Friday, September 22, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

C-IGF1R encoded by cIGF1R acts as a molecular switch to restrict mitophagy of drug-tolerant persister tumour cells in non-small cell lung cancer – Cell Death & Differentiation


  • Maemondo M, Inoue A, Kobayashi K, Sugawara S, Oizumi S, Isobe H, et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med. 2010;362:2380–8. https://doi.org/10.1056/NEJMoa0909530.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liang W, Zhong R, He J. Osimertinib in EGFR-mutated lung cancer. N Engl J Med. 2021;384:675. https://doi.org/10.1056/NEJMc2033951.

    Article 
    PubMed 

    Google Scholar
     

  • Schoenfeld AJ, Yu HA. The evolving landscape of resistance to osimertinib. J Thorac Oncol. 2020;15:18–21. https://doi.org/10.1016/j.jtho.2019.11.005.

    Article 
    PubMed 

    Google Scholar
     

  • Jamal-Hanjani M, Wilson GA, McGranahan N, Birkbak NJ, Watkins TBK, Veeriah S, et al. Tracking the evolution of non-small-cell lung cancer. N Engl J Med. 2017;376:2109–21. https://doi.org/10.1056/NEJMoa1616288.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cooper AJ, Sequist LV, Lin JJ. Third-generation EGFR and ALK inhibitors: mechanisms of resistance and management. Nat Rev Clin Oncol. 2022;19:499–514. https://doi.org/10.1038/s41571-022-00639-9.

  • Zhao Y, Liu J, Cai X, Pan Z, Liu J, Yin W, et al. Efficacy and safety of first line treatments for patients with advanced epidermal growth factor receptor mutated, non-small cell lung cancer: systematic review and network meta-analysis. BMJ. 2019;367:l5460. https://doi.org/10.1136/bmj.l5460.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hosomi Y, Morita S, Sugawara S, Kato T, Fukuhara T, Gemma A, et al. Gefitinib alone versus gefitinib plus chemotherapy for non-small-cell lung cancer with mutated epidermal growth factor receptor: NEJ009 study. J Clin Oncol. 2020;38:115–23. https://doi.org/10.1200/jco.19.01488.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou Q, Xu CR, Cheng Y, Liu YP, Chen GY, Cui JW, et al. Bevacizumab plus erlotinib in Chinese patients with untreated, EGFR-mutated, advanced NSCLC (ARTEMIS-CTONG1509): a multicenter phase 3 study. Cancer Cell. 2021;39:1279–91.e1273. https://doi.org/10.1016/j.ccell.2021.07.005.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kawashima Y, Fukuhara T, Saito H, Furuya N, Watanabe K, Sugawara S, et al. Bevacizumab plus erlotinib versus erlotinib alone in Japanese patients with advanced, metastatic, EGFR-mutant non-small-cell lung cancer (NEJ026): overall survival analysis of an open-label, randomised, multicentre, phase 3 trial. Lancet Respir Med. 2022;10:72–82. https://doi.org/10.1016/s2213-2600(21)00166-1.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Akamatsu H, Toi Y, Hayashi H, Fujimoto D, Tachihara M, Furuya N, et al. Efficacy of osimertinib plus bevacizumab vs osimertinib in patients with EGFR T790M-mutated non-small cell lung cancer previously treated with epidermal growth factor receptor-tyrosine kinase inhibitor: West Japan Oncology Group 8715L phase 2 randomized clinical trial. JAMA Oncol. 2021;7:386–94. https://doi.org/10.1001/jamaoncol.2020.6758.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu TC, Lin CC. Antiangiogenesis may not be a universal booster of EGFR tyrosine kinase inhibitors. J Thorac Oncol. 2022;17:1063–6. https://doi.org/10.1016/j.jtho.2022.06.012.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oshima Y, Tanimoto T, Yuji K, Tojo A. EGFR-TKI-associated interstitial pneumonitis in nivolumab-treated patients with non-small cell lung cancer. JAMA Oncol. 2018;4:1112–5. https://doi.org/10.1001/jamaoncol.2017.4526.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oxnard GR, Yang JC, Yu H, Kim SW, Saka H, Horn L, et al. TATTON: a multi-arm, phase Ib trial of osimertinib combined with selumetinib, savolitinib, or durvalumab in EGFR-mutant lung cancer. Ann Oncol. 2020;31:507–16. https://doi.org/10.1016/j.annonc.2020.01.013.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shen S, Vagner S, Robert C. Persistent cancer cells: the deadly survivors. Cell. 2020;183:860–74. https://doi.org/10.1016/j.cell.2020.10.027.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kurppa KJ, Liu Y, To C, Zhang T, Fan M, Vajdi A, et al. Treatment-induced tumour dormancy through YAP-mediated transcriptional reprogramming of the apoptotic pathway. Cancer Cell. 2020;37:104–12.e112. https://doi.org/10.1016/j.ccell.2019.12.006.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rehman SK, Haynes J, Collignon E, Brown KR, Wang Y, Nixon AML, et al. Colorectal cancer cells enter a diapause-like DTP state to survive chemotherapy. Cell. 2021;184:226–42.e221. https://doi.org/10.1016/j.cell.2020.11.018.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hangauer MJ, Viswanathan VS, Ryan MJ, Bole D, Eaton JK, Matov A, et al. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature. 2017;551:247–50. https://doi.org/10.1038/nature24297.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dhimolea E, de Matos Simoes R, Kansara D, Al’Khafaji A, Bouyssou J, Weng X, et al. An embryonic diapause-like adaptation with suppressed myc activity enables tumor treatment persistence. Cancer Cell. 2021;39:240–56.e211. https://doi.org/10.1016/j.ccell.2020.12.002.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qu L, Yi Z, Shen Y, Lin L, Chen F, Xu Y, et al. Circular RNA vaccines against SARS-CoV-2 and emerging variants. Cell. 2022;185:1728–44.e1716. https://doi.org/10.1016/j.cell.2022.03.044.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, et al. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495:384–8. https://doi.org/10.1038/nature11993.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu J, Ji L, Liang Y, Wan Z, Zheng W, Song X, et al. CircRNA-SORE mediates sorafenib resistance in hepatocellular carcinoma by stabilizing YBX1. Signal Transduct Target Ther. 2020;5:298. https://doi.org/10.1038/s41392-020-00375-5.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen B, Dragomir MP, Yang C, Li Q, Horst D, Calin GA. Targeting non-coding RNAs to overcome cancer therapy resistance. Signal Transduct Target Ther. 2022;7:121. https://doi.org/10.1038/s41392-022-00975-3.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sang Y, Chen B, Song X, Li Y, Liang Y, Han D, et al. circRNA_0025202 regulates tamoxifen sensitivity and tumour progression via regulating the miR-182-5p/FOXO3a axis in breast cancer. Mol Ther. 2019;27:1638–52. https://doi.org/10.1016/j.ymthe.2019.05.011.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang X, Chen T, Li C, Li W, Zhou X, Li Y, et al. CircRNA-CREIT inhibits stress granule assembly and overcomes doxorubicin resistance in TNBC by destabilizing PKR. J Hematol Oncol. 2022;15:122. https://doi.org/10.1186/s13045-022-01345-w.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hou S, Qu D, Li Y, Zhu B, Liang D, Wei X, et al. XAB2 depletion induces intron retention in POLR2A to impair global transcription and promote cellular senescence. Nucleic Acids Res. 2019;47:8239–54. https://doi.org/10.1093/nar/gkz532.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsalikis, J, Abdel-Nour, M, Farahvash, A, Sorbara, MT, Poon, S, Philpott, DJ et al. Isoginkgetin, a Natural Biflavonoid Proteasome Inhibitor, Sensitizes Cancer Cells to Apoptosis via Disruption of Lysosomal Homeostasis and Impaired Protein Clearance. Mol Cell Biol. 39, https://doi.org/10.1128/mcb.00489-18 (2019).

  • Shao T, Pan YH, Xiong XD. Circular RNA: an important player with multiple facets to regulate its parental gene expression. Mol Ther Nucleic Acids. 2021;23:369–76. https://doi.org/10.1016/j.omtn.2020.11.008

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, et al. circRNA biogenesis competes with pre-mRNA splicing. Mol Cell. 2014;56:55–66. https://doi.org/10.1016/j.molcel.2014.08.019.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aktaş T, Avşar Ilık İ, Maticzka D, Bhardwaj V, Pessoa Rodrigues C, Mittler G, et al. DHX9 suppresses RNA processing defects originating from the Alu invasion of the human genome. Nature. 2017;544:115–9. https://doi.org/10.1038/nature21715.

    Article 
    PubMed 

    Google Scholar
     

  • Chen LL. The expanding regulatory mechanisms and cellular functions of circular RNAs. Nat Rev Mol Cell Biol. 2020;21:475–90. https://doi.org/10.1038/s41580-020-0243-y.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang XO, Wang HB, Zhang Y, Lu X, Chen LL, Yang L. Complementary sequence-mediated exon circularization. Cell. 2014;159:134–47. https://doi.org/10.1016/j.cell.2014.09.001.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • von Mehren M, George S, Heinrich MC, Schuetze SM, Yap JT, Yu JQ, et al. Linsitinib (OSI-906) for the treatment of adult and pediatric wild-type gastrointestinal stromal tumours, a SARC phase II study. Clin Cancer Res. 2020;26:1837–45. https://doi.org/10.1158/1078-0432.Ccr-19-1069.

    Article 

    Google Scholar
     

  • White E. The role for autophagy in cancer. J Clin Invest. 2015;125:42–6. https://doi.org/10.1172/jci73941.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Levy JMM, Towers CG, Thorburn A. Targeting autophagy in cancer. Nat Rev Cancer. 2017;17:528–42. https://doi.org/10.1038/nrc.2017.53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao X, Xia X, Li F, Zhang M, Zhou H, Wu X, et al. Circular RNA-encoded oncogenic E-cadherin variant promotes glioblastoma tumorigenicity through activation of EGFR-STAT3 signalling. Nat Cell Biol. 2021;23:278–91. https://doi.org/10.1038/s41556-021-00639-4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhong J, Yang X, Chen J, He K, Gao X, Wu X, et al. Circular EZH2-encoded EZH2-92aa mediates immune evasion in glioblastoma via inhibition of surface NKG2D ligands. Nat Commun. 2022;13:4795. https://doi.org/10.1038/s41467-022-32311-2.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bravo-San Pedro JM, Kroemer G, Galluzzi L. Autophagy and mitophagy in cardiovascular disease. Circ Res. 2017;120:1812–24. https://doi.org/10.1161/circresaha.117.311082.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Onishi M, Yamano K, Sato M, Matsuda N, Okamoto K. Molecular mechanisms and physiological functions of mitophagy. EMBO J. 2021;40:e104705. https://doi.org/10.15252/embj.2020104705.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Limagne E, Nuttin L, Thibaudin M, Jacquin E, Aucagne R, Bon M, et al. MEK inhibition overcomes chemoimmunotherapy resistance by inducing CXCL10 in cancer cells. Cancer Cell. 2022;40:136–52.e112. https://doi.org/10.1016/j.ccell.2021.12.009.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shoshan-Barmatz V, Nahon-Crystal E, Shteinfer-Kuzmine A, Gupta R. VDAC1, mitochondrial dysfunction, and Alzheimer’s disease. Pharmacol Res. 2018;131:87–101. https://doi.org/10.1016/j.phrs.2018.03.010.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, Abdellatif M, Abdoli A, Abel S, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edn)(1). Autophagy. 2021;17:1–382. https://doi.org/10.1080/15548627.2020.1797280.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Capel B, Swain A, Nicolis S, Hacker A, Walter M, Koopman P, et al. Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell. 1993;73:1019–30. https://doi.org/10.1016/0092-8674(93)90279-y.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vo JN, Cieslik M, Zhang Y, Shukla S, Xiao L, Zhang Y, et al. The landscape of circular RNA in cancer. Cell. 2019;176:869–81.e813. https://doi.org/10.1016/j.cell.2018.12.021.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495:333–8. https://doi.org/10.1038/nature11928.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Álvarez-Varela A, Novellasdemunt L, Barriga FM, Hernando-Momblona X, Cañellas-Socias A, Cano-Crespo S. et al. Mex3a marks drug-tolerant persister colorectal cancer cells that mediate relapse after chemotherapy. Nat Cancer. 2022;3:1052–70. https://doi.org/10.1038/s43018-022-00402-0.

  • Yu T, Guo F, Yu Y, Sun T, Ma D, Han J, et al. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell. 2017;170:548–63.e516. https://doi.org/10.1016/j.cell.2017.07.008.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bryant KL, Stalnecker CA, Zeitouni D, Klomp JE, Peng S, Tikunov AP, et al. Combination of ERK and autophagy inhibition as a treatment approach for pancreatic cancer. Nat Med. 2019;25:628–40. https://doi.org/10.1038/s41591-019-0368-8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kinsey CG, Camolotto SA, Boespflug AM, Guillen KP, Foth M, Truong A, et al. Protective autophagy elicited by RAF→MEK→ERK inhibition suggests a treatment strategy for RAS-driven cancers. Nat Med. 2019;25:620–7. https://doi.org/10.1038/s41591-019-0367-9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9. https://doi.org/10.1038/nmeth.1923.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. https://doi.org/10.1093/bioinformatics/bts635.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng J, Metge F, Dieterich C. Specific identification and quantification of circular RNAs from sequencing data. Bioinformatics. 2016;32:1094–6. https://doi.org/10.1093/bioinformatics/btv656.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang H, Song X, Wang Y, Yin X, Liang Y, Zhang T, et al. CircCNTNAP3-TP53-positive feedback loop suppresses malignant progression of esophageal squamous cell carcinoma. Cell Death Dis. 2020;11:1010. https://doi.org/10.1038/s41419-020-03217-y.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sastry GM, Adzhigirey M, Day T, Annabhimoju R, Sherman W. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des. 2013;27:221–34. https://doi.org/10.1007/s10822-013-9644-8.

    Article 
    PubMed 

    Google Scholar
     

  • Halgren TA. Identifying and characterizing binding sites and assessing druggability. J Chem Inf Model. 2009;49:377–89. https://doi.org/10.1021/ci800324m.

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    Stay Connected

    9FansLike
    4FollowersFollow
    0SubscribersSubscribe
    - Advertisement -spot_img

    Latest Articles

    %d bloggers like this: