Sunday, September 24, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

Bidirectional genetic overlap between autism spectrum disorder and cognitive traits – Translational Psychiatry


  • Battle DE. Diagnostic and statistical manual of mental disorders (DSM). Codas. 2013;25:191–2.

    PubMed 

    Google Scholar
     

  • Maenner MJ, Shaw KA, Bakian AV, Bilder DA, Durkin MS, Esler A, et al. Prevalence and characteristics of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 sites, United States, 2018. MMWR Surveill Summ. 2021;70:1–16.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Billeiter KB, Froiland JM. Diversity of intelligence is the norm within the autism spectrum: full scale intelligence scores among children with ASD. Child Psychiatry Hum Dev. 2023;54:1094–101.

    PubMed 

    Google Scholar
     

  • Ben-Itzchak E, Watson LR, Zachor DA. Cognitive ability is associated with different outcome trajectories in autism spectrum disorders. J Autism Dev Disord. 2014;44:2221–9.

    PubMed 

    Google Scholar
     

  • Masataka N. Implications of the idea of neurodiversity for understanding the origins of developmental disorders. Phys Life Rev. 2017;20:85–108.

    PubMed 

    Google Scholar
     

  • Bai D, Yip BHK, Windham GC, Sourander A, Francis R, Yoffe R, et al. Association of genetic and environmental factors with autism in a 5-country cohort. JAMA Psychiatry. 2019;76:1035–43.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sandin S, Lichtenstein P, Kuja-Halkola R, Hultman C, Larsson H, Reichenberg A. The heritability of autism spectrum disorder. JAMA. 2017;318:1182–4.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sebat J, Lakshmi B, Malhotra D, Troge J, Lese-Martin C, Walsh T, et al. Strong association of de novo copy number mutations with autism. Science. 2007;316:445–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iossifov I, O’Roak BJ, Sanders SJ, Ronemus M, Krumm N, Levy D, et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature. 2014;515:216–21.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grove J, Ripke S, Als TD, Mattheisen M, Walters RK, Won H, et al. Identification of common genetic risk variants for autism spectrum disorder. Nat Genet. 2019;51:431–44.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, et al. Finding the missing heritability of complex diseases. Nature. 2009;461:747–53.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Torske T, Naerland T, Bettella F, Bjella T, Malt E, Hoyland AL, et al. Autism spectrum disorder polygenic scores are associated with every day executive function in children admitted for clinical assessment. Autism Res. 2020;13:207–20.

    PubMed 

    Google Scholar
     

  • LaBianca S, LaBianca J, Pagsberg AK, Jakobsen KD, Appadurai V, Buil A, et al. Copy number variants and polygenic risk scores predict need of care in autism and/or ADHD families. J Autism Dev Disord. 2021;51:276–85.

    PubMed 

    Google Scholar
     

  • Polderman TJ, Benyamin B, de Leeuw CA, Sullivan PF, van Bochoven A, Visscher PM, et al. Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nat Genet. 2015;47:702–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Lee JJ, Wedow R, Okbay A, Kong E, Maghzian O, Zacher M, et al. Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nat Genet. 2018;50:1112–21.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jansen PR, Nagel M, Watanabe K, Wei Y, Savage JE, de Leeuw CA, et al. Genome-wide meta-analysis of brain volume identifies genomic loci and genes shared with intelligence. Nat Commun. 2020;11:5606.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fombonne E, Roge B, Claverie J, Courty S, Fremolle J. Microcephaly and macrocephaly in autism. J Autism Dev Disord. 1999;29:113–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Pagnozzi AM, Conti E, Calderoni S, Fripp J, Rose SE. A systematic review of structural MRI biomarkers in autism spectrum disorder: a machine learning perspective. Int J Dev Neurosci. 2018;71:68–82.

    PubMed 

    Google Scholar
     

  • Lee JJ, McGue M, Iacono WG, Michael AM, Chabris CF. The causal influence of brain size on human intelligence: evidence from within-family phenotypic associations and GWAS modeling. Intelligence. 2019;75:48–58.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fetit R, Hillary RF, Price DJ, Lawrie SM. The neuropathology of autism: a systematic review of post-mortem studies of autism and related disorders. Neurosci Biobehav Rev. 2021;129:35–62.

    PubMed 

    Google Scholar
     

  • Carper RA, Courchesne E. Inverse correlation between frontal lobe and cerebellum sizes in children with autism. Brain. 2000;123:836–44.

    PubMed 

    Google Scholar
     

  • Chiurazzi P, Kiani AK, Miertus J, Paolacci S, Barati S, Manara E, et al. Genetic analysis of intellectual disability and autism. Acta Biomed. 2020;91:e2020003.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jensen M, Smolen C, Girirajan S. Gene discoveries in autism are biased towards comorbidity with intellectual disability. J Med Genet. 2020;57:647–52.

    PubMed 

    Google Scholar
     

  • Russell G, Mandy W, Elliott D, White R, Pittwood T, Ford T. Selection bias on intellectual ability in autism research: a cross-sectional review and meta-analysis. Mol Autism. 2019;10:9.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clarke TK, Lupton MK, Fernandez-Pujals AM, Starr J, Davies G, Cox S, et al. Common polygenic risk for autism spectrum disorder (ASD) is associated with cognitive ability in the general population. Mol Psychiatry. 2016;21:419–25.

    PubMed 

    Google Scholar
     

  • Bulik-Sullivan B, Finucane HK, Anttila V, Gusev A, Day FR, Loh PR, et al. An atlas of genetic correlations across human diseases and traits. Nat Genet. 2015;47:1236–41.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim YR, Song DY, Bong G, Han JH, Yoo HJ. Loss of acquired skills: regression in young children with autism spectrum disorders. Soa Chongsonyon Chongsin Uihak. 2023;34:51–56.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tan C, Frewer V, Cox G, Williams K, Ure A. Prevalence and age of onset of regression in children with autism spectrum disorder: a systematic review and meta-analytical update. Autism Res. 2021;14:582–98.

    PubMed 

    Google Scholar
     

  • Vivanti G, Tao S, Lyall K, Robins DL, Shea LL. The prevalence and incidence of early-onset dementia among adults with autism spectrum disorder. Autism Res. 2021;14:2189–99.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smeland OB, Bahrami S, Frei O, Shadrin A, O’Connell K, Savage J, et al. Genome-wide analysis reveals extensive genetic overlap between schizophrenia, bipolar disorder, and intelligence. Mol Psychiatry. 2020;25:844–53.

    CAS 
    PubMed 

    Google Scholar
     

  • O’Connell KS, Shadrin A, Smeland OB, Bahrami S, Frei O, Bettella F, et al. Identification of genetic loci shared between attention-deficit/hyperactivity disorder, intelligence, and educational attainment. Biol Psychiatry. 2020;87:1052–62.

    CAS 
    PubMed 

    Google Scholar
     

  • Bahrami S, Shadrin A, Frei O, O’Connell KS, Bettella F, Krull F, et al. Genetic loci shared between major depression and intelligence with mixed directions of effect. Nat Hum Behav. 2021;5:795–801.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frei O, Holland D, Smeland OB, Shadrin AA, Fan CC, Maeland S, et al. Bivariate causal mixture model quantifies polygenic overlap between complex traits beyond genetic correlation. Nat Commun. 2019;10:2417.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bulik-Sullivan BK, Loh PR, Finucane HK, Ripke S, Yang J, Patterson N, et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet. 2015;47:291.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smeland OB, Frei O, Shadrin A, O’Connell K, Fan CC, Bahrami S, et al. Discovery of shared genomic loci using the conditional false discovery rate approach. Hum Genet. 2020;139:85–94.

    CAS 
    PubMed 

    Google Scholar
     

  • Watanabe K, Taskesen E, van Bochoven A, Posthuma D. FUMA: functional mapping and annotation of genetic associations. Eur Neuropsychopharmacol. 2019;29:S789–90.


    Google Scholar
     

  • Krapohl E, Rimfeld K, Shakeshaft NG, Trzaskowski M, McMillan A, Pingault JB, et al. The high heritability of educational achievement reflects many genetically influenced traits, not just intelligence. Proc Natl Acad Sci USA. 2014;111:15273–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Warrier V, Zhang X, Reed P, Havdahl A, Moore TM, Cliquet F, et al. Genetic correlates of phenotypic heterogeneity in autism. Nat Genet. 2022;54:1293–304.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Watanabe K, Taskesen E, van Bochoven A, Posthuma D. Functional mapping and annotation of genetic associations with FUMA. Nat Commun. 2017;8:1826.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Day FR, Ong KK, Perry JRB. Elucidating the genetic basis of social interaction and isolation. Nat Commun. 2018;9:2457.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Savage JE, Jansen PR, Stringer S, Watanabe K, Bryois J, de Leeuw CA, et al. Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence. Nat Genet. 2018;50:912–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pedersen CB, Bybjerg-Grauholm J, Pedersen MG, Grove J, Agerbo E, Bækvad-Hansen M, et al. The iPSYCH2012 case-cohort sample: new directions for unravelling genetic and environmental architectures of severe mental disorders. Mol Psychiatry. 2018;23:6–14.

    CAS 
    PubMed 

    Google Scholar
     

  • Cross-Disorder Group of the Psychiatric Genomics C, Lee SH, Ripke S, Neale BM, Faraone SV, Purcell SM, et al. Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nat Genet. 2013;45:984–94.


    Google Scholar
     

  • Fry A, Littlejohns TJ, Sudlow C, Doherty N, Adamska L, Sprosen T, et al. Comparison of sociodemographic and health-related characteristics of UK Biobank participants with those of the general population. Am J Epidemiol. 2017;186:1026–34.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Binfield P. At PLoS ONE we’re batty about bats. PLoS: Public Library of Science, Vol. 2009; 2008, p Web log message.

  • MacArthur J, Bowler E, Cerezo M, Gil L, Hall P, Hastings E, et al. The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). Nucleic Acids Res. 2017;45:D896–D901.

    CAS 
    PubMed 

    Google Scholar
     

  • Andreassen OA, Djurovic S, Thompson WK, Schork AJ, Kendler KS, O’Donovan MC, et al. Improved detection of common variants associated with schizophrenia by leveraging pleiotropy with cardiovascular-disease risk factors. Am J Hum Genet. 2013;92:197–209.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bulik-Sullivan BK, Loh PR, Finucane HK, Ripke S, Yang J, Schizophrenia Working Group of the Psychiatric Genomics C. et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet. 2015;47:291–5.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Werme J, van der Sluis S, Posthuma D, de Leeuw CA. An integrated framework for local genetic correlation analysis. Nat Genet. 2022;54:274–82.

    CAS 
    PubMed 

    Google Scholar
     

  • Consortium GT, Laboratory DA, Coordinating Center-Analysis Working G, Statistical Methods groups-Analysis Working G, Enhancing Gg, Fund NIHC. Genetic effects on gene expression across human tissues. Nature. 2017;550:204–13.


    Google Scholar
     

  • Smeland OB, Frei O, Dale AM, Andreassen OA. The polygenic architecture of schizophrenia – rethinking pathogenesis and nosology. Nat Rev Neurol. 2020;16:366–79.

    PubMed 

    Google Scholar
     

  • Crespi BJ. Autism as a disorder of high Intelligence. Front Neurosci. 2016;10:300.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karpinski RI, Kinase Kolb AM, Tetreault NA, Borowski TB. High intelligence: a risk factor for psychological and physiological overexcitabilities. Intelligence. 2018;66:8–23.


    Google Scholar
     

  • Le Hellard S, Wang Y, Witoelar A, Zuber V, Bettella F, Hugdahl K, et al. Identification of gene loci that overlap between schizophrenia and educational attainment. Schizophr Bull. 2017;43:654–64.

    PubMed 

    Google Scholar
     

  • Marien P, Borgatti R. Language and the cerebellum. Handb Clin Neurol. 2018;154:181–202.

    PubMed 

    Google Scholar
     

  • Su LD, Xu FX, Wang XT, Cai XY, Shen Y. Cerebellar dysfunction, cerebro-cerebellar connectivity and autism spectrum disorders. Neuroscience. 2021;462:320–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Stoodley CJ, D’Mello AM, Ellegood J, Jakkamsetti V, Liu P, Nebel MB, et al. Altered cerebellar connectivity in autism and cerebellar-mediated rescue of autism-related behaviors in mice. Nat Neurosci. 2017;20:1744–51.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhat AN. Motor impairment increases in children with autism spectrum disorder as a function of social communication, cognitive and functional impairment, repetitive behavior severity, and comorbid diagnoses: a SPARK study report. Autism Res. 2021;14:202–19.

    PubMed 

    Google Scholar
     

  • Elvsashagen T, Bahrami S, van der Meer D, Agartz I, Alnaes D, Barch DM, et al. The genetic architecture of human brainstem structures and their involvement in common brain disorders. Nat Commun. 2020;11:4016.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin Lorenzo S, Nalesso V, Chevalier C, Birling MC, Herault Y. Targeting the RHOA pathway improves learning and memory in adult Kctd13 and 16p11.2 deletion mouse models. Mol Autism. 2021;12:1.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Happe F. Why are savant skills and special talents associated with autism? World Psychiatry. 2018;17:280–1.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Avgerinos KI, Spyrou N, Bougioukas KI, Kapogiannis D. Effects of creatine supplementation on cognitive function of healthy individuals: A systematic review of randomized controlled trials. Exp Gerontol. 2018;108:166–73.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Y, Jia A, Cao Y, Hu X, Wang Y, Yang Q, et al. Hippo kinases MST1/2 regulate immune cell functions in cancer, infection, and autoimmune diseases. Crit Rev Eukaryot Gene Expr. 2020;30:427–42.

    PubMed 

    Google Scholar
     

  • Pangrazzi L, Balasco L, Bozzi Y. Oxidative stress and immune system dysfunction in autism spectrum disorders. Int J Mol Sci. 2020;21:3293.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • McAfoose J, Baune BT. Evidence for a cytokine model of cognitive function. Neurosci Biobehav Rev. 2009;33:355–66.

    CAS 
    PubMed 

    Google Scholar
     

  • Yirmiya R, Goshen I. Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain Behav Immun. 2011;25:181–213.

    CAS 
    PubMed 

    Google Scholar
     

  • Gall Z, Szekely O. Role of vitamin D in cognitive dysfunction: new molecular concepts and discrepancies between animal and human findings. Nutrients. 2021;13:3672.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Z, Ding R, Wang J. The association between vitamin D status and autism spectrum disorder (ASD): a systematic review and meta-analysis. Nutrients. 2020;13:86.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Veenit V, Riccio O, Sandi C. CRHR1 links peripuberty stress with deficits in social and stress-coping behaviors. J Psychiatr Res. 2014;53:1–7.

    PubMed 

    Google Scholar
     

  • Chou KL, Cacioppo JT, Kumari M, Song YQ. Influence of social environment on loneliness in older adults: Moderation by polymorphism in the CRHR1. Am J Geriatr Psychiatry. 2014;22:510–8.

    PubMed 

    Google Scholar
     

  • Wang XD, Chen Y, Wolf M, Wagner KV, Liebl C, Scharf SH, et al. Forebrain CRHR1 deficiency attenuates chronic stress-induced cognitive deficits and dendritic remodeling. Neurobiol Dis. 2011;42:300–10.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abrahams BS, Arking DE, Campbell DB, Mefford HC, Morrow EM, Weiss LA, et al. SFARI Gene 2.0: a community-driven knowledgebase for the autism spectrum disorders (ASDs). Mol Autism. 2013;4:36.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moreno-Igoa M, Hernandez-Charro B, Bengoa-Alonso A, Perez-Juana-del-Casal A, Romero-Ibarra C, Nieva-Echebarria B, et al. KANSL1 gene disruption associated with the full clinical spectrum of 17q21.31 microdeletion syndrome. BMC Med Genet. 2015;16:68.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giannini LAA, Bulk M, Kenkhuis B, Rajicic A, Melhem S, Hegeman-Kleinn I, et al. Cortical iron accumulation in MAPT- and C9orf 72-associated frontotemporal lobar degeneration. Brain Pathol. 2023;33:e13158.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wakabayashi T, Hidaka R, Fujimaki S, Asashima M, Kuwabara T. Diabetes impairs Wnt3 protein-induced neurogenesis in olfactory bulbs via glutamate transporter 1 inhibition. J Biol Chem. 2016;291:15196–211.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Caracci MO, Avila ME, Espinoza-Cavieres FA, Lopez HR, Ugarte GD, De Ferrari GV. Wnt/beta-catenin-dependent transcription in autism spectrum disorders. Front Mol Neurosci. 2021;14:764756.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    Stay Connected

    9FansLike
    4FollowersFollow
    0SubscribersSubscribe
    - Advertisement -spot_img

    Latest Articles

    %d bloggers like this: