Sunday, June 4, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

AT 1 inhibition mediated neuroprotection after experimental traumatic brain injury is dependent on neutrophils in male mice – Scientific Reports


  • Langlois, J. A., Rutland-Brown, W. & Wald, M. M. The epidemiology and impact of traumatic brain injury: A brief overview. J. Head Trauma Rehabil. 21, 375–378 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Morganti-Kossmann, M. C., Rancan, M., Otto, V. I., Stahel, P. F. & Kossmann, T. Role of cerebral inflammation after traumatic brain injury: A revisited concept. Shock 16, 165–177 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kelso, M. L. & Gendelman, H. E. Bridge between neuroimmunity and traumatic brain injury. Curr. Pharm. Des. 20, 4284–4298 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Timaru-Kast, R. et al. Angiotensin II receptor 1 blockage limits brain damage and improves functional outcome after brain injury in aged animals despite age-dependent reduction in AT1 expression. Front. Aging Neurosci. 11, 63. https://doi.org/10.3389/fnagi.2019.00063 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith, C. et al. The neuroinflammatory response in humans after traumatic brain injury. Neuropathol. Appl. Neurobiol. 39, 654–666. https://doi.org/10.1111/nan.12008 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Timaru-Kast, R. et al. Influence of age on brain edema formation, secondary brain damage and inflammatory response after brain trauma in mice. PLoS ONE 7, e43829. https://doi.org/10.1371/journal.pone.0043829 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Villar-Cheda, B. et al. Aging-related dysregulation of dopamine and angiotensin receptor interaction. Neurobiol. Aging 35, 1726–1738. https://doi.org/10.1016/j.neurobiolaging.2014.01.017 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Timaru-Kast, R. et al. Delayed inhibition of angiotensin II receptor type 1 reduces secondary brain damage and improves functional recovery after experimental brain trauma*. Crit. Care Med. 40, 935–944. https://doi.org/10.1097/CCM.0b013e31822f08b9 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saavedra, J. M. Brain angiotensin II: New developments, unanswered questions and therapeutic opportunities. Cell Mol. Neurobiol. 25, 485–512 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saavedra, J. M. Angiotensin II AT(1) receptor blockers ameliorate inflammatory stress: A beneficial effect for the treatment of brain disorders. Cell. Mol. Neurobiol. 32, 667–681. https://doi.org/10.1007/s10571-011-9754-6 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saavedra, J. M. et al. Brain angiotensin II, an important stress hormone: Regulatory sites and therapeutic opportunities. Ann. N. Y. Acad. Sci. 1018, 76–84 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Villapol, S. et al. Candesartan, an angiotensin II AT(1)-receptor blocker and PPAR-gamma agonist, reduces lesion volume and improves motor and memory function after traumatic brain injury in mice. Neuropsychopharmacology 37, 2817–2829. https://doi.org/10.1038/npp.2012.152 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Culman, J., Blume, A., Gohlke, P. & Unger, T. The renin-angiotensin system in the brain: Possible therapeutic implications for AT(1)-receptor blockers. J. Hum. Hypertens. 16(Suppl 3), S64–S70 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rey, P. et al. Angiotensin type-1-receptor antagonists reduce 6-hydroxydopamine toxicity for dopaminergic neurons. Neurobiol. Aging 28, 555–567. https://doi.org/10.1016/j.neurobiolaging.2006.02.018 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Borrajo, A., Rodriguez-Perez, A. I., Villar-Cheda, B., Guerra, M. J. & Labandeira-Garcia, J. L. Inhibition of the microglial response is essential for the neuroprotective effects of Rho-kinase inhibitors on MPTP-induced dopaminergic cell death. Neuropharmacology 85, 1–8. https://doi.org/10.1016/j.neuropharm.2014.05.021 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Villapol, S. & Saavedra, J. M. Neuroprotective effects of angiotensin receptor blockers. Am. J. Hypertens. 28, 289–299. https://doi.org/10.1093/ajh/hpu197 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Villapol, S., Balarezo, M. G., Affram, K., Saavedra, J. M. & Symes, A. J. Neurorestoration after traumatic brain injury through angiotensin II receptor blockage. Brain J. Neurol. https://doi.org/10.1093/brain/awv172 (2015).

    Article 

    Google Scholar
     

  • Jin, X., Ishii, H., Bai, Z., Itokazu, T. & Yamashita, T. Temporal changes in cell marker expression and cellular infiltration in a controlled cortical impact model in adult male C57BL/6 mice. PLoS ONE 7, e41892. https://doi.org/10.1371/journal.pone.0041892 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Royo, N. C., Wahl, F. & Stutzmann, J. M. Kinetics of polymorphonuclear neutrophil infiltration after a traumatic brain injury in rat. NeuroReport 10, 1363–1367. https://doi.org/10.1097/00001756-199904260-00038 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thal, S. C. & Plesnila, N. Non-invasive intraoperative monitoring of blood pressure and arterial pCO(2) during surgical anesthesia in mice. J. Neurosci. Methods 159, 261–267 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Thal, S. C. et al. Pioglitazone reduces secondary brain damage after experimental brain trauma by PPAR-gamma-independent mechanisms. J. Neurotrauma 28, 983–993 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Deacon, R. M. Measuring motor coordination in mice. J. Vis. Exp. 2013, e2609. https://doi.org/10.3791/2609 (2013).

    Article 

    Google Scholar
     

  • Hamm, R. J. Neurobehavioral assessment of outcome following traumatic brain injury in rats: An evaluation of selected measures. J. Neurotrauma 18, 1207–1216. https://doi.org/10.1089/089771501317095241 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pottker, B. et al. Traumatic brain injury causes long-term behavioral changes related to region-specific increases of cerebral blood flow. Brain Struct. Funct. 222, 4005–4021. https://doi.org/10.1007/s00429-017-1452-9 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Sebastiani, A. et al. Proneurotrophin binding to P75 neurotrophin receptor (P75ntr) is essential for brain lesion formation and functional impairment after experimental traumatic brain injury. J. Neurotrauma 32, 1599–1607. https://doi.org/10.1089/neu.2014.3751 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Tsenter, J. et al. Dynamic changes in the recovery after traumatic brain injury in mice: Effect of injury severity on T2-weighted MRI abnormalities, and motor and cognitive functions. J. Neurotrauma 25, 324–333 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Huang, C. et al. Lack of NG2 exacerbates neurological outcome and modulates glial responses after traumatic brain injury. Glia 64, 507–523. https://doi.org/10.1002/glia.22944 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Sharma, A. et al. Safety and blood sample volume and quality of a refined retro-orbital bleeding technique in rats using a lateral approach. Lab. Anim. (N. Y.) 43, 63–66. https://doi.org/10.1038/laban.432 (2014).

    Article 

    Google Scholar
     

  • Harris, N., Kunicka, J. & Kratz, A. The ADVIA 2120 hematology system: Flow cytometry-based analysis of blood and body fluids in the routine hematology laboratory. Lab. Hematol. 11, 47–61. https://doi.org/10.1532/LH96.04075 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Donat, C. K., Scott, G., Gentleman, S. M. & Sastre, M. Microglial activation in traumatic brain injury. Front. Aging Neurosci. 9, 208. https://doi.org/10.3389/fnagi.2017.00208 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luh, C. et al. Inhibition of myosin light chain kinase reduces brain edema formation after traumatic brain injury. J. Neurochem. 112, 1015–1025. https://doi.org/10.1111/j.1471-4159.2009.06514.x (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Timaru-Kast, R., Herbig, E. L., Luh, C., Engelhard, K. & Thal, S. C. Influence of age on cerebral housekeeping gene expression for normalization of quantitative PCR after acute brain injury in mice. J. Neurotrauma https://doi.org/10.1089/neu.2014.3784 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Thal, S. C., Wyschkon, S., Pieter, D., Engelhard, K. & Werner, C. Selection of endogenous control genes for normalization of gene expression analysis after experimental brain trauma in mice. J. Neurotrauma 25, 785–794 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Garcia-Bardon, A. & Thal, S. C. Normalization with corresponding naive tissue minimizes bias caused by commercial reverse transcription kits on quantitative real-time PCR results. PLoS ONE 11, e0167209. https://doi.org/10.1371/journal.pone.0167209 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Faul, F., Erdfelder, E., Buchner, A. & Lang, A. G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 41, 1149–1160. https://doi.org/10.3758/BRM.41.4.1149 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Timaru-Kast, R. et al. AT2 activation does not influence brain damage in the early phase after experimental traumatic brain injury in male mice. Sci. Rep. 12, 14280. https://doi.org/10.1038/s41598-022-18338-x (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aratani, Y. Myeloperoxidase: Its role for host defense, inflammation, and neutrophil function. Arch. Biochem. Biophys. 640, 47–52. https://doi.org/10.1016/j.abb.2018.01.004 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thal, S. C. et al. Inhibition of proteasomal glucocorticoid receptor degradation restores dexamethasone-mediated stabilization of the blood-brain barrier after traumatic brain injury. Crit. Care Med. 41, 1305–1315. https://doi.org/10.1097/CCM.0b013e31827ca494 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sebastiani, A. et al. Posttraumatic propofol neurotoxicity is mediated via the pro-brain-derived neurotrophic factor-p75 Neurotrophin receptor pathway in adult mice. Crit. Care Med. 44, e70-82. https://doi.org/10.1097/CCM.0000000000001284 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Daley, J. M., Thomay, A. A., Connolly, M. D., Reichner, J. S. & Albina, J. E. Use of Ly6G-specific monoclonal antibody to deplete neutrophils in mice. J. Leukoc. Biol. 83, 64–70. https://doi.org/10.1189/jlb.0407247 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Carr, K. D. et al. Specific depletion reveals a novel role for neutrophil-mediated protection in the liver during Listeria monocytogenes infection. Eur. J. Immunol. 41, 2666–2676. https://doi.org/10.1002/eji.201041363 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yipp, B. G. & Kubes, P. Antibodies against neutrophil LY6G do not inhibit leukocyte recruitment in mice in vivo. Blood 121, 241–242. https://doi.org/10.1182/blood-2012-09-454348 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ocuin, L. M. et al. Neutrophil IL-10 suppresses peritoneal inflammatory monocytes during polymicrobial sepsis. J. Leukoc. Biol. 89, 423–432. https://doi.org/10.1189/jlb.0810479 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Neulen, A. et al. Neutrophils mediate early cerebral cortical hypoperfusion in a murine model of subarachnoid haemorrhage. Sci. Rep. 9, 8460. https://doi.org/10.1038/s41598-019-44906-9 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bamboat, Z. M. et al. Conventional DCs reduce liver ischemia/reperfusion injury in mice via IL-10 secretion. J. Clin. Investig. 120, 559–569. https://doi.org/10.1172/JCI40008 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wojtasiak, M. et al. Depletion of Gr-1+, but not Ly6G+, immune cells exacerbates virus replication and disease in an intranasal model of herpes simplex virus type 1 infection. J. Gen. Virol. 91, 2158–2166. https://doi.org/10.1099/vir.0.021915-0 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weckbach, S. et al. Challenging the role of adaptive immunity in neurotrauma: Rag1(-/-) mice lacking mature B and T cells do not show neuroprotection after closed head injury. J. Neurotrauma 29, 1233–1242. https://doi.org/10.1089/neu.2011.2169 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fee, D. et al. Activated/effector CD4+ T cells exacerbate acute damage in the central nervous system following traumatic injury. J. Neuroimmunol. 136, 54–66. https://doi.org/10.1016/s0165-5728(03)00008-0 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mombaerts, P. et al. RAG-1-deficient mice have no mature B and T lymphocytes. Cell 68, 869–877. https://doi.org/10.1016/0092-8674(92)90030-g (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mombaerts, P. Lymphocyte development and function in T-cell receptor and RAG-1 mutant mice. Int. Rev. Immunol. 13, 43–63. https://doi.org/10.3109/08830189509061737 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rolfes, L. et al. Natural killer cells are present in Rag1(-/-) mice and promote tissue damage during the acute phase of ischemic stroke. Transl. Stroke Res. 13, 197–211. https://doi.org/10.1007/s12975-021-00923-3 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Simon, D. W. et al. The far-reaching scope of neuroinflammation after traumatic brain injury. Nat. Rev. Neurol. 13, 171–191. https://doi.org/10.1038/nrneurol.2017.13 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liao, Y., Liu, P., Guo, F., Zhang, Z. Y. & Zhang, Z. Oxidative burst of circulating neutrophils following traumatic brain injury in human. PLoS ONE 8, e68963. https://doi.org/10.1371/journal.pone.0068963 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Connell, K. E. et al. Practical murine hematopathology: A comparative review and implications for research. Comp. Med. 65, 96–113 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nemzek, J. A., Bolgos, G. L., Williams, B. A. & Remick, D. G. Differences in normal values for murine white blood cell counts and other hematological parameters based on sampling site. Inflamm. Res. 50, 523–527. https://doi.org/10.1007/PL00000229 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boivin, G. et al. Durable and controlled depletion of neutrophils in mice. Nat. Commun. 11, 2762. https://doi.org/10.1038/s41467-020-16596-9 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Botha, A. J. et al. Early neutrophil sequestration after injury: A pathogenic mechanism for multiple organ failure. J. Trauma 39, 411–417. https://doi.org/10.1097/00005373-199509000-00003 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Andriessen, T. M., Jacobs, B. & Vos, P. E. Clinical characteristics and pathophysiological mechanisms of focal and diffuse traumatic brain injury. J. Cell Mol. Med. 14, 2381–2392. https://doi.org/10.1111/j.1582-4934.2010.01164.x (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hajjar, I. et al. Effects of candesartan vs lisinopril on neurocognitive function in older adults with executive mild cognitive impairment: A randomized clinical trial. JAMA Netw. Open 3, e2012252. https://doi.org/10.1001/jamanetworkopen.2020.12252 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karve, I. P., Taylor, J. M. & Crack, P. J. The contribution of astrocytes and microglia to traumatic brain injury. Br. J. Pharmacol. 173, 692–702. https://doi.org/10.1111/bph.13125 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kenne, E., Erlandsson, A., Lindbom, L., Hillered, L. & Clausen, F. Neutrophil depletion reduces edema formation and tissue loss following traumatic brain injury in mice. J. Neuroinflamm. 9, 17. https://doi.org/10.1186/1742-2094-9-17 (2012).

    Article 

    Google Scholar
     

  • Roth, T. L. et al. Transcranial amelioration of inflammation and cell death after brain injury. Nature 505, 223–228. https://doi.org/10.1038/nature12808 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gurski, C. J. & Dittel, B. N. Myeloperoxidase as a marker to differentiate mouse monocyte/macrophage subsets. Int. J. Mol. Sci. 23, 58. https://doi.org/10.3390/ijms23158246 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Strzepa, A., Pritchard, K. A. & Dittel, B. N. Myeloperoxidase: A new player in autoimmunity. Cell Immunol 317, 1–8. https://doi.org/10.1016/j.cellimm.2017.05.002 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Corps, K. N., Roth, T. L. & McGavern, D. B. Inflammation and neuroprotection in traumatic brain injury. JAMA Neurol. 72, 355–362. https://doi.org/10.1001/jamaneurol.2014.3558 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kramer, T. J. et al. Correction to: Depletion of regulatory T cells increases T cell brain infiltration, reactive astrogliosis, and interferon-gamma gene expression in acute experimental traumatic brain injury. J. Neuroinflamm. 16, 176. https://doi.org/10.1186/s12974-019-1577-2 (2019).

    Article 

    Google Scholar
     

  • Kramer, T. J. et al. Depletion of regulatory T cells increases T cell brain infiltration, reactive astrogliosis, and interferon-gamma gene expression in acute experimental traumatic brain injury. J. Neuroinflamm. 16, 163. https://doi.org/10.1186/s12974-019-1550-0 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Okamura, A. et al. Upregulation of renin-angiotensin system during differentiation of monocytes to macrophages. J. Hypertens. 17, 537–545 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kossmann, S. et al. Angiotensin II-induced vascular dysfunction depends on interferon-gamma-driven immune cell recruitment and mutual activation of monocytes and NK-cells. Arterioscler. Thromb. Vasc. Biol. 33, 1313–1319. https://doi.org/10.1161/ATVBAHA.113.301437 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ranjbar, R. et al. The potential therapeutic use of renin-angiotensin system inhibitors in the treatment of inflammatory diseases. J. Cell. Physiol. 234, 2277–2295. https://doi.org/10.1002/jcp.27205 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Febinger, H. Y. et al. Time-dependent effects of CX3CR1 in a mouse model of mild traumatic brain injury. J. Neuroinflamm. 12, 154. https://doi.org/10.1186/s12974-015-0386-5 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Suzuki, Y. et al. Inflammation and angiotensin II. Int. J. Biochem. Cell Biol. 35, 881–900 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Toth, A. D., Turu, G., Hunyady, L. & Balla, A. Novel mechanisms of G-protein-coupled receptors functions: AT1 angiotensin receptor acts as a signaling hub and focal point of receptor cross-talk. Best Pract. Res. Clin. Endocrinol. Metab. 32, 69–82. https://doi.org/10.1016/j.beem.2018.02.003 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ito, H., Takemori, K. & Suzuki, T. Role of angiotensin II type 1 receptor in the leucocytes and endothelial cells of brain microvessels in the pathogenesis of hypertensive cerebral injury. J. Hypertens. 19, 591–597 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guzik, T. J. et al. Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J. Exp. Med. 204, 2449–2460. https://doi.org/10.1084/jem.20070657 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rodriguez-Perez, A. I., Borrajo, A., Rodriguez-Pallares, J., Guerra, M. J. & Labandeira-Garcia, J. L. Interaction between NADPH-oxidase and Rho-kinase in angiotensin II-induced microglial activation. Glia 63, 466–482. https://doi.org/10.1002/glia.22765 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Cherry, J. D., Olschowka, J. A. & O’Banion, M. K. Neuroinflammation and M2 microglia: The good, the bad, and the inflamed. J. Neuroinflamm. 11, 98. https://doi.org/10.1186/1742-2094-11-98 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Rodriguez-Perez, A. I., Dominguez-Meijide, A., Lanciego, J. L., Guerra, M. J. & Labandeira-Garcia, J. L. Dopaminergic degeneration is enhanced by chronic brain hypoperfusion and inhibited by angiotensin receptor blockage. Age (Dordr.) 35, 1675–1690. https://doi.org/10.1007/s11357-012-9470-2 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Labandeira-Garcia, J. L. et al. Dopamine-angiotensin interactions in the basal ganglia and their relevance for Parkinson’s disease. Movement Disord. 28, 1337–1342. https://doi.org/10.1002/mds.25614 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Villar-Cheda, B., Valenzuela, R., Rodriguez-Perez, A. I., Guerra, M. J. & Labandeira-Garcia, J. L. Aging-related changes in the nigral angiotensin system enhances proinflammatory and pro-oxidative markers and 6-OHDA-induced dopaminergic degeneration. Neurobiol. Aging 33(204), e201-211. https://doi.org/10.1016/j.neurobiolaging.2010.08.006 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Labandeira-Garcia, J. L. et al. Aging, Angiotensin system and dopaminergic degeneration in the substantia nigra. Aging Dis. 2, 257–274 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Neniskyte, U., Vilalta, A. & Brown, G. C. Tumour necrosis factor alpha-induced neuronal loss is mediated by microglial phagocytosis. FEBS Lett. 588, 2952–2956. https://doi.org/10.1016/j.febslet.2014.05.046 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Woodcock, T. & Morganti-Kossmann, M. C. The role of markers of inflammation in traumatic brain injury. Front. Neurol. 4, 18. https://doi.org/10.3389/fneur.2013.00018 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scherbel, U. et al. Differential acute and chronic responses of tumor necrosis factor-deficient mice to experimental brain injury. Proc. Natl. Acad. Sci. U.S.A. 96, 8721–8726 (1999).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Borrajo, A., Rodriguez-Perez, A. I., Diaz-Ruiz, C., Guerra, M. J. & Labandeira-Garcia, J. L. Microglial TNF-alpha mediates enhancement of dopaminergic degeneration by brain angiotensin. Glia 62, 145–157. https://doi.org/10.1002/glia.22595 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Lu, K. T., Wang, Y. W., Yang, J. T., Yang, Y. L. & Chen, H. I. Effect of interleukin-1 on traumatic brain injury-induced damage to hippocampal neurons. J. Neurotrauma 22, 885–895. https://doi.org/10.1089/neu.2005.22.885 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Ozen, I. et al. Interleukin-1 beta neutralization attenuates traumatic brain injury-induced microglia activation and neuronal changes in the globus pallidus. Int. J. Mol. Sci. 21, 25. https://doi.org/10.3390/ijms21020387 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Clausen, F. et al. Neutralization of interleukin-1beta reduces cerebral edema and tissue loss and improves late cognitive outcome following traumatic brain injury in mice. Eur. J. Neurosci. 34, 110–123. https://doi.org/10.1111/j.1460-9568.2011.07723.x (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Clausen, F. et al. Neutralization of interleukin-1beta modifies the inflammatory response and improves histological and cognitive outcome following traumatic brain injury in mice. Eur. J. Neurosci. 30, 385–396. https://doi.org/10.1111/j.1460-9568.2009.06820.x (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Morganti-Kossmann, M. C., Rancan, M., Stahel, P. F. & Kossmann, T. Inflammatory response in acute traumatic brain injury: A double-edged sword. Curr. Opin. Crit. Care 8, 101–105 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Hergenroeder, G. W. et al. Serum IL-6: A candidate biomarker for intracranial pressure elevation following isolated traumatic brain injury. J. Neuroinflamm. 7, 19. https://doi.org/10.1186/1742-2094-7-19 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Fielding, C. A. et al. IL-6 regulates neutrophil trafficking during acute inflammation via STAT3. J. Immunol. 181, 2189–2195. https://doi.org/10.4049/jimmunol.181.3.2189 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nataraj, C. et al. Angiotensin II regulates cellular immune responses through a calcineurin-dependent pathway. J. Clin. Investig. 104, 1693–1701. https://doi.org/10.1172/JCI7451 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vega, A., El Bekay, R., Chacon, P., Ventura, I. & Monteseirin, J. Angiotensin II induces CD62L shedding in human neutrophils. Atherosclerosis 209, 344–351. https://doi.org/10.1016/j.atherosclerosis.2009.09.067 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Takemori, K., Ito, H. & Suzuki, T. Effects of the AT1 receptor antagonist on adhesion molecule expression in leukocytes and brain microvessels of stroke-prone spontaneously hypertensive rats. Am. J. Hypertens. 13, 1233–1241 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Z. et al. Prophylactic angiotensin type 1 receptor antagonism confers neuroprotection in an aged rat model of postoperative cognitive dysfunction. Biochem. Biophys. Res. Commun. 449, 74–80. https://doi.org/10.1016/j.bbrc.2014.04.153 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bregonzio, C. et al. Anti-inflammatory effects of angiotensin II AT1 receptor antagonism prevent stress-induced gastric injury. Am. J. Physiol. Gastrointest. Liver Physiol. 285, G414-423. https://doi.org/10.1152/ajpgi.00058.2003 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Suzuki, Y. et al. Susceptibility to T cell-mediated injury in immune complex disease is linked to local activation of renin-angiotensin system: The role of NF-AT pathway. J. Immunol. 169, 4136–4146. https://doi.org/10.4049/jimmunol.169.8.4136 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Attilio, P. J. et al. Transcriptomic analysis of mouse brain after traumatic brain injury reveals that the angiotensin receptor blocker candesartan acts through novel pathways. Front. Neurosci. 15, 636259. https://doi.org/10.3389/fnins.2021.636259 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    Stay Connected

    9FansLike
    4FollowersFollow
    0SubscribersSubscribe
    - Advertisement -spot_img

    Latest Articles

    %d bloggers like this: