Monday, October 2, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

Baseline levels of miR-223-3p correlate with the effectiveness of electroconvulsive therapy in patients with major depression – Translational Psychiatry


  • Kolshus E, Ryan KM, Blackshields G, Smyth P, Sheils O, McLoughlin DM. Peripheral blood microRNA and VEGFA mRNA changes following electroconvulsive therapy: implications for psychotic depression. Acta Psychiatr Scand. 2017;136:594–606.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Philip NS, Carpenter LL, Tyrka AR, Price LH. Pharmacologic approaches to treatment resistant depression: a re-examination for the modern era. Expert Opin Pharmacother. 2010;11:709–22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fries GR, Zhang W, Benevenuto D, Quevedo J. MicroRNAs in major depressive disorder. Adv Exp Med Biol. 2019;1118:175–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Otte C, Gold SM, Penninx BW, Pariante CM, Etkin A, Fava M, et al. Major depressive disorder. Nat Rev Dis Prim. 2016;2:16065.

    Article 
    PubMed 

    Google Scholar
     

  • Dattani S, Rodés-Guirao L, Ritchie H, Roser M. Mental health. Our World in Data. 2023. Published online at OurWorldInData.org. Retrieved from: https://ourworldindata.org/mental-health.

  • Lin C-Y, Hung S-Y, Chen H-T, Tsou H-K, Fong Y-C, Wang S-W, et al. Brain-derived neurotrophic factor increases vascular endothelial growth factor expression and enhances angiogenesis in human chondrosarcoma cells. Biochem Pharmacol. 2014;91:522–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miranda M, Morici JF, Zanoni MB, Bekinschtein P. Brain-derived neurotrophic factor: a key molecule for memory in the healthy and the pathological brain. Front Cell Neurosci. 2019;13:363.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Faust K, Vajkoczy P, Xi B, Harnack D. The effects of deep brain stimulation of the subthalamic nucleus on vascular endothelial growth factor, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor in a rat model of Parkinson’s disease. Stereotact Funct Neurosurg. 2021;99:256–66.

    Article 
    PubMed 

    Google Scholar
     

  • Nøhr AK, Lindow M, Forsingdal A, Demharter S, Nielsen T, Buller R, et al. A large-scale genome-wide gene expression analysis in peripheral blood identifies very few differentially expressed genes related to antidepressant treatment and response in patients with major depressive disorder. Neuropsychopharmacology. 2021;46:1324–32.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma Y, Rosenheck R, Ye B, Fan N, He H. Effectiveness of electroconvulsive therapy in patients with “less treatment‐resistant” depression by the Maudsley Staging Model. Brain Behav. 2020;10:e01654.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cano M, Martínez-Zalacaín I, Bernabéu-Sanz Á, Contreras-Rodríguez O, Hernández-Ribas R, Via E, et al. Brain volumetric and metabolic correlates of electroconvulsive therapy for treatment-resistant depression: a longitudinal neuroimaging study. Transl Psychiatry. 2017;7:e1023.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kerner N, Prudic J. Current electroconvulsive therapy practice and research in the geriatric population. Neuropsychiatry. 2014;4:33–54.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leaver AM, Espinoza R, Wade B, Narr KL. Parsing the network mechanisms of electroconvulsive therapy. Biol Psychiatry. 2022;92:193–203.

    Article 
    PubMed 

    Google Scholar
     

  • Broderick JA, Zamore PD. MicroRNA therapeutics. Gene Ther. 2011;18:1104–10.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mullany LE, Herrick JS, Wolff RK, Stevens JR, Samowitz W, Slattery ML. MicroRNA-transcription factor interactions and their combined effect on target gene expression in colon cancer cases. Genes Chromosomes Cancer. 2018;57:192–202.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Treiber T, Treiber N, Meister G. Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat Rev Mol Cell Biol. 2019;20:5–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dwivedi Y. MicroRNAs in depression and suicide: recent insights and future perspectives. J Affect Disord. 2018;240:146–54.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou L, Zhu Y, Chen W, Tang Y. Emerging role of microRNAs in major depressive disorder and its implication on diagnosis and therapeutic response. J Affect Disord. 2021;286:80–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bayraktar R, Van Roosbroeck K, Calin GA. Cell‐to‐cell communication: microRNAs as hormones. Mol Oncol. 2017;11:1673–86.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jose AM. Movement of regulatory RNA between animal cells. Genesis. 2015;53:395–416.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mustapic M, Eitan E, Werner JK, Berkowitz ST, Lazaropoulos MP, Tran J, et al. Plasma extracellular vesicles enriched for neuronal origin: a potential window into brain pathologic processes. Front Neurosci. 2017;11:278.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goldberg M, Islam MR, Kerimoglu C, Lancelin C, Gisa V, Burkhardt S, et al. Exercise as a model to identify microRNAs linked to human cognition: a role for microRNA-409 and microRNA-501. Transl Psychiatry. 2021;11:1–13.

    Article 

    Google Scholar
     

  • O’Connor RM, Dinan TG, Cryan JF. Little things on which happiness depends: microRNAs as novel therapeutic targets for the treatment of anxiety and depression. Mol Psychiatry. 2012;17:359–76.

    Article 
    PubMed 

    Google Scholar
     

  • Gururajan A, Naughton ME, Scott KA, O’Connor RM, Moloney G, Clarke G, et al. MicroRNAs as biomarkers for major depression: a role for let-7b and let-7c. Transl Psychiatry. 2016;6:e862.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roy B, Yoshino Y, Allen L, Prall K, Schell G, Dwivedi Y. Exploiting circulating micrornas as biomarkers in psychiatric disorders. Mol Diagn Ther. 2020;24:279–98.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Borza T, Engedal K, Bergh S, Benth JŠ, Selbæk G. The course of depression in late life as measured by the Montgomery and Asberg Depression Rating Scale in an observational study of hospitalized patients. BMC Psychiatry. 2015;15:191.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kruse JL, Olmstead R, Hellemann G, Wade B, Jiang J, Vasavada MM, et al. Inflammation and depression treatment response to electroconvulsive therapy: sex-specific role of interleukin-8. Brain Behav Immun. 2020;89:59–66.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:R25.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinforma. 2008;9:559.

    Article 

    Google Scholar
     

  • Risso D, Ngai J, Speed TP, Dudoit S. Normalization of RNA-seq data using factor analysis of control genes or samples. Nat Biotechnol. 2014;32:896–902.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Islam MR, Kaurani L, Berulava T, Heilbronner U, Budde M, Centeno TP, et al. A microRNA signature that correlates with cognition and is a target against cognitive decline. EMBO Mol Med. 2021;13:e13659.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gutiérrez-Sacristán A, Grosdidier S, Valverde O, Torrens M, Bravo À, Piñero J, et al. PsyGeNET: a knowledge platform on psychiatric disorders and their genes. Bioinformatics. 2015;31:3075–7.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cuomo-Haymour N, Kaiser S, Hartmann-Riemer M, Guetter K, Klaus F, Cathomas F, et al. Differential expression of serum extracellular vesicle microRNAs and analysis of target-gene pathways in major depressive disorder. Biomark Neuropsychiatry. 2022;6:100049.

    Article 

    Google Scholar
     

  • Pirnia T, Joshi SH, Leaver AM, Vasavada M, Njau S, Woods RP, et al. Electroconvulsive therapy and structural neuroplasticity in neocortical, limbic and paralimbic cortex. Transl Psychiatry. 2016;6:e832.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Inta D, Lima-Ojeda JM, Lau T, Tang W, Dormann C, Sprengel R, et al. Electroconvulsive therapy induces neurogenesis in frontal rat brain areas. PLoS ONE. 2013;8:e69869.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Järventausta K, Sorri A, Kampman O, Björkqvist M, Tuohimaa K, Hämäläinen M, et al. Changes in interleukin-6 levels during electroconvulsive therapy may reflect the therapeutic response in major depression. Acta Psychiatr Scand. 2017;135:87–92.

    Article 
    PubMed 

    Google Scholar
     

  • Kaufmann FN, Costa AP, Ghisleni G, Diaz AP, Rodrigues ALS, Peluffo H, et al. NLRP3 inflammasome-driven pathways in depression: clinical and preclinical findings. Brain Behav Immun. 2017;64:367–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Muhammad RN, Ahmed LA, Abdul Salam RM, Ahmed KA, Attia AS. Crosstalk among NLRP3 inflammasome, ETBR signaling, and miRNAs in stress-induced depression-like behavior: a modulatory role for SGLT2 inhibitors. Neurotherapeutics. 2021;18:2664–81.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Borrione L, Bellini H, Razza LB, Avila AG, Baeken C, Brem A-K, et al. Precision non-implantable neuromodulation therapies: a perspective for the depressed brain. Braz J Psychiatry. 2020;42:403–19.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Diermen L, van den Ameele S, Kamperman AM, Sabbe BCG, Vermeulen T, Schrijvers D, et al. Prediction of electroconvulsive therapy response and remission in major depression: meta-analysis. Br J Psychiatry. 2018;212:71–80.

    Article 
    PubMed 

    Google Scholar
     

  • van Diermen L, Poljac E, Van der Mast R, Plasmans K, Van den Ameele S, Heijnen W, et al. Toward targeted ECT: the interdependence of predictors of treatment response in depression further explained. J Clin Psychiatry. 2020;82:20m13287.

    PubMed 

    Google Scholar
     

  • Belge J-B, van Diermen L, Sabbe B, Parizel P, Morrens M, Coppens V, et al. Inflammation, hippocampal volume, and therapeutic outcome following electroconvulsive therapy in depressive patients: a pilot study. Neuropsychobiology. 2020;79:222–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blanco I, Conant K. Extracellular matrix remodeling with stress and depression: studies in human, rodent and zebrafish models. Eur J Neurosci. 2021;53:3879–88.

    Article 
    PubMed 

    Google Scholar
     

  • Schoenfeld TJ, McCausland HC, Morris HD, Padmanaban V, Cameron HA. Stress and loss of adult neurogenesis differentially reduce hippocampal volume. Biol Psychiatry. 2017;82:914–23.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Madsen TM, Treschow A, Bengzon J, Bolwig TG, Lindvall O, Tingström A. Increased neurogenesis in a model of electroconvulsive therapy. Biol Psychiatry. 2000;47:1043–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ousdal OT, Brancati GE, Kessler U, Erchinger V, Dale AM, Abbott C, et al. The neurobiological effects of electroconvulsive therapy studied through magnetic resonance: what have we learned, and where do we go? Biol Psychiatry. 2022;91:540–9.

    Article 
    PubMed 

    Google Scholar
     

  • Argyelan M, Oltedal L, Deng Z-D, Wade B, Bikson M, Joanlanne A, et al. Electric field causes volumetric changes in the human brain. eLife. 2019;8:e49115.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu Y, Liu H, Li F, Sun N, Ren Y, Liu Z, et al. A polymorphism in the microRNA-30e precursor associated with major depressive disorder risk and P300 waveform. J Affect Disord. 2010;127:332–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gorinski N, Bijata M, Prasad S, Wirth A, Abdel Galil D, Zeug A, et al. Attenuated palmitoylation of serotonin receptor 5-HT1A affects receptor function and contributes to depression-like behaviors. Nat Commun. 2019;10:3924.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Al-Harbi KS. Treatment-resistant depression: therapeutic trends, challenges, and future directions. Patient Prefer Adherence. 2012;6:369–88.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keller MB. Issues in treatment-resistant depression. J Clin Psychiatry. 2005;66:5–12.

    CAS 
    PubMed 

    Google Scholar
     

  • Jiao P, Wang X-P, Luoreng Z-M, Yang J, Jia L, Ma Y, et al. miR-223: an effective regulator of immune cell differentiation and inflammation. Int J Biol Sci. 2021;17:2308–22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ali S, Khan MS, Wani JA, Faiz S, Rehman MU, Majid S, et al. Chapter 13 – miRNAs: the genetic regulators of immunity. In: Rehman MU, Arafah A, Ali MDN, Ali S, editors. A Molecular Approach to Immunogenetics, Academic Press; 2022. p. 299–325. https://doi.org/10.1016/B978-0-323-90053-9.00003-8, https://www.sciencedirect.com/science/article/pii/B9780323900539000038.

  • Bauernfeind F, Rieger A, Schildberg FA, Knolle PA, Schmid-Burgk JL, Hornung V. NLRP3 inflammasome activity is negatively controlled by miR-223. J Immunol. 2012;189:4175–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Neudecker V, Brodsky KS, Clambey ET, Schmidt EP, Packard TA, Davenport B, et al. Neutrophil transfer of miR-223 to lung epithelial cells dampens acute lung injury in mice. Sci Transl Med. 2017;9:eaah5360.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuan S, Wu Q, Wang Z, Che Y, Zheng S, Chen Y, et al. miR-223: an immune regulator in infectious disorders. Front Immunol. 2021;12:781815.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qu H, Liu R, Chen J, Zheng L, Chen R. Aerobic exercise inhibits CUMS-depressed mice hippocampal inflammatory response via activating hippocampal miR-223/TLR4/MyD88-NF-κB pathway. Int J Environ Res Public Health. 2020;17:2676.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Swanson KV, Deng M, Ting JP-Y. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol. 2019;19:477–89.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alcocer-Gómez E, de Miguel M, Casas-Barquero N, Núñez-Vasco J, Sánchez-Alcazar JA, Fernández-Rodríguez A, et al. NLRP3 inflammasome is activated in mononuclear blood cells from patients with major depressive disorder. Brain Behav Immun. 2014;36:111–7.

    Article 
    PubMed 

    Google Scholar
     

  • Iwata M, Ota KT, Duman RS. The inflammasome: pathways linking psychological stress, depression, and systemic illnesses. Brain Behav Immun. 2013;31:105–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tian H, Li G, Xu G, Liu J, Wan X, Zhang J, et al. Inflammatory cytokines derived from peripheral blood contribute to the modified electroconvulsive therapy-induced cognitive deficits in major depressive disorder. Eur Arch Psychiatry Clin Neurosci. 2021;271:475–85.

    Article 
    PubMed 

    Google Scholar
     

  • Marsland AL, Gianaros PJ, Abramowitch SM, Manuck SB, Hariri AR. Interleukin-6 covaries inversely with hippocampal grey matter volume in middle-aged adults. Biol Psychiatry. 2008;64:484–90.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roohi E, Jaafari N, Hashemian F. On inflammatory hypothesis of depression: what is the role of IL-6 in the middle of the chaos? J Neuroinflammation. 2021;18:45.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beurel E, Toups M, Nemeroff CB. The bidirectional relationship of depression and inflammation: double trouble. Neuron. 2020;107:234–56.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee C-H, Giuliani F. The role of inflammation in depression and fatigue. Front Immunol. 2019;10:1696.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gay F, Romeo B, Martelli C, Benyamina A, Hamdani N. Cytokines changes associated with electroconvulsive therapy in patients with treatment-resistant depression: a meta-analysis. Psychiatry Res. 2021;297:113735.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dahl J, Ormstad H, Aass HCD, Sandvik L, Malt UF, Andreassen OA. Recovery from major depressive disorder episode after non-pharmacological treatment is associated with normalized cytokine levels. Acta Psychiatr Scand. 2016;134:40–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moreira FP, Cardoso T, de A, Mondin TC, Souza LD, de M, et al. The effect of proinflammatory cytokines in cognitive behavioral therapy. J Neuroimmunol. 2015;285:143–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yrondi A, Sporer M, Péran P, Schmitt L, Arbus C, Sauvaget A. Electroconvulsive therapy, depression, the immune system and inflammation: a systematic review. Brain Stimul. 2018;11:29–51.

    Article 
    PubMed 

    Google Scholar
     

  • Hestad KA, Tønseth S, Støen CD, Ueland T, Aukrust P. Raised plasma levels of tumor necrosis factor alpha in patients with depression: normalization during electroconvulsive therapy. J ECT. 2003;19:183–8.

    Article 
    PubMed 

    Google Scholar
     

  • Das S, Halushka MK. Extracellular vesicle microRNA transfer in cardiovascular disease. Cardiovasc Pathol. 2015;24:199–206.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu B, Zhang Y, Du X-F, Li J, Zi H-X, Bu J-W, et al. Neurons secrete miR-132-containing exosomes to regulate brain vascular integrity. Cell Res. 2017;27:882–97.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Men Y, Yelick J, Jin S, Tian Y, Chiang MSR, Higashimori H, et al. Exosome reporter mice reveal the involvement of exosomes in mediating neuron to astroglia communication in the CNS. Nat Commun. 2019;10:4136.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nogueras-Ortiz CJ, Mahairaki V, Delgado-Peraza F, Das D, Avgerinos K, Eren E, et al. Astrocyte- and neuron-derived extracellular vesicles from Alzheimer’s disease patients effect complement-mediated neurotoxicity. Cells. 2020;9:1618.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Badhwar A, Haqqani AS. Biomarker potential of brain‐secreted extracellular vesicles in blood in Alzheimer’s disease. Alzheimers Dement. 2020;12:e12001.


    Google Scholar
     

  • Brymer KJ, Romay-Tallon R, Allen J, Caruncho HJ, Kalynchuk LE. Exploring the potential antidepressant mechanisms of TNFα antagonists. Front Neurosci. 2019;13:98.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raison CL, Rutherford RE, Woolwine BJ, Shuo C, Schettler P, Drake DF, et al. A randomized controlled trial of the tumor necrosis factor-alpha antagonist infliximab in treatment resistant depression: role of baseline inflammatory biomarkers. JAMA Psychiatry. 2013;70:31–41.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ye L, Xiao X, Xu Y, Zheng C, Chen S, Luo T, et al. Prelimbic cortex miR-34a contributes to (2R,6R)-hydroxynorketamine-mediated antidepressant-relevant actions. Neuropharmacology. 2022;208:108984.

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    Stay Connected

    9FansLike
    4FollowersFollow
    0SubscribersSubscribe
    - Advertisement -spot_img

    Latest Articles

    %d bloggers like this: