiota on low-grade inflammation. Obes. Rev. 19, 1719–1734 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Mozos, I. et al. Inflammatory markers for arterial stiffness in cardiovascular diseases. Front. Immunol. 8, 1058 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jia, G., Aroor, A. R. & Sowers, J. R. Arterial stiffness: A nexus between cardiac and renal disease. Cardiorenal Med. 4, 60–71 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chirinos, J. A., Segers, P., Hughes, T. & Townsend, R. Large-artery stiffness in health and disease: JACC state-of-the-art review. J. Am. Coll. Cardiol. 74, 1237–1263 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Menni, C. et al. Gut microbial diversity is associated with lower arterial stiffness in women. Eur. Heart J. 39, 2390–2397 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dinakis, E. et al. The Gut microbiota and their metabolites in human arterial stiffness. Heart Lung Circ. 30, 1716–1725 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Boeing, H., Wahrendorf, J. & Becker, N. EPIC-Germany – A source for studies into diet and risk of chronic diseases. Ann. Nutr. Metab. 43, 195–204 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nürnberger, J. et al. Can arterial stiffness parameters be measured in the sitting position?. Hypertens. Res. 34, 202–208 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Teren, A., Beutner, F., Wirkner, K., Loeffler, M. & Scholz, M. Validity, intra- and inter-observer reliability of automated devices for the assessment of ankle brachial index using photo-plethysmography. BMC Cardiovasc. Disord. 13, 81 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Birukov, A., Cuadrat, R., Polemiti, E., Eichelmann, F. & Schulze, M. B. Advanced glycation end-products, measured as skin autofluorescence, associate with vascular stiffness in diabetic, pre-diabetic and normoglycemic individuals: a cross-sectional study. Cardiovasc. Diabetol. 20, 110 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K. & Schloss, P. D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 79, 5112–5120 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cui, X. et al. Metagenomic and metabolomic analyses unveil dysbiosis of gut microbiota in chronic heart failure patients. Sci. Rep. 8, 635 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thevaranjan, N. et al. Age-associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction. Cell Host Microbe. 21, 455-466.e4 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hiippala, K., Kainulainen, V., Kalliomäki, M., Arkkila, P. & Satokari, R. Mucosal prevalence and interactions with the epithelium indicate commensalism of Sutterella spp.. Front. Microbiol. 7, 1706 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeng, X. et al. Higher risk of stroke is correlated with increased opportunistic pathogen load and reduced levels of butyrate-producing bacteria in the gut. Front. Cell Infect. Microbiol. 9, 4 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luedde, M. et al. Heart failure is associated with depletion of core intestinal microbiota. ESC Heart Fail. 4, 282–290 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mbakwa, C. A. et al. Gut microbiota and body weight in school-aged children: The KOALA birth cohort study. Obesity 26, 1767–1776 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Yutin, N. & Galperin, M. Y. A genomic update on clostridial phylogeny: Gram-negative spore formers and other misplaced clostridia. Environ. Microbiol. 15, 2631–2641 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Newman, T. M. et al. Diet, obesity, and the gut microbiome as determinants modulating metabolic outcomes in a non-human primate model. Microbiome 9, 100 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahrens, A. P. et al. A six-day, lifestyle-based immersion program mitigates cardiovascular risk factors and induces shifts in gut microbiota, specifically lachnospiraceae, ruminococcaceae faecalibacterium prausnitzii: A pilot study. Nutrients 13, 3459 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Z. et al. Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell 163, 1585–1595 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, M. et al. resveratrol attenuates trimethylamine-N-Oxide (TMAO)-induced atherosclerosis by regulating TMAO synthesis and bile acid metabolism via remodeling of the gut microbiota. mBio 7, e02210–e02215 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Z. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–63 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang, W. H. W. et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N. Engl. J. Med. 368, 1575–1584 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Siegel, E. G., Bermejo, J. L., Flade, I. & Hasslacher, C. Cardiovascular complications and composition of the intestinal microbiome in patients with type 2 diabetes. Int. J. Diabetes Clin. Res. 5, 086 (2018).


    Google Scholar
     

  • Liu, Z. et al. The intestinal microbiota associated with cardiac valve calcification differs from that of coronary artery disease. Atherosclerosis 284, 121–128 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, S. et al. Altered gut microbiome profile in patients with pulmonary arterial hypertension. Hypertension 75, 1063–1071 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, D. D. et al. The gut microbiome modulates the protective association between a Mediterranean diet and cardiometabolic disease risk. Nat. Med. 27, 333–343 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Z. et al. Impact of preservation method and 16S rRNA hypervariable region on gut microbiota profiling. mSystems 4, e00271-18 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 11, 2639–2643 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: And this is not optional. Front. Microbiol. 8, 2224 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aboyans, V. et al. Measurement and interpretation of the ankle-brachial index: a scientific statement from the American Heart Association. Circulation 126, 2890–2909 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Gauffin Cano, P., Santacruz, A., Moya, Á. & Sanz, Y. Bacteroides uniformis CECT 7771 ameliorates metabolic and immunological dysfunction in mice with high-fat-diet induced obesity. PLoS ONE 7, e41079 (2012).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morita, H. et al. Bacteroides uniformis enhances endurance exercise performance through gluconeogenesis. BioRxiv https://doi.org/10.1101/2020.03.04.975730v1 (2020).

    Article 

    Google Scholar
     

  • López-Almela, I. et al. Bacteroides uniformis combined with fiber amplifies metabolic and immune benefits in obese mice. Gut Microbes 13, 1–20 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Gómez del Pulgar, E. M., Benítez-Páez, A. & Sanz, Y. Safety Assessment of bacteroides uniformis CECT 7771, a symbiont of the gut microbiota in infants. Nutrients 12, 551 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin, R., Bermúdez-Humarán, L. G. & Langella, P. Searching for the bacterial effector: The example of the multi-skilled commensal bacterium faecalibacterium prausnitzii. Front. Microbiol. 9, 346 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thingholm, L. B. et al. Obese individuals with and without type 2 diabetes show different gut microbial functional capacity and composition. Cell Host Microbe 26, 252-264.e10 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    Stay Connected

    9FansLike
    4FollowersFollow
    0SubscribersSubscribe
    - Advertisement -spot_img

    Latest Articles

    %d bloggers like this: