Friday, September 22, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

Changing epidemiology of colorectal cancer — birth cohort effects and emerging risk factors – Nature Reviews Gastroenterology & Hepatology


  • Arnold, M. et al. Global patterns and trends in colorectal cancer incidence and mortality. Gut 66, 683–691 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • GBD 2019 Colorectal Cancer Collaborators.Global, regional, and national burden of colorectal cancer and its risk factors, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Gastroenterol. Hepatol. 7, 627–647 (2022).

    Article 

    Google Scholar
     

  • Douaiher, J. et al. Colorectal cancer—global burden, trends, and geographical variations. J. Surg. Oncol. 115, 619–630 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • IHME Data. Global Burden of Disease Study 2019 (GBD 2019) data resources. GHDx https://ghdx.healthdata.org/gbd-2019 (2019).

  • Siegel, R. L. et al. Global patterns and trends in colorectal cancer incidence in young adults. Gut 68, 2179–2185 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Siegel, R. L. et al. Colorectal cancer incidence patterns in the United States, 1974–2013. J. Natl Cancer Inst. 109, djw322 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Akimoto, N. et al. Rising incidence of early-onset colorectal cancer — a call to action. Nat. Rev. Clin. Oncol. 18, 230–243 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Sinicrope, F. A. Increasing incidence of early-onset colorectal cancer. N. Engl. J. Med. 386, 1547–1558 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Patel, S. G., Karlitz, J. J., Yen, T., Lieu, C. H. & Boland, C. R. The rising tide of early-onset colorectal cancer: a comprehensive review of epidemiology, clinical features, biology, risk factors, prevention, and early detection. Lancet Gastroenterol. Hepatol. 7, 262–274 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Ugai, T. et al. Is early-onset cancer an emerging global epidemic? Current evidence and future implications. Nat. Rev. Clin. Oncol. 19, 656–673 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Knudsen, A. B. et al. Colorectal cancer screening: an updated modeling study for the US preventive services task force. JAMA 325, 1998–2011 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stoffel, E. M. et al. Germline genetic features of young individuals with colorectal cancer. Gastroenterology 154, 897–905.e891 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pearlman, R. et al. Prevalence and spectrum of germline cancer susceptibility gene mutations among patients with early-onset colorectal cancer. JAMA Oncol. 3, 464–471 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, J. K. et al. Rising early-onset colorectal cancer incidence is not an artifact of increased screening colonoscopy use in a large, diverse healthcare system. Gastroenterology 162, 325–327.e323 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Keum, N. & Giovannucci, E. Global burden of colorectal cancer: emerging trends, risk factors and prevention strategies. Nat. Rev. Gastroenterol. Hepatol. 16, 713–732 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Hofseth, L. J. et al. Early-onset colorectal cancer: initial clues and current views. Nat. Rev. Gastroenterol. Hepatol. 17, 352–364 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Murphy, C. C., Singal, A. G., Baron, J. A. & Sandler, R. S. Decrease in incidence of young-onset colorectal cancer before recent increase. Gastroenterology 155, 1716–1719.e4 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • SEER. Surveillance, Epidemiology, and End Results (SEER) Program. SEER https://seer.cancer.gov/data-software/documentation/seerstat/nov2022/ (2023).

  • Siegel, R. L., Medhanie, G. A., Fedewa, S. A. & Jemal, A. State variation in early-onset colorectal cancer in the United States, 1995–2015. J. Natl Cancer Inst. 111, 1104–1106 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abdelsattar, Z. M. et al. Colorectal cancer outcomes and treatment patterns in patients too young for average-risk screening. Cancer 122, 929–934 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Rho, Y. S. et al. Comparing clinical characteristics and outcomes of young-onset and late-onset colorectal cancer: an international collaborative study. Clin. Colorectal Cancer 16, 334–342 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Patel, S. G. & Ahnen, D. J. Colorectal cancer in the young. Curr. Gastroenterol. Rep. 20, 15 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Cercek, A. et al. A comprehensive comparison of early-onset and average-onset colorectal cancers. J. Natl Cancer Inst. 113, 1683–1692 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chang, D. T. et al. Clinicopathologic and molecular features of sporadic early-onset colorectal adenocarcinoma: an adenocarcinoma with frequent signet ring cell differentiation, rectal and sigmoid involvement, and adverse morphologic features. Mod. Pathol. 25, 1128–1139 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Murphy, C. C. et al. Patterns of sociodemographic and clinicopathologic characteristics of stages ii and iii colorectal cancer patients by age: examining potential mechanisms of young-onset disease. J. Cancer Epidemiol. 2017, 4024580 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Di Leo, M. et al. Risk factors and clinical characteristics of early-onset colorectal cancer vs. late-onset colorectal cancer: a case-case study. Eur. J. Gastroenterol. Hepatol. 33, 1153–1160 (2020).

    Article 

    Google Scholar
     

  • Gausman, V. et al. Risk factors associated with early-onset colorectal cancer. Clin. Gastroenterol. Hepatol. 18, 2752–2759.e2752 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Chang, V. C., Cotterchio, M., De, P. & Tinmouth, J. Risk factors for early-onset colorectal cancer: a population-based case-control study in Ontario, Canada. Cancer Causes Control 33, 1063–1083 (2021).

    Article 

    Google Scholar
     

  • Griffiths, C. D. et al. Presentation and survival among patients with colorectal cancer before the age of screening: a systematic review and meta-analysis. Can. J. Surg. 64, E91–E100 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Archambault, A. N. et al. Cumulative burden of colorectal cancer-associated genetic variants is more strongly associated with early-onset vs late-onset cancer. Gastroenterology 158, 1274–1286.e1212 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Murphy, C. C., Wallace, K., Sandler, R. S. & Baron, J. A. Racial disparities in incidence of young-onset colorectal cancer and patient survival. Gastroenterology 156, 958–965 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • World Cancer Research Fund/American Institute for Cancer Research. Diet, nutrition, physical activity and colorectal cancer. World Cancer Research Fund https://www.wcrf.org/wp-content/uploads/2021/02/Colorectal-cancer-report.pdf (2018).

  • Kim, H., Wang, K., Song, M. & Giovannucci, E. L. A comparison of methods in estimating population attributable risk for colorectal cancer in the United States. Int. J. Cancer 148, 2947–2953 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brenner, D. R. et al. Increasing colorectal cancer incidence trends among younger adults in Canada. Prev. Med. 105, 345–349 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Feletto, E. et al. Trends in colon and rectal cancer incidence in Australia from 1982 to 2014: analysis of data on over 375,000 cases. Cancer Epidemiol. Biomark. Prev. 28, 83–90 (2019).

    Article 

    Google Scholar
     

  • Chung, R. Y. et al. A population-based age-period-cohort study of colorectal cancer incidence comparing Asia against the West. Cancer Epidemiol. 59, 29–36 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Zheng, T. et al. Time trend and the age-period-cohort effect on the incidence of histologic types of lung cancer in Connecticut, 1960–1989. Cancer 74, 1556–1567 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jemal, A., Chu, K. C. & Tarone, R. E. Recent trends in lung cancer mortality in the United States. J. Natl Cancer Inst. 93, 277–283 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Anderson, W. F. et al. Age-specific trends in incidence of noncardia gastric cancer in US adults. JAMA 303, 1723–1728 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anderson, W. F. et al. The changing face of noncardia gastric cancer incidence among US non-hispanic whites. J. Natl Cancer Inst. 110, 608–615 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pinheiro, P. S. et al. Liver cancer: a leading cause of cancer death in the United States and the role of the 1945–1965 birth cohort by ethnicity. JHEP Rep. 1, 162–169 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clarke, M. A. & Joshu, C. E. Early life exposures and adult cancer risk. Epidemiol. Rev. 39, 11–27 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wild, C. P. How much of a contribution do exposures experienced between conception and adolescence make to the burden of cancer in adults? Cancer Epidemiol. Biomark. Prev. 20, 580–581 (2011).

    Article 

    Google Scholar
     

  • Tomatis, L. Overview of perinatal and multigeneration carcinogenesis. IARC Sci. Publ. (96), 1–15 (1989).

  • Cohn, B. A. et al. DDT exposure in utero and breast cancer. J. Clin. Endocrinol. Metab. 100, 2865–2872 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cohn, B. A., Cirillo, P. M. & Christianson, R. E. Prenatal DDT exposure and testicular cancer: a nested case–control study. Arch. Env. Occup. Health 65, 127–134 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Preston, D. L. et al. Cancer incidence in atomic bomb survivors. Part III: leukemia, lymphoma and multiple myeloma, 1950–1987. Radiat. Res. 137, S68–S97 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Preston, D. L. et al. Solid cancer incidence in atomic bomb survivors exposed in utero or as young children. J. Natl Cancer Inst. 100, 428–436 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Vedham, V., Verma, M. & Mahabir, S. Early‐life exposures to infectious agents and later cancer development. Cancer Med. 4, 1908–1922 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van den Berg, B. The California child health and development studies. Handb. Longitud. Res. 1, 166–179 (1984).


    Google Scholar
     

  • van den Berg, B. J., Christianson, R. E. & Oechsli, F. W. The California child health and development studies of the School of Public Health, University of California at Berkeley. Paediatr. Perinat. Epidemiol. 2, 265–282 (1988).

    Article 
    PubMed 

    Google Scholar
     

  • Lehtinen, M., Surcel, H. M., Natunen, K., Pukkala, E. & Dillner, J. Cancer registry follow-up for 17 million person-years of a nationwide maternity cohort. Cancer Med. 6, 3060–3064 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wadsworth, M., Kuh, D., Richards, M. & Hardy, R. Cohort profile: the 1946 national birth cohort (MRC National Survey of Health and Development). Int. J. Epidemiol. 35, 49–54 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Power, C. & Elliott, J. Cohort profile: 1958 British birth cohort (National Child Development Study). Int. J. Epidemiol. 35, 34–41 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Sullivan, A., Brown, M., Hamer, M. & Ploubidis, G. B. Cohort profile update: the 1970 British Cohort Study (BCS70). Int. J. Epidemiol. 35, 836–843 (2022).


    Google Scholar
     

  • Lessof, C., Ross, A., Brind, R., Bell, E. & Newton, S. Longitudinal study of young people in England cohort 2: health and wellbeing at wave 2. gov.uk https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/599871/LSYPE2_w2-research_report.pdf (2016).

  • Barker, D. J., Osmond, C., Thornburg, K. L., Kajantie, E. & Eriksson, J. G. The shape of the placental surface at birth and colorectal cancer in later life. Am. J. Hum. Biol. 25, 566–568 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Cnattingius, S., Lundberg, F. & Iliadou, A. Birth characteristics and risk of colorectal cancer: a study among Swedish twins. Br. J. Cancer 100, 803–806 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahlgren, M., Wohlfahrt, J., Olsen, L. W., Sørensen, T. I. & Melbye, M. Birth weight and risk of cancer. Cancer 110, 412–419 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • McCormack, V. A., dos Santos Silva, I., Koupil, I., Leon, D. A. & Lithell, H. O. Birth characteristics and adult cancer incidence: Swedish cohort of over 11,000 men and women. Int. J. Cancer 115, 611–617 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nilsen, T. I., Romundstad, P. R., Troisi, R., Potischman, N. & Vatten, L. J. Birth size and colorectal cancer risk: a prospective population based study. Gut 54, 1728–1732 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith, N. R. et al. Associations between birth weight and colon and rectal cancer risk in adulthood. Cancer Epidemiol. 42, 181–185 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Spracklen, C. N. et al. Birth weight and subsequent risk of cancer. Cancer Epidemiol. 38, 538–543 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, T. O., Reeves, G. K., Green, J., Beral, V. & Cairns, B. J. Birth weight and adult cancer incidence: large prospective study and meta-analysis. Ann. Oncol. 25, 1836–1843 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sandhu, M. S., Luben, R., Day, N. E. & Khaw, K. T. Self-reported birth weight and subsequent risk of colorectal cancer. Cancer Epidemiol. Biomark. Prev. 11, 935–938 (2002).


    Google Scholar
     

  • Murphy, C. C. et al. Maternal obesity, pregnancy weight gain, and birth weight and risk of colorectal cancer. Gut 71, 2611–2612 (2021).


    Google Scholar
     

  • Murphy, C. C., Cirillo, P. M., Krigbaum, N. Y. & Cohn, B. A. In utero exposure to 17α-hydroxyprogesterone caproate and risk of cancer in offspring. Am. J. Obstet. Gynecol. 226, 132.e1–132.e14 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Murphy, C. C., Cirillo, P. M., Krigbaum, N. Y., Singal, A. G. & Cohn, B. A. In utero exposure to anti-emetic and risk of adult-onset colorectal cancer. JNCI Cancer Spectr. 7, pkad021 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murphy, C. C. et al. In-utero exposure to antibiotics and risk of colorectal cancer in a prospective cohort of 18000 adult offspring. Int. J. Epidemiol. 24, dyad004 (2023).

    Article 

    Google Scholar
     

  • Liu, P. H. et al. Association of obesity with risk of early-onset colorectal cancer among women. JAMA Oncol. 5, 37–44 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Nimptsch, K. et al. Body fatness during childhood and adolescence, adult height, and risk of colorectal adenoma in women. Cancer Prev. Res. 4, 1710–1718 (2011).

    Article 

    Google Scholar
     

  • Li, H. et al. Associations of body mass index at different ages with early-onset colorectal cancer. Gastroenterology 162, 1088–1097.e1083 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Jensen, B. W. et al. Childhood body mass index and height in relation to site-specific risks of colorectal cancers in adult life. Eur. J. Epidemiol. 32, 1097–1106 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Celind, J., Ohlsson, C., Bygdell, M., Nethander, M. & Kindblom, J. M. Childhood body mass index is associated with risk of adult colon cancer in men – an association modulated by pubertal change in body mass index. Cancer Epidemiol. Biomark. Prev. 28, 974–979 (2019).

    Article 

    Google Scholar
     

  • Bjørge, T., Engeland, A., Tverdal, A. & Smith, G. D. Body mass index in adolescence in relation to cause-specific mortality: a follow-up of 230,000 Norwegian adolescents. Am. J. Epidemiol. 168, 30–37 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Burton, A., Martin, R., Galobardes, B., Davey Smith, G. & Jeffreys, M. Young adulthood body mass index and risk of cancer in later adulthood: historical cohort study. Cancer Causes Control 21, 2069–2077 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Nimptsch, K. & Wu, K. Is timing important? the role of diet and lifestyle during early life on colorectal neoplasia. Curr. Colorectal Cancer Rep. 14, 1–11 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garcia, H. & Song, M. Early-life obesity and adulthood colorectal cancer risk: a meta-analysis. Rev. Panam. Salud Publica 43, e3 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moghaddam, A. A., Woodward, M. & Huxley, R. Obesity and risk of colorectal cancer: a meta-analysis of 31 studies with 70,000 events. Cancer Epidemiol. Biomark. Prev. 16, 2533–2547 (2007).

    Article 

    Google Scholar
     

  • Larsson, S. C. & Wolk, A. Obesity and colon and rectal cancer risk: a meta-analysis of prospective studies. Am. J. Clin. Nutr. 86, 556–565 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bardou, M., Barkun, A. N. & Martel, M. Obesity and colorectal cancer. Gut 62, 933–947 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Godfrey, K. M. & Barker, D. J. Fetal programming and adult health. Public Health Nutr. 4, 611–624 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shankar, K. et al. Maternal obesity at conception programs obesity in the offspring. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294, R528–R538 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Curhan, G. C. et al. Birth weight and adult hypertension and obesity in women. Circulation 94, 1310–1315 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Armitage, J. A., Poston, L. & Taylor, P. D. Developmental origins of obesity and the metabolic syndrome: the role of maternal obesity. Front. Horm. Res. 36, 73–84 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Larsson, S. C., Orsini, N. & Wolk, A. Diabetes mellitus and risk of colorectal cancer: a meta-analysis. J. Natl Cancer Inst. 97, 1679–1687 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Nimptsch, K. et al. Dietary intakes of red meat, poultry, and fish during high school and risk of colorectal adenomas in women. Am. J. Epidemiol. 178, 172–183 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nimptsch, K. et al. Dairy intake during adolescence and risk of colorectal adenoma later in life. Br. J. Cancer 124, 1160–1168 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hur, J. et al. Sugar-sweetened beverage intake in adulthood and adolescence and risk of early-onset colorectal cancer among women. Gut 70, 2330–2336 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Joh, H.-K. et al. Simple sugar and sugar-sweetened beverage intake during adolescence and risk of colorectal cancer precursors. Gastroenterology 161, 128–142. e120 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nimptsch, K. et al. Dietary patterns during high school and risk of colorectal adenoma in a cohort of middle-aged women. Int. J. Cancer 134, 2458–2467 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dirx, M. J., van den Brandt, P. A., Goldbohm, R. A. & Lumey, L. Energy restriction early in life and colon carcinoma risk: results of the Netherlands Cohort Study after 7.3 years of follow‐up. Cancer 97, 46–55 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Cao, Y. et al. Long-term use of antibiotics and risk of colorectal adenoma. Gut 67, 672–678 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Molmenti, C. L. S., Jacobs, E. T., Gupta, S. & Thomson, C. A. Early-onset colorectal cancer: a call for greater rigor in epidemiologic studies. Cancer Epidemiol. Biomark. Prev. 31, 507–511 (2022).

    Article 

    Google Scholar
     

  • Dasu, K., Xia, X., Siriwardena, D., Klupinski, T. P. & Seay, B. Concentration profiles of per- and polyfluoroalkyl substances in major sources to the environment. J. Env. Manag. 301, 113879 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Prevedouros, K., Cousins, I. T., Buck, R. C. & Korzeniowski, S. H. Sources, fate and transport of perfluorocarboxylates. Env. Sci. Technol. 40, 32–44 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Temkin, A. M., Hocevar, B. A., Andrews, D. Q., Naidenko, O. V. & Kamendulis, L. M. Application of the key characteristics of carcinogens to per and polyfluoroalkyl substances. Int. J. Environ. Res. Public Health 17, 1668 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leeson, A. et al. Identifying and managing aqueous film-forming foam-derived per- and polyfluoroalkyl substances in the environment. Env. Toxicol. Chem. 40, 24–36 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kassotis, C. D. et al. Endocrine-disrupting chemicals: economic, regulatory, and policy implications. Lancet Diabetes Endocrinol. 8, 719–730 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, J. et al. Per- and polyfluoroalkyl substances exposure and its influence on the intestinal barrier: an overview on the advances. Sci. Total. Env. 852, 158362 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Helte, E., Säve-Söderbergh, M., Larsson, S. C., Martling, A. & Åkesson, A. Disinfection by-products in drinking water and risk of colorectal cancer: a population-based cohort study. J. Natl Cancer Inst., https://doi.org/10.1093/jnci/djad145 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Alavanja, M. C. & Bonner, M. R. Occupational pesticide exposures and cancer risk: a review. J. Toxicol. Env. Health B Crit. Rev. 15, 238–263 (2012).

    Article 
    CAS 

    Google Scholar
     

  • IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Polychlorinated Biphenyls and Polybrominated Biphenyls. (IARC: 2016) IARC Monographs vol. 107.

  • Donato, F. et al. Polychlorinated biphenyls and risk of hepatocellular carcinoma in the population living in a highly polluted area in Italy. Sci. Rep. 11, 3064 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vuong, T. P. Research on the relationship between exposure to dioxins and cancer incidence in Vietnam. Toxics 10, 384 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Steenland, K. & Winquist, A. PFAS and cancer, a scoping review of the epidemiologic evidence. Env. Res. 194, 110690 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Seachrist, D. D. et al. A review of the carcinogenic potential of bisphenol A. Reprod. Toxicol. 59, 167–182 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Balali-Mood, M., Naseri, K., Tahergorabi, Z., Khazdair, M. R. & Sadeghi, M. Toxic mechanisms of five heavy metals: mercury, lead, chromium, cadmium, and arsenic. Front. Pharmacol. 12, 643972 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chuang, S. C. et al. Phthalate exposure and prostate cancer in a population-based nested case-control study. Env. Res. 181, 108902 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lee, W. J. et al. Pesticide use and colorectal cancer risk in the Agricultural Health Study. Int. J. Cancer 121, 339–346 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matich, E. K. et al. Association between pesticide exposure and colorectal cancer risk and incidence: a systematic review. Ecotoxicol. Env. Saf. 219, 112327 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Oddone, E., Modonesi, C. & Gatta, G. Occupational exposures and colorectal cancers: a quantitative overview of epidemiological evidence. World J. Gastroenterol. 20, 12431–12444 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kachuri, L., Villeneuve, P. J., Parent, M., Johnson, K. C. & Harris, S. A. Workplace exposure to diesel and gasoline engine exhausts and the risk of colorectal cancer in Canadian men. Env. Health 15, 4 (2016).

    Article 

    Google Scholar
     

  • Goldberg, M. S. et al. A case–control study of the relationship between the risk of colon cancer in men and exposures to occupational agents. Am. J. Ind. Med. 39, 531–546 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Talibov, M. et al. Benzene exposure at workplace and risk of colorectal cancer in four Nordic countries. Cancer Epidemiol. 55, 156–161 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Fang, R., Le, N. & Band, P. Identification of occupational cancer risks in British Columbia, Canada: a population-based case-control study of 1,155 cases of colon cancer. Int. J. Env. Res. Public. Health 8, 3821–3843 (2011).

    Article 

    Google Scholar
     

  • Alharbi, O. M., Khattab, R. A. & Ali, I. Health and environmental effects of persistent organic pollutants. J. Mol. Liq. 263, 442–453 (2018).

    Article 
    CAS 

    Google Scholar
     

  • La Merrill, M. A. et al. Consensus on the key characteristics of endocrine-disrupting chemicals as a basis for hazard identification. Nat. Rev. Endocrinol. 16, 45–57 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Valvi, D. et al. Environmental chemical burden in metabolic tissues and systemic biological pathways in adolescent bariatric surgery patients: a pilot untargeted metabolomic approach. Env. Int. 143, 105957 (2020).

    Article 
    CAS 

    Google Scholar
     

  • La Merrill, M. A. et al. Exposure to Persistent Organic Pollutants (POPs) and their relationship to hepatic fat and insulin insensitivity among Asian Indian immigrants in the United States. Env. Sci. Technol. 53, 13906–13918 (2019).

    Article 

    Google Scholar
     

  • Cano-Sancho, G., Salmon, A. G. & La Merrill, M. A. Association between exposure to p,p’-DDT and its metabolite p,p’-DDE with obesity: integrated systematic review and meta-analysis. Env. Health Perspect. 125, 096002 (2017).

    Article 

    Google Scholar
     

  • Heindel, J. J. et al. Parma consensus statement on metabolic disruptors. Env. Health 14, 54 (2015).

    Article 

    Google Scholar
     

  • La Merrill, M. & Birnbaum, L. S. Childhood obesity and environmental chemicals. Mt Sinai J. Med. 78, 22–48 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • La Merrill, M. et al. Toxicological function of adipose tissue: focus on persistent organic pollutants. Env. Health Perspect. 121, 162–169 (2013).

    Article 

    Google Scholar
     

  • Newbold, R. R., Padilla-Banks, E., Jefferson, W. N. & Heindel, J. J. Effects of endocrine disruptors on obesity. Int. J. Androl. 31, 201–208 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Giulivo, M., Lopez de Alda, M., Capri, E. & Barceló, D. Human exposure to endocrine disrupting compounds: their role in reproductive systems, metabolic syndrome and breast cancer. A review. Env. Res. 151, 251–264 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Aseervatham, G. S., Sivasudha, T., Jeyadevi, R. & Arul Ananth, D. Environmental factors and unhealthy lifestyle influence oxidative stress in humans-an overview. Env. Sci. Pollut. Res. Int. 20, 4356–4369 (2013).

    Article 

    Google Scholar
     

  • Mena, S., Ortega, A. & Estrela, J. M. Oxidative stress in environmental-induced carcinogenesis. Mutat. Res. 674, 36–44 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khan, M. F. & Wang, G. Environmental agents, oxidative stress and autoimmunity. Curr. Opin. Toxicol. 7, 22–27 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Steenland, K., Zhao, L., Winquist, A. & Parks, C. Ulcerative colitis and perfluorooctanoic acid (PFOA) in a highly exposed population of community residents and workers in the mid-Ohio valley. Env. Health Perspect. 121, 900–905 (2013).

    Article 

    Google Scholar
     

  • Tu, P. et al. Gut microbiome toxicity: connecting the environment and gut microbiome-associated diseases. Toxics 8, 19 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song, M. & Chan, A. T. Environmental factors, gut microbiota, and colorectal cancer prevention. Clin. Gastroenterol. Hepatol. 17, 275–289 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zolkipli-Cunningham, Z. & Falk, M. J. Clinical effects of chemical exposures on mitochondrial function. Toxicology 391, 90–99 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wild, C. P. Complementing the genome with an “exposome”: the outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol. Biomark. Prev. 14, 1847–1850 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Walker, D. I. et al. The metabolome: a key measure for exposome research in epidemiology. Curr. Epidemiol. Rep. 6, 93–103 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Uppal, K. et al. Computational metabolomics: a framework for the million metabolome. Chem. Res. Toxicol. 29, 1956–1975 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Niedzwiecki, M. M. et al. The exposome: molecules to populations. Annu. Rev. Pharmacol. Toxicol. 59, 107–127 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, X. et al. A scalable workflow to characterize the human exposome. Nat. Commun. 12, 5575 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goodrich, J. A. et al. Exposure to perfluoroalkyl substances and risk of hepatocellular carcinoma in a multiethnic cohort. JHEP Rep. 4, 100550 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, X. et al. Metabolome wide association study of serum poly and perfluoroalkyl substances (PFASs) in pregnancy and early postpartum. Reprod. Toxicol. 87, 70–78 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cohn, B. A. et al. In utero exposure to poly- and perfluoroalkyl substances (PFASs) and subsequent breast cancer. Reprod. Toxicol. 92, 112–119 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schreuders, E. H. et al. Colorectal cancer screening: a global overview of existing programmes. Gut 64, 1637–1649 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Navarro, M., Nicolas, A., Ferrandez, A. & Lanas, A. Colorectal cancer population screening programs worldwide in 2016: an update. World J. Gastroenterol. 23, 3632–3642 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, H. et al. Participation and yield of a population-based colorectal cancer screening programme in China. Gut 68, 1450–1457 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Im Shim, J. et al. Results of colorectal cancer screening of the national cancer screening program in Korea, 2008. Cancer Res. Treat. 42, 191–198 (2010).

    Article 

    Google Scholar
     

  • Cohn, B. A. Developmental and environmental origins of breast cancer: DDT as a case study. Reprod. Toxicol. 31, 302–311 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Archambault, A. N. et al. Nongenetic determinants of risk for early-onset colorectal cancer. JNCI Cancer Spectr. 5, pkab029 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin, E. H. et al. Association between metabolic syndrome and the risk of colorectal cancer diagnosed before age 50 years according to tumor location. Gastroenterology 163, 637–648.e2 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Sanford, N. N., Dharwadkar, P. & Murphy, C. C. Early-onset colorectal cancer: more than one side to the story. Colorectal Cancer 9, CRC28 (2020).

    Article 

    Google Scholar
     

  • Jones, D. P. & Cohn, B. A. A vision for exposome epidemiology: the pregnancy exposome in relation to breast cancer in the Child Health and Development Studies. Reprod. Toxicol. 92, 4–10 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    Stay Connected

    9FansLike
    4FollowersFollow
    0SubscribersSubscribe
    - Advertisement -spot_img

    Latest Articles

    %d bloggers like this: