Wednesday, September 27, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

Circular RNA vaccine in disease prevention and treatment – Signal Transduction and Targeted Therapy


  • Pamudurti, N. R. et al. Translation of CircRNAs. Mol. Cell. 66, 9 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhang, M. et al. A novel protein encoded by the circular form of the SHPRH gene suppresses glioma tumorigenesis. Oncogene 37, 1805–1814 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang, M. et al. A peptide encoded by circular form of LINC-PINT suppresses oncogenic transcriptional elongation in glioblastoma. Nat. Commun. 9, 4475 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang, W. et al. Translation of the circular RNA circβ-catenin promotes liver cancer cell growth through activation of the Wnt pathway. Genome Biol. 20, 84 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng, X. et al. A novel protein encoded by a circular RNA circPPP1R12A promotes tumor pathogenesis and metastasis of colon cancer via Hippo-YAP signaling. Mol. Cancer 18, 47 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Pan, Z. et al. A novel protein encoded by exosomal CircATG4B induces oxaliplatin resistance in colorectal cancer by promoting autophagy. Adv. Sci. 9, e2204513 (2022).

    Article 

    Google Scholar
     

  • Ashwal-Fluss, R. et al. circRNA biogenesis competes with pre-mRNA splicing. Mol. Cell. 56, 55–66 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • He, A. T., Liu, J. L., Li, F. Y. & Yang, B. B. Targeting circular RNAs as a therapeutic approach: current strategies and challenges. Signal Transduct. Target. Ther. 6, 185 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Westholm, J. O. et al. Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Rep. 9, 1966–1980 (2014).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Du, W. et al. The circular RNA circSKA3 binds integrin β1 to induce invadopodium formation enhancing breast cancer invasion. Mol. Ther. 28, 1287–1298 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Song, R. J. et al. A novel polypeptide encoded by the circular RNA ZKSCAN1 suppresses HCC via degradation of mTOR. Mol. Cancer 22, 16 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Krug, L. M. Harnessing the immune system to treat cancer. J. Thorac. Oncol. 6, S77–S79 (2011).


    Google Scholar
     

  • Fink, K. Can we improve vaccine efficacy by targeting T and B cell repertoire convergence? Front. Immunol. 10, 110 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Francis, M. J. Recent advances in vaccine technologies. Vet. Clin. North Am. Small Anim. Pr. 48, 231 (2018).

    Article 

    Google Scholar
     

  • Moore, J. & Klasse, P. COVID-19 vaccines: “warp speed” needs mind melds, not warped minds. J. Virol. 94, e01083–20 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kouhpayeh, H. & Ansari, H. Adverse events following COVID-19 vaccination: a systematic review and meta-analysis. Int. Immunopharmacol. 109, 108906 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Koirala, A. et al. Vaccines for COVID-19: the current state of play. Paediatr. Respir. Rev. 35, 43–49 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Su, S., Du, L. Y. & Jiang, S. B. Learning from the past: development of safe and effective COVID-19 vaccines. Nat. Rev. Microbiol. 19, 211–219 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Smith, T. R. F. et al. Immunogenicity of a DNA vaccine candidate for COVID-19. Nat. Commun. 11, 2601 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • van Riel, D. & de Wit, E. Next-generation vaccine platforms for COVID-19. Nat. Mater. 19, 810–812 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • He, Q. et al. mRNA cancer vaccines: advances, trends and challenges. Acta Pharm. Sin. B 12, 2969–2989 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Vishweshwaraiah, Y. L. & Dokholyan, N. V. mRNA vaccines for cancer immunotherapy. Front. Immunol. 13, 1029069 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Warren, L. et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7, 618–630 (2010).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Jackson, N. A. C. et al. The promise of mRNA vaccines: a biotech and industrial perspective. NPJ Vaccines 5, 11 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vergnes, J. N. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N. Engl. J. Med. 384, 1577–1577 (2021).

    PubMed 

    Google Scholar
     

  • Lutz, J. et al. Unmodified mRNA in LNPs constitutes a competitive technology for prophylactic vaccines. NPJ Vaccines 2, 29 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, C. et al. A flexible, efficient, and scalable platform to produce circular RNAs as new therapeutics. Preprint at https://www.biorxiv.org/content/10.1101/2022.05.31.494115v2 (2022).

  • Huang, K. et al. Delivery of Circular mRNA via degradable lipid nanoparticles against SARS-CoV-2 delta variant. Preprint at https://www.biorxiv.org/content/biorxiv/early/2022/05/12/2022.05.12.491597.full.pdf (2022).

  • Li, H. J. et al. Circular RNA cancer vaccines drive immunity in hard-to-treat malignancies. Theranostics 12, 6422–6436 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Qu, L. et al. Circular RNA vaccines against SARS-CoV-2 and emerging variants. Cell 185, 1728 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Seephetdee, C. et al. A circular mRNA vaccine prototype producing VFLIP-X spike confers a broad neutralization of SARS-CoV-2 variants by mouse sera. Antivir. Res. 204, 105370 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang, N. N. et al. A thermostable mRNA vaccine against COVID-19. Cell 182, 1271 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Rezaian, M. A. Synthesis of infectious viroids and other circular RNAs. Curr. Issues Mol. Biol. 1, 13–20 (1999).

    PubMed 
    CAS 

    Google Scholar
     

  • Enuka, Y. et al. Circular RNAs are long-lived and display only minimal early alterations in response to a growth factor. Nucleic Acids Res. 44, 1370–1383 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wesselhoeft, R. A., Kowalski, P. S. & Anderson, D. G. Engineering circular RNA for potent and stable translation in eukaryotic cells. Nat. Commun. 9, 2629 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kariko, K., Buckstein, M., Ni, H. P. & Weissman, D. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23, 165–175 (2005).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Nallagatla, S. R., Toroney, R. & Bevilacqua, P. C. Regulation of innate immunity through RNA structure and the protein kinase PKR. Curr. Opin. Struct. Biol. 21, 119–127 (2011).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wesselhoeft, R. A. et al. RNA circularization diminishes immunogenicity and can extend translation duration in vivo. Mol. Cell. 74, 508 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kameda, S., Ohno, H. & Saito, H. Synthetic circular RNA switches and circuits that control protein expression in mammalian cells. Nucleic Acids Res. 51, e24 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Smith, E. L., Zamarin, D. & Lesokhin, A. M. Harnessing the immune system for cancer therapy. Curr. Opin. Oncol. 26, 600–607 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Benson, R. A. et al. Antigen presentation kinetics control T cell/dendritic cell interactions and follicular helper T cell generation in vivo. eLife 4, e06994 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qin, M. M. et al. Current perspectives on B lymphocytes in the immunobiology of hepatocellular carcinoma. Front. Oncol. 11, 647854 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Sanger, H. et al. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc. Natl Acad. Sci. USA 73, 3852–3856 (1976).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Hsu, M. T. & Coca-Prados, M. Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells. Nature 280, 339–340 (1979).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Arnberg, A. C. et al. Some yeast mitochondrial RNAs are circular. Cell 19, 313–319 (1980).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kos, A. et al. The hepatitis delta (delta) virus possesses a circular RNA. Nature 323, 558–560 (1986).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Price, J. V., Engberg, J. & Cech, T. R. 5′ exon requirement for self-splicing of the Tetrahymena thermophila pre-ribosomal RNA and identification of a cryptic 5′ splice site in the 3′ exon. J. Mol. Biol. 196, 49–60 (1987).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Salzman, J. et al. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS ONE 7, e30733 (2012).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Surono, A. et al. Circular dystrophin RNAs consisting of exons that were skipped by alternative splicing. Hum. Mol. Genet. 8, 493–500 (1999).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Jeck, W. R. et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. Rna 19, 141–157 (2013).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Hansen, T. B. et al. Natural RNA circles function as efficient microRNA sponges. Nature 495, 384–388 (2013).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Memczak, S. et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495, 333–338 (2013).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang, Y. & Wang, Z. F. Efficient backsplicing produces translatable circular mRNAs. Rna 21, 172–179 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Du, W. W. et al. Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity. Cell Death Differ. 24, 357–370 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Huang, A. Q. et al. Circular RNA-protein interactions: functions, mechanisms, and identification. Theranostics 10, 3503–3517 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Xu, X. L. et al. CircRNA inhibits DNA damage repair by interacting with host gene. Mol. Cancer 19, 128 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhou, W. Y. et al. Circular RNA: metabolism, functions and interactions with proteins. Mol. Cancer 19, 172 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Grabowski, P. J., Zaug, A. J. & Cech, T. R. The intervening sequence of the ribosomal RNA precursor is converted to a circular RNA in isolated nuclei of Tetrahymena. Cell 23, 467–476 (1981).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Branch, A. D. et al. Cell-free circularization of viroid progeny RNA by an RNA ligase from wheat germ. Science 217, 1147–1149 (1982).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Puttaraju, M. & Been, M. D. Group I permuted intron-exon (PIE) sequences self-splice to produce circular exons. Nucleic Acids Res. 20, 5357–5364 (1992).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Dolinnaya, N. G. et al. Oligonucleotide circularization by template-directed chemical ligation. Nucleic Acids Res. 21, 5403–5407 (1993).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ford, E. & Ares, M. Jr. Synthesis of circular RNA in bacteria and yeast using RNA cyclase ribozymes derived from a group I intron of phage T4. Proc. Natl Acad. Sci. USA 91, 3117–3121 (1994).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Chen, C. & Sarnow, P. Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science 268, 415–417 (1995).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Perriman, R. & Ares, M. Jr. Circular mRNA can direct translation of extremely long repeating-sequence proteins in vivo. Rna 4, 1047–1054 (1998).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kariko, K., Muramatsu, H., Ludwig, J. & Weissman, D. Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA. Nucleic Acids Res. 39, e142 (2011).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Weingarten-Gabbay, S. et al. Systematic discovery of cap-independent translation sequences in human and viral genomes. Science 351, aad4939 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Meganck, R. M. et al. Engineering highly efficient backsplicing and translation of synthetic circRNAs. Mol. Ther. Nucleic Acids 23, 821–834 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Chen, Y. G. et al. N6-methyladenosine modification controls circular RNA immunity. Mol. Cell. 76, 96 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Chen, R. et al. Engineering circular RNA for enhanced protein production. Nat. Biotechnol. 41, 262–272 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yang, J. L. et al. Intratumoral delivered novel circular mRNA encoding cytokines for immune modulation and cancer therapy. Mol. Ther. Nucleic Acids 30, 184–197 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Liu, X. et al. Synthetic circular RNA functions as a miR-21 sponge to suppress gastric carcinoma cell proliferation. Mol. Ther. Nucleic Acids 13, 312–321 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wang, Z. et al. Synthetic circular multi-miR sponge simultaneously inhibits miR-21 and miR-93 in esophageal carcinoma. Lab. Investig. 99, 1442–1453 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Lavenniah, A. et al. Engineered circular RNA sponges act as miRNA inhibitors to attenuate pressure overload-induced cardiac hypertrophy. Mol. Ther. 28, 1506–1517 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Schreiner, S., Didio, A., Hung, L. H. & Bindereif, A. Design and application of circular RNAs with protein-sponge function. Nucleic Acids Res. 48, 12326–12335 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Rybak-Wolf, A. et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol. Cell. 58, 870–885 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chen, C. K. et al. Structured elements drive extensive circular RNA translation. Mol. Cell. 81, 4300 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Abe, N. et al. Rolling circle amplification in a prokaryotic translation system using small circular. Rna. Angew. Chem. Int. Ed. Engl. 52, 7004–7008 (2013).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Abe, N. et al. Rolling circle translation of circular RNA in living human cells. Sci. Rep. 5, 16435 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Chen, C. Y., Yang, Y. & Wang, Z. F. Study of circular RNA translation using reporter systems in living cells. Methods 196, 113–120 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lu, Y. Q. et al. Translation role of circRNAs in cancers. J. Clin. Lab. Anal. 35, e23866 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Khodadoust, M. S. et al. Antigen presentation profiling reveals recognition of lymphoma immunoglobulin neoantigens. Nature 543, 723 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Andrews, S. J. & Rothnagel, J. A. Emerging evidence for functional peptides encoded by short open reading frames. Nat. Rev. Genet. 15, 193–204 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Olexiouk, V., Van Criekinge, W. & Menschaert, G. An update on sORFs.org: a repository of small ORFs identified by ribosome profiling. Nucleic Acids Res. 46, D497–D502 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Blyn, L. B., Towner, J. S., Semler, B. L. & Ehrenfeld, E. Requirement of poly(rC) binding protein 2 for translation of poliovirus RNA. J. Virol. 71, 6243–6246 (1997).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Gamarnik, A. V. & Andino, R. Two functional complexes formed by KH domain containing proteins with the 5′ noncoding region of poliovirus RNA. Rna 3, 882–892 (1997).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Walter, B. L., Nguyen, J. H., Ehrenfeld, E. & Semler, B. L. Differential utilization of poly(rC) binding protein 2 in translation directed by picornavirus IRES elements. Rna 5, 1570–1585 (1999).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Mangus, D. A., Evans, M. C. & Jacobson, A. Poly(A)-binding proteins: multifunctional scaffolds for the post-transcriptional control of gene expression. Genome Biol. 4, 223 (2003).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jackson, R. J., Hellen, C. U. T. & Pestova, T. V. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat. Rev. Mol. Cell Biol. 11, 113–127 (2010).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wang, X. et al. N-6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505, 117 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Shi, H. L. et al. YTHDF3 facilitates translation and decay of N-6-methyladenosine-modified RNA. Cell Res. 27, 315–328 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Yang, Y. et al. Extensive translation of circular RNAs driven by N-6-methyladenosine. Cell Res. 27, 626–641 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Thess, A. et al. Sequence-engineered mRNA without chemical nucleoside modifications enables an effective protein therapy in large animals. Mol. Ther. 23, 1456–1464 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Garcia, M. et al. Regulation and function of the cytosolic viral RNA sensor RIG-I in pancreatic beta cells. Biochim Biophys. Acta 1793, 1768–1775 (2009).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Thoresen, D. et al. The molecular mechanism of RIG-I activation and signaling. Immunol. Rev. 304, 154–168 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wu, J. X. & Chen, Z. J. Innate immune sensing and signaling of cytosolic nucleic acids. Annu. Rev. Immunol. 32, 461–488 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chen, N. H. et al. RNA sensors of the innate immune system and their detection of pathogens. IUBMB Life 69, 297–304 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Linares-Fernandez, S., Lacroix, C., Exposito, J. Y. & Verrier, B. Tailoring mRNA vaccine to balance innate/adaptive immune response. Trends Mol. Med. 26, 311–323 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Walther, K. & Schulte, L. N. The role of lncRNAs in innate immunity and inflammation. RNA Biol. 18, 587–603 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chen, Y. G. et al. Sensing self and foreign circular RNAs by intron identity. Mol. Cell. 67, 228 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Roundtree, I. A., Evans, M. E., Pan, T. & He, C. Dynamic RNA modifications in gene expression regulation. Cell 169, 1187–1200 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhao, W. et al. High-throughput microarray reveals the epitranscriptome-wide landscape of m(6)A-modified circRNA in oral squamous cell carcinoma. BMC Genomics 23, 661 (2022).

    Article 

    Google Scholar
     

  • Vicens, Q. et al. Toward predicting self-splicing and protein-facilitated splicing of group I introns. Rna 14, 2013–2029 (2008).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Linder, B. et al. Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat. Methods 12, 767–114 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Bai, Y. et al. Research progress on circular RNA vaccines. Front. Immunol. 13, 1091797 (2023).

  • Ji, P. F. et al. Expanded expression landscape and prioritization of circular RNAs in mammals. Cell Rep. 26, 3444 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Dolinnaya, N. G., Sokolova, N. I., Ashirbekova, D. T. & Shabarova, Z. A. The use of BrCN for assembling modified DNA duplexes and DNA-RNA hybrids; comparison with water-soluble carbodiimide. Nucleic Acids Res. 19, 3067–3072 (1991).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Fantoni, N. Z., El-Sagheer, A. H. & Brown, T. A Hitchhiker’s guide to click-chemistry with nucleic acids. Chem. Rev. 121, 7122–7154 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Nakamoto, K. et al. Chemically synthesized circular RNAs with phosphoramidate linkages enable rolling circle translation. Chem. Commun. 56, 6217–6220 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Nakamoto, K. & Abe, H. Chemical synthesis of circular RNAs with phosphoramidate linkages for rolling-circle translation. Curr. Protoc. 1, e43 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kaur, J., Saxena, M. & Rishi, N. An overview of recent advances in biomedical applications of click chemistry. Bioconjugate Chem. 32, 1455–1471 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lee, K. H., Kim, S. & Lee, S. W. Pros and cons of in vitro methods for circular RNA preparation. Int. J. Mol. Sci. 23, 13247 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Popow, J., Schleiffer, A. & Martinez, J. Diversity and roles of (t)RNA ligases. Cell. Mol. Life Sci. 69, 2657–2670 (2012).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wood, W. B. & Revel, H. R. The genome of bacteriophage T4. Bacteriol. Rev. 40, 847–868 (1976).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wang, Y. M. & Silverman, S. K. A general two-step strategy to synthesize lariat RNAs. Rna 12, 313–321 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Costello, A., Lao, N. T., Barron, N. & Clynes, M. Reinventing the wheel: synthetic circular RNAs for mammalian cell engineering. Trends Biotechnol. 38, 217–230 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Krug, M. & Uhlenbeck, O. C. Reversal of T4 RNA ligase. Biochemistry 21, 1858–1864 (1982).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chen, H. et al. Preferential production of RNA rings by T4 RNA ligase 2 without any splint through rational design of precursor strand. Nucleic Acids Res. 48, e54 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Cheng, K. et al. RNA ligation of very small pseudo nick structures by T4 RNA ligase 2, leading to efficient production of versatile RNA rings. RSC Adv. 9, 8620–8627 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Romaniuk, P. & Uhlenbeck, O. Joining of RNA molecules with RNA ligase. Methods Enzymol. 100, 52–59 (1983).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang, L. & Ruffner, D. E. Oligoribonucleotide circularization by ‘template-mediated’ ligation with T4 RNA ligase: synthesis of circular hammerhead ribozymes. Nucleic Acids Res. 26, 2502–2504 (1998).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lang, K. & Micura, R. The preparation of site-specifically modified riboswitch domains as an example for enzymatic ligation of chemically synthesized RNA fragments. Nat. Protoc. 3, 1457–1466 (2008).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Abe, N., Kodama, A. & Abe, H. Preparation of circular RNA in vitro. Methods Mol. Biol. 1724, 181–192 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Liu, C. X. et al. RNA circles with minimized immunogenicity as potent PKR inhibitors. Mol. Cell. 82, 420 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Petkovic, S. & Muller, S. RNA circularization strategies in vivo and in vitro. Nucleic Acids Res. 43, 2454–2465 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Qi, Y. F. et al. Engineering circular RNA regulators to specifically promote circular RNA production. Theranostics 11, 7322–7336 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Rausch, J. W. et al. Characterizing and circumventing sequence restrictions for synthesis of circular RNA in vitro. Nucleic Acids Res. 49, e35 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zimmerly, S. & Semper, C. Evolution of group II introns. Mobile DNA 6, 1–19 (2015).

  • Jarrell, K. A. Inverse splicing of a group II intron. Proc. Natl Acad. Sci. USA 90, 8624–8627 (1993).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Mikheeva, S., Hakim-Zargar, M., Carlson, D. & Jarrell, K. Use of an engineered ribozyme to produce a circular human exon. Nucleic Acids Res. 25, 5085–5094 (1997).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Murray, H. L. et al. Excision of group II introns as circles. Mol. Cell. 8, 201–211 (2001).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Haurwitz, R. E. et al. Sequence- and structure-specific RNA processing by a CRISPR endonuclease. Science 329, 1355–1358 (2010).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Borchardt, E. K. et al. Inducing circular RNA formation using the CRISPR endoribonuclease Csy4. Rna 23, 619–627 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Roth, A. et al. A widespread self-cleaving ribozyme class is revealed by bioinformatics. Nat. Chem. Biol. 10, 56–92 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Litke, J. L. & Jaffrey, S. R. Highly efficient expression of circular RNA aptamers in cells using autocatalytic transcripts. Nat. Biotechnol. 37, 667 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Litke, J. L. & Jaffrey, S. R. Trans ligation of RNAs to generate hybrid circular RNAs using highly efficient autocatalytic transcripts. Methods 196, 104–112 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lu, T., Klein, L. J., Ha, S. & Rustandi, R. R. High-resolution capillary electrophoresis separation of large RNA under non-aqueous conditions. J. Chromatogr. A. 1618, 460875 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Green, M. R. & Sambrook, J. Separation of RNA according to size: electrophoresis of RNA through denaturing urea polyacrylamide gels. Cold Spring Harb. Protoc. 2021, 10.1101 (2021).


    Google Scholar
     

  • Breuer, J. & Rossbach, O. Production and purification of artificial circular RNA sponges for application in molecular biology and medicine. Methods Protoc. 3, 42 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Abe, B. T. et al. Circular RNA migration in agarose gel electrophoresis. Mol. Cell. 82, 1768 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Suzuki, H. et al. Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing. Nucleic Acids Res. 34, e63 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suzuki, H. & Tsukahara, T. A view of pre-mRNA splicing from RNase R resistant RNAs. Int. J. Mol. Sci. 15, 9331–9342 (2014).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Vincent, H. A. & Deutscher, M. P. Substrate recognition and catalysis by the exoribonuclease RNase R. J. Biol. Chem. 281, 29769–29775 (2006).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Xiao, M. S. & Wilusz, J. E. An improved method for circular RNA purification using RNase R that efficiently removes linear RNAs containing G-quadruplexes or structured 3 ‘ ends. Nucleic Acids Res. 47, 8755–8769 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kwok, C. K., Marsico, G. & Balasubramanian, S. Detecting RNA G-quadruplexes (rG4s) in the transcriptome. Cold Spring Harbor. Perspect. Biol. 10, a032283 (2018).

    Article 

    Google Scholar
     

  • Vincent, H. A. & Deutscher, M. P. Insights into how RNase R degrades structured RNA: analysis of the nuclease domain. J. Mol. Biol. 387, 570–583 (2009).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhang, Y., Yang, L. & Chen, L.-L. Characterization of circular RNAs. Methods Mol. Biol. 2372, 179–192 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yang, Y. L. et al. Size-exclusion HPLC provides a simple, rapid, and versatile alternative method for quality control of vaccines by characterizing the assembly of antigens. Vaccine 33, 1143–1150 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Garcia-Canas, V., Lorbetskie, B. & Girard, M. Rapid and selective characterization of influenza virus constituents in monovalent and multivalent preparations using non-porous reversed-phase high performance liquid chromatography columns. J. Chromatogr. A. 1123, 225–232 (2006).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Garcia-Canas, V. et al. Approach to the profiling and characterization of influenza vaccine constituents by the combined use of size-exclusion chromatography, gel electrophoresis and mass spectrometry. Biologicals 38, 294–302 (2010).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li, Y. D. et al. Coronavirus vaccine development: from SARS and MERS to COVID-19. J. Biomed. Sci. 27, 104 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, M. Y. et al. The nano delivery systems and applications of mRNA. Eur. J. Med. Chem. 227, 113910 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Paunovska, K., Loughrey, D. & Dahlman, J. E. Drug delivery systems for RNA therapeutics. Nat. Rev. Genet. 23, 265–280 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Gregoriadis, G. Liposomes in drug delivery: how it all happened. Pharmaceutics 8, 19 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harashima, H., Sakata, K., Funato, K. & Kiwada, H. Enhanced hepatic uptake of liposomes through complement activation depending on the size of liposomes. Pharm. Res. 11, 402–406 (1994).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Tenchov, R., Bird, R., Curtze, A. E. & Zhou, Q. Q. Lipid nanoparticles-from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement. ACS Nano 15, 16982–17015 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Reichmuth, A. M. et al. mRNA vaccine delivery using lipid nanoparticles. Ther. Deliv. 7, 319–334 (2016).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ramachandran, S., Satapathy, S. R. & Dutta, T. Delivery Strategies for mRNA Vaccines. Pharm. Med. 36, 11–20 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Evers, M. J. W. et al. State-of-the-art design and rapid-mixing production techniques of lipid nanoparticles for nucleic acid delivery. Small Methods 2, 1700375 (2018).

    Article 

    Google Scholar
     

  • Cheng, X. W. & Lee, R. J. The role of helper lipids in lipid nanoparticles (LNPs) designed for oligonucleotide delivery. Adv. Drug Deliv. Rev. 99, 129–137 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Tang, B., Qian, Y. & Fang, G. H. Development of lipid-polymer hybrid nanoparticles for improving oral absorption of enoxaparin. Pharmaceutics 12, 607 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lou, G. et al. Delivery of self-amplifying mRNA vaccines by cationic lipid nanoparticles: the impact of cationic lipid selection. J. Control. Release 325, 370–379 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kedmi, R., Ben-Arie, N. & Peer, D. The systemic toxicity of positively charged lipid nanoparticles and the role of Toll-like receptor 4 in immune activation. Biomaterials 31, 6867–6875 (2010).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Suga, K. et al. Conformational change of single-stranded RNAs induced by liposome binding. Nucleic Acids Res. 39, 8891–8900 (2011).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Cullis, P. R. & Hope, M. J. Lipid nanoparticle systems for enabling gene therapies. Mol. Ther. 25, 1467–1475 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Malone, R. W. et al. Cationic liposome mediated transfection. Proc. Natl Acad. Sci. USA 86, 6077–6081 (1989).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhang, G. et al. A delivery system targeting bone formation surfaces to facilitate RNAi-based anabolic therapy. Nat. Med. 18, 307–314 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Kauffman, K. J. et al. Optimization of lipid nanoparticle formulations for mRNA delivery in vivo with fractional factorial and definitive screening designs. Nano Lett. 15, 7300–7306 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Sato, Y. et al. Understanding structure-activity relationships of pH-sensitive cationic lipids facilitates the rational identification of promising lipid nanoparticles for delivering siRNAs in vivo. J. Control. Release 295, 140–152 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Fan, N. et al. Manganese-coordinated mRNA vaccines with enhanced mRNA expression and immunogenicity induce robust immune responses against SARS-CoV-2 variants. Sci. Adv. 8, eabq3500, (2022).

  • Wang, Y. et al. mRNA vaccine: a potential therapeutic strategy. Mol. Cancer 20, 33 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • McKinlay, C. J. et al. Charge-altering releasable transporters (CARTs) for the delivery and release of mRNA in living animals. Proc. Natl Acad. Sci. USA 114, E448–E456 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • McKinlay, C. J. et al. Enhanced mRNA delivery into lymphocytes enabled by lipid-varied libraries of charge-altering releasable transporters. Proc. Natl Acad. Sci. USA 115, E5859–E5866 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arteta, M. Y. et al. Successful reprogramming of cellular protein production through mRNA delivered by functionalized lipid nanoparticles. Proc. Natl Acad. Sci. USA 115, E3351–E3360 (2018).

    CAS 

    Google Scholar
     

  • McKay, P. F. et al. Self-amplifying RNA SARS-CoV-2 lipid nanoparticle vaccine candidate induces high neutralizing antibody titers in mice. Nat. Commun. 11, 3523 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wisse, E. et al. The size of endothelial fenestrae in human liver sinusoids: implications for hepatocyte-directed gene transfer. Gene Ther. 15, 1193–1199 (2008).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Pardi, N. et al. Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes. J. Control. Release 217, 345–351 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Alden, M. et al. Intracellular reverse transcription of Pfizer BioNTech COVID-19 mRNA vaccine BNT162b2 in vitro in human liver cell line. Curr. Issues Mol. Biol. 44, 1115–1126 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Chen, J. J. et al. Lipid nanoparticle-mediated lymph node-targeting delivery of mRNA cancer vaccine elicits robust CD8(+) T cell response. Proc. Natl Acad. Sci. USA 119, e2207841119 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Long, J. R. et al. Novel ionizable lipid nanoparticles for SARS-CoV-2 Omicron mRNA delivery. Adv. Healthc. Mater. 12, e2202590 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Ding, Y. Y. et al. The lectin Siglec-G inhibits dendritic cell cross-presentation by impairing MHC class I-peptide complex formation. Nat. Immunol. 17, 1167 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Qiao, J. et al. Targeting tumors with IL-10 prevents dendritic cell-mediated CD8(+) T cell apoptosis. Cancer Cell 35, 901 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Midoux, P. & Pichon, C. Lipid-based mRNA vaccine delivery systems. Expert Rev. Vaccines 14, 221–234 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Diken, M. et al. Selective uptake of naked vaccine RNA by dendritic cells is driven by macropinocytosis and abrogated upon DC maturation. Gene Ther. 18, 702–708 (2011).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Selmi, A. et al. Uptake of synthetic naked RNA by skin-resident dendritic cells via macropinocytosis allows antigen expression and induction of T-cell responses in mice. Cancer Immunol. Immunother. 65, 1075–1083 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Probst, J. et al. Spontaneous cellular uptake of exogenous messenger RNA in vivo is nucleic acid-specific, saturable and ion dependent. Gene Ther. 14, 1175–1180 (2007).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Edwards, D. K. et al. Adjuvant effects of a sequence-engineered mRNA vaccine: translational profiling demonstrates similar human and murine innate response. J. Transl. Med. 15, 1 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sahin, U. et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547, 222 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Desjardins, A. et al. Recurrent glioblastoma treated with recombinant poliovirus. N. Engl. J. Med. 379, 150–161 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lang, F. F. et al. Phase I study of DNX-2401 (Delta-24-RGD) oncolytic adenovirus: replication and immunotherapeutic effects in recurrent malignant glioma. J. Clin. Oncol. 36, 1419 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Newman, J. H. et al. Intratumoral injection of the seasonal flu shot converts immunologically cold tumors to hot and serves as an immunotherapy for cancer. Proc. Natl Acad. Sci. USA 117, 1119–1128 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Nam, J., Son, S., Park, K. S. & Moon, J. J. Photothermal therapy combined with neoantigen cancer vaccination for effective immunotherapy against large established tumors and distant metastasis. Adv. Ther. 4, 2100093 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Loan Young, T., Chang Wang, K., James Varley, A. & Li, B. Clinical delivery of circular RNA: lessons learned from RNA drug development. Adv. Drug Delivery Rev. 197, 114826 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Mitchell, M. J. et al. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 20, 101–124 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zuo, X. et al. Recent advances in nanomaterials for asthma treatment. Int. J. Mol. Sci. 23, 14427 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Brito, L. A. et al. A cationic nanoemulsion for the delivery of next-generation RNA vaccines. Mol. Ther. 22, 2118–2129 (2014).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Teixeira, H. F. et al. Cationic nanoemulsions as nucleic acids delivery systems. Int. J. Pharm. 534, 356–367 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Amiri, A. et al. Exosomes as bio-inspired nanocarriers for RNA delivery: preparation and applications. J. Transl. Med. 20, 125 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Tsai, S. J., Guo, C., Atai, N. A. & Gould, S. J. Exosome-mediated mRNA delivery for SARS-CoV-2 vaccination. Preprint at https://www.biorxiv.org/content/10.1101/2020.11.06.371419v2 (2020).

  • Schumann, C. et al. Increasing lean muscle mass in mice via nanoparticle-mediated hepatic delivery of follistatin mRNA. Theranostics 8, 5276–5288 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lonez, C., Vandenbranden, M. & Ruysschaert, J. M. Cationic lipids activate intracellular signaling pathways. Adv. Drug Deliv. Rev. 64, 1749–1758 (2012).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wissing, S. A., Kayser, O. & Muller, R. H. Solid lipid nanoparticles for parenteral drug delivery. Adv. Drug Deliv. Rev. 56, 1257–1272 (2004).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Montoto, S. S., Muraca, G. & Ruiz, M. E. Solid lipid nanoparticles for drug delivery: pharmacological and biopharmaceutical aspects. Front. Mol. Biosci. 7, 587997 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Akbari, J. et al. Solid lipid nanoparticles and nanostructured lipid carriers: a review of the methods of manufacture and routes of administration. Pharm. Dev. Technol. 27, 525–544 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Khan, S. et al. Nanostructured lipid carriers: An emerging platform for improving oral bioavailability of lipophilic drugs. Int. J. Pharm. Investig. 5, 182–191 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Mendoza-Munoz, N. et al. Solid lipid nanoparticles: an approach to improve oral drug delivery. J. Pharm. Pharm. Sci. 24, 509–532 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wolff, J. A. et al. Direct gene transfer into mouse muscle in vivo. Science 247, 1465–1468 (1990).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Martinon, F. et al. Induction of virus-specific cytotoxic T lymphocytes in vivo by liposome-entrapped mRNA. Eur. J. Immunol. 23, 1719–1722 (1993).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Heil, F. et al. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303, 1526–1529 (2004).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Corbett, K. S. et al. Evaluation of the mRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates. N. Engl. J. Med. 383, 1544–1555 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Corbett, K. S. et al. SARS-CoV-2 mRNA vaccine development enabled by prototype pathogen preparedness. Nature 586, 567–571 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Tai, W. B. et al. A novel receptor-binding domain (RBD)-based mRNA vaccine against SARS-CoV-2. Cell Res. 30, 932–935 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yan, R. et al. Drug repositioning for hand, foot, and mouth disease. Viruses 15, 75 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Mummert, A. et al. A perspective on multiple waves of influenza pandemics. PLoS ONE 8, e60343 (2013).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Cao, C. X. et al. Analysis of spatiotemporal characteristics of pandemic SARS spread in Mainland China. Biomed. Res. Int. 2016, 7247983 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng, R. D. et al. RNA therapeutics-research and clinical advancements. Front. Mol. Biosci. 8, 710738 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Punzo, O. et al. Clinical characteristics of individuals under 40 years of age who died with COVID-19 in Italy. J. Med. Virol. 93, 1932–1936 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhou, Y. T. et al. COVID-19 is distinct from SARS-CoV-2-negative community-acquired pneumonia. Front. Cell. Infect. Microbiol. 10, 322 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Noy-Porat, T. et al. A panel of human neutralizing mAbs targeting SARS-CoV-2 spike at multiple epitopes. Nat. Commun. 11, 4303 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Tai, W. B. et al. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell Mol. Immunol. 17, 613–620 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Dejnirattisai, W. et al. SARS-CoV-2 Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responses. Cell 185, 467 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kato, Y. et al. Multifaceted effects of antigen valency on B cell response composition and differentiation in vivo. Immunity 53, 548 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Hsieh, C. L. et al. Structure-based design of prefusion-stabilized SARS-CoV-2 spikes. Science 369, 1501 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wrapp, D. et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367, 1260 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Sun, W. Q. et al. The self-assembled nanoparticle-based trimeric RBD mRNA vaccine elicits robust and durable protective immunity against SARS-CoV-2 in mice. Signal Transduct. Target. Ther. 6, 340 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Yang, L. et al. A recombinant receptor-binding domain in trimeric form generates protective immunity against SARS-CoV-2 infection in nonhuman primates. Innovation 2, 100140 (2021).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Liu, L. M. et al. Circular RNAs: Isolation, characterization and their potential role in diseases. RNA Biol. 14, 1715–1721 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H. M., Ma, X. L. & Li, H. G. Intriguing circles: conflicts and controversies in circular RNA research. Wiley Interdiscip. Rev. RNA 10, e1538 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Freyn, A. W. et al. A multi-targeting, nucleoside-modified mRNA influenza virus vaccine provides broad protection in mice. Mol. Ther. 28, 1569–1584 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Gomez, C. E. et al. Enhancement of the HIV-1-specific immune response induced by an mRNA vaccine through boosting with a poxvirus MVA vector expressing the same antigen. Vaccines 9, 959 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Espeseth, A. S. et al. Modified mRNA/lipid nanoparticle-based vaccines expressing respiratory syncytial virus F protein variants are immunogenic and protective in rodent models of RSV infection. NPJ Vaccines 5, 16 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Awasthi, S. et al. Trivalent nucleoside-modified mRNA vaccine yields durable memory B cell protection against genital herpes in models. J. Clin. Investig. 131, e152310 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Monslow, M. A. et al. Immunogenicity generated by mRNA vaccine encoding VZV gE antigen is comparable to adjuvanted subunit vaccine and better than live attenuated vaccine in nonhuman primates. Vaccine 38, 5793–5802 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Aldrich, C. et al. Proof-of-concept of a low-dose unmodified mRNA-based rabies vaccine formulated with lipid nanoparticles in human volunteers: a phase 1 trial. Vaccine 39, 1310–1318 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Webster, H. et al. Pre-existing immunity to cytomegalovirus in macaques influences human CMV vaccine responses in preclinical models. Vaccine 39, 5358–5367 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lo, M. K. et al. Evaluation of a single-dose nucleoside-modified messenger RNA vaccine encoding hendra virus-soluble glycoprotein against lethal Nipah virus challenge in Syrian hamsters. J. Infect. Dis. 221, S493–S498 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Knudson, C. J. et al. Lipid-nanoparticle-encapsulated mRNA vaccines induce protective memory CD8 T cells against a lethal viral infection. Mol. Ther. 29, 2769–2781 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wollner, C. J. et al. A dengue virus serotype 1 mRNA-LNP vaccine elicits protective immune responses. J. Virol. 95, 10–1128 (2021).

  • Nahmad, A. D. et al. In vivo engineered B cells secrete high titers of broadly neutralizing anti-HIV antibodies in mice. Nat. Biotechnol. 40, 1241 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Schaefer-Babajew, D. et al. Antibody feedback regulates immune memory after SARS-CoV-2 mRNA vaccination. Nature 613, 735–742 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Baum, A. et al. REGN-COV2 antibodies prevent and treat SARS-CoV-2 infection in rhesus macaques and hamsters. Science 370, 1110 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Baum, A. et al. Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies. Science 369, 1014 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang, P. et al. A multiclade env-gag VLP mRNA vaccine elicits tier-2 HIV-1-neutralizing antibodies and reduces the risk of heterologous SHIV infection in macaques. Nat. Med. 27, 2234 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Dacon, C. et al. Broadly neutralizing antibodies target the coronavirus fusion peptide. Science 377, 728 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Gilbert, P. B. et al. Neutralization titer biomarker for antibody-mediated prevention of HIV-1 acquisition. Nat. Med. 28, 1924 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Julg, B. et al. Safety and antiviral activity of triple combination broadly neutralizing monoclonal antibody therapy against HIV-1: a phase 1 clinical trial. Nat. Med. 28, 1288 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lu, J. J. et al. Current comprehensive understanding of denosumab (the RANKL neutralizing antibody) in the treatment of bone metastasis of malignant tumors, including pharmacological mechanism and clinical trials. Front. Oncol. 13, 1133828 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Tang, H. J. et al. Generation and characterization of humanized affinity-matured EGFL6 antibodies for ovarian cancer therapy. Gynecol. Oncol. 171, 49–58 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • August, A. et al. A phase 1 trial of lipid-encapsulated mRNA encoding a monoclonal antibody with neutralizing activity against Chikungunya virus. Nat. Med. 27, 2224 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Narayanan, E. et al. Rational design and in vivo characterization of mRNA-encoded broadly neutralizing antibody combinations against HIV-1. Antibodies 11, 67 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Vanover, D. et al. Nebulized mRNA-encoded antibodies protect hamsters from SARS-CoV-2 infection. Adv. Sci. 9, 1098302 (2022).

    Article 

    Google Scholar
     

  • Huang, C. et al. Lipid nanoparticle delivery system for mRNA encoding B7H3-redirected bispecific antibody displays potent antitumor effects on malignant tumors. Adv. Sci. 10, e2205532 (2023).

    Article 

    Google Scholar
     

  • Panova, E. A. et al. Single-domain antibody delivery using an mRNA platform protects against lethal doses of botulinum neurotoxin A. Front. Immunol. 14, 1098302 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Riley, R. S., June, C. H., Langer, R. & Mitchell, M. J. Delivery technologies for cancer immunotherapy. Nat. Rev. Drug Discov. 18, 175–196 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Rastrelli, M., Tropea, S., Rossi, C. R. & Alaibac, M. Melanoma: epidemiology, risk factors, pathogenesis, diagnosis and classification. In vivo 28, 1005–1011 (2014).

    PubMed 

    Google Scholar
     

  • Hughes, L. E. Epidemiology of melanoma. Lancet 1, 557 (1981).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Sekulovic, L. K. et al. Access to innovative medicines for metastatic melanoma worldwide: Melanoma World Society and European Association of Dermato-oncology survey in 34 countries. Eur. J. Cancer 104, 201–209 (2018).

    Article 

    Google Scholar
     

  • Kranz, L. M. et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 534, 396 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Kwak, M., Leick, K. M., Melssen, M. M. & Slingluff, C. L. Vaccine strategy in melanoma. Surg. Oncol. Clin. N. Am. 28, 337 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cintolo, J. A. et al. Type I-polarized BRAF-pulsed dendritic cells induce antigen-specific CD8(+) T cells that impact BRAF-mutant murine melanoma. Melanoma Res. 26, 1–11 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Liu, Q. et al. BRAF peptide vaccine facilitates therapy of murine BRAF-mutant melanoma. Cancer Immunol. Immunother. 67, 299–310 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Fijak, M., Bhushan, S. & Meinhardt, A. Immunoprivileged sites: the testis. Methods Mol. Biol. 677, 459–470 (2011).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Robbins, P. F. et al. A pilot trial using lymphocytes genetically engineered with an NY-ESO-1-reactive T-cell receptor: long-term follow-up and correlates with response. Clin. Cancer Res. 21, 1019–1027 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Dreno, B. et al. MAGE-A3 immunotherapeutic as adjuvant therapy for patients with resected, MAGE-A3-positive, stage III melanoma (DERMA): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol. 19, 916–929 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Robbins, P. F. et al. Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nat. Med. 19, 747 (2013).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Depontieu, F. R. et al. Identification of tumor-associated, MHC class II-restricted phosphopeptides as targets for immunotherapy. Proc. Natl Acad. Sci. USA 106, 12073–12078 (2009).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Petersen, J. et al. Phosphorylated self-peptides alter human leukocyte antigen class I-restricted antigen presentation and generate tumor-specific epitopes. Proc. Natl Acad. Sci. USA 106, 2776–2781 (2009).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Sahin, U. et al. An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma. Nature 585, 107 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Gress, R. E. et al. Proceedings from the National Cancer Institute’s Second International Workshop on the Biology, prevention, and treatment of relapse after hematopoietic stem cell transplantation: part I. Biology of relapse after transplantation. Biol. Blood Marrow Transpl. 19, 1537–1545 (2013).

    Article 

    Google Scholar
     

  • Vik-Mo, E. O. et al. Therapeutic vaccination against autologous cancer stem cells with mRNA-transfected dendritic cells in patients with glioblastoma. Cancer Immunol. Immunother. 62, 1499–1509 (2013).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Rittig, S. M. et al. Long-term survival correlates with immunological responses in renal cell carcinoma patients treated with mRNA-based immunotherapy. Oncoimmunology 5, e1108511 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Cafri, G. et al. mRNA vaccine-induced neoantigen-specific T cell immunity in patients with gastrointestinal cancer. J. Clin. Investig. 130, 5976–5988 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Amin, A. et al. Survival with AGS-003, an autologous dendritic cell-based immunotherapy, in combination with sunitinib in unfavorable risk patients with advanced renal cell carcinoma (RCC): phase 2 study results. J. ImmunoTher. Cancer 3, 14 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khoury, H. J. et al. Immune responses and long-term disease recurrence status after telomerase-based dendritic cell immunotherapy in patients with acute myeloid leukemia. Cancer 123, 3061–3072 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Coulie, P. G., Van den Eynde, B. J., van der Bruggen, P. & Boon, T. Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat. Rev. Cancer 14, 135–146 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Maniscalco, G. T. et al. Interferon Beta-1a treatment promotes SARS-CoV-2 mRNA vaccine response in multiple sclerosis subjects. Mult. Scler. Relat. Disord. 58, 103455 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kyewski, B. & Derbinski, J. Self-representation in the thymus: an extended view. Nat. Rev. Immunol. 4, 688–698 (2004).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Romero, P. et al. The Human Vaccines Project: a roadmap for cancer vaccine development. Sci. Transl. Med. 8, 334ps9 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Kramps, T. et al. Introduction to RNA Vaccines. Methods Mol. Biol. 1499, 1–111 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Demaria, O. et al. Harnessing innate immunity in cancer therapy. Nature 574, 45–56 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Sun, H. Y. et al. Using PAMPs and DAMPs as adjuvants in cancer vaccines. Hum. Vaccin Immunother. 17, 5546–5557 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Chawla-Sarkar, M., Leaman, D. W. & Borden, E. C. Preferential induction of apoptosis by interferon (IFN)-beta compared with IFN-alpha2: correlation with TRAIL/Apo2L induction in melanoma cell lines. Clin. Cancer Res. 7, 1821–1831 (2001).

    PubMed 
    CAS 

    Google Scholar
     

  • Spaapen, R. M. et al. Therapeutic activity of high-dose intratumoral IFN-beta requires direct effect on the tumor vasculature. J. Immunol. 193, 4254–4260 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hotz, C. et al. Local delivery of mRNA-encoding cytokines promotes antitumor immunity and tumor eradication across multiple preclinical tumor models. Sci. Transl. Med. 13, 143–158 (2021).

    Article 

    Google Scholar
     

  • Liu, J. Q. et al. Intratumoral delivery of IL-12 and IL-27 mRNA using lipid nanoparticles for cancer immunotherapy. J. Control. Release 345, 306–313 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Smyth, M. J., Ngiow, S. F., Ribas, A. & Teng, M. W. L. Combination cancer immunotherapies tailored to the tumour microenvironment. Nat. Rev. Clin. Oncol. 13, 143–158 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Stewart, J. M. & Keselowsky, B. G. Combinatorial drug delivery approaches for immunomodulation. Adv. Drug Deliv. Rev. 114, 161–174 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Henriques-Normark, B. & Normark, S. Bacterial vaccines and antibiotic resistance. Ups. J. Med. Sci. 119, 205–208 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maruggi, G. et al. Immunogenicity and protective efficacy induced by self-amplifying mRNA vaccines encoding bacterial antigens. Vaccine 35, 361–368 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Guo, X. R. et al. PDX-1 mRNA-induced reprogramming of mouse pancreas-derived mesenchymal stem cells into insulin-producing cells in vitro. Clin. Exp. Med. 15, 501–509 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Robinson, E. et al. Lipid nanoparticle-delivered chemically modified mRNA restores chloride secretion in cystic fibrosis. Mol. Ther. 26, 2034–2046 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Derdelinckx, J. et al. Clinical and immunological control of experimental autoimmune encephalomyelitis by tolerogenic dendritic cells loaded with MOG-encoding mRNA. J. Neuroinflammation 16, 167 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anttila, V. et al. Synthetic mRNA encoding VEGF-A in patients undergoing coronary artery bypass grafting: design of a phase 2a clinical trial. Mol. Ther. Methods Clin. Dev. 18, 464–472 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Flemming, A. mRNA vaccine shows promise in autoimmunity. Nat. Rev. Immunol. 21, 72–72 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Krienke, C. et al. A noninflammatory mRNA vaccine for treatment of experimental autoimmune encephalomyelitis. Science 371, 145–153 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ni, Z. X. et al. Circular forms of dedicator of cytokinesis 1 promotes breast cancer progression by derepressing never in mitosis related kinase 2 via sponging miR-128-3p. Environ. Toxicol. 11, 1–11 (2023).

    CAS 

    Google Scholar
     

  • Wang, Y. A. et al. The influence of circular RNAs on autophagy and disease progression. Autophagy 18, 240–253 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Arora, S. et al. Unravelling host-pathogen interactions: ceRNA network in SARS-CoV-2 infection (COVID-19). Gene 762, 145057 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lai, M. et al. CircFAM114A2 inhibits the progression of hepatocellular carcinoma via miR-630/HHIP axis. Cancer Med. 12, 12553–12568 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhou, Y. et al. CircEPS15, as a sponge of MIR24-3p ameliorates neuronal damage in Parkinson disease through boosting PINK1-PRKN-mediated mitophagy. Autophagy 10, 1–18 (2023).


    Google Scholar
     

  • van Rooij, E. & Olson, E. N. MicroRNA therapeutics for cardiovascular disease: opportunities and obstacles. Nat. Rev. Drug Discov. 11, 860–872 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gebert, L. F. R. et al. Miravirsen (SPC3649) can inhibit the biogenesis of miR-122. Nucleic Acids Res. 42, 609–621 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Rupaimoole, R. & Slack, F. J. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat. Rev. Drug Discov. 16, 203–221 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Santer, L., Bar, C. & Thum, T. Circular RNAs: a novel class of functional RNA molecules with a therapeutic perspective. Mol. Ther. 27, 1350–1363 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhang, Y. et al. Optimized RNA-targeting CRISPR/Cas13d technology outperforms shRNA in identifying functional circRNAs. Genome Biol. 22, 41 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Jost, I. et al. Functional sequestration of microRNA-122 from Hepatitis C virus by circular RNA sponges. RNA Biol. 15, 1032–1039 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haga, C. L. et al. Rapid generation of miRNA inhibitor leads by bioinformatics and efficient high-throughput screening methods. Methods Mol. Biol. 1517, 179–198 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Griffiths-Jones, S. et al. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 34, D140–D144 (2006).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Huang, H. Y., Chien, C. H., Jen, K. H. & Huang, H. D. RegRNA: an integrated web server for identifying regulatory RNA motifs and elements. Nucleic Acids Res. 34, W429–W434 (2006).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Hsu, S. D. et al. miRTarBase update 2014: an information resource for experimentally validated miRNA-target interactions. Nucleic Acids Res. 42, D78–D85 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li, J. H. et al. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 42, D92–D97 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Dudekulay, D. B. et al. CircInteractome: a web tool for exploring circular RNAs and their interacting proteins and microRNAs. RNA Biol. 13, 34–42 (2016).

    Article 

    Google Scholar
     

  • Liu, Y. C. et al. CircNet: a database of circular RNAs derived from transcriptome sequencing data. Nucleic Acids Res. 44, D209–D215 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Liu, M. et al. Circbank: a comprehensive database for circRNA with standard nomenclature. RNA Biol. 16, 899–905 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ebert, M. S. & Sharp, P. A. MicroRNA sponges: progress and possibilities. Rna 16, 2043–2050 (2010).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Hansen, T. B. et al. miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J. 30, 4414–4422 (2011).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ebert, M. S., Neilson, J. R. & Sharp, P. A. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat. Methods 4, 721–726 (2007).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Gentner, B. et al. Stable knockdown of microRNA in vivo by lentiviral vectors. Nat. Methods 6, 63–66 (2009).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Otaegi, G., Pollock, A. & Sun, T. An optimized sponge for microRNA miR-9 affects spinal motor neuron development in vivo. Front. Neurosci. 5, 146 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rehmsmeier, M., Steffen, P., Hochsmann, M. & Giegerich, R. Fast and effective prediction of microRNA/target duplexes. Rna 10, 1507–1517 (2004).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kruger, J. & Rehmsmeier, M. RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res. 34, W451–W454 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Begum, S., Yiu, A., Stebbing, J. & Castellano, L. Novel tumour suppressive protein encoded by circular RNA, circ-SHPRH, in glioblastomas. Oncogene 37, 4055–4057 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Holtkamp, S. et al. Modification of antigen-encoding RNA increases stability, translational efficacy, and T-cell stimulatory capacity of dendritic cells. Blood 108, 4009–4017 (2006).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kim, K. Q. et al. N1-methylpseudouridine found within COVID-19 mRNA vaccines produces faithful protein products. Cell Rep. 40, 111300 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Mokuda, S. et al. N-1-methylpseudouridine-incorporated mRNA enhances exogenous protein expression and suppresses immunogenicity in primary human fibroblast-like synoviocytes. Cytotechnology 74, 503–514 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Anderson, B. R. et al. Nucleoside modifications in RNA limit activation of 2’-5’-oligoadenylate synthetase and increase resistance to cleavage by RNase L. Nucleic Acids Res. 39, 9329–9338 (2011).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Sonenberg, N. & Hinnebusch, A. G. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136, 731–745 (2009).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Anderson, B. R. et al. Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation. Nucleic Acids Res. 38, 5884–5892 (2010).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Park, O. H. et al. Endoribonucleolytic cleavage of m(6)A-containing RNAs by RNase P/MRP complex. Mol. Cell. 74, 494 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang, L. L. et al. The role of N-6-methyladenosine (m(6)A) modification in the regulation of circRNAs. Mol. Cancer 19, 105 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Qiu, Z. et al. Clean-PIE: a novel strategy for efficiently constructing precise circRNA with thoroughly minimized immunogenicity to direct potent and durable protein expression. Preprint at https://www.biorxiv.org/content/10.1101/2022.06.20.496777v2 (2022).

  • Chen, S. J. et al. Widespread and functional RNA circularization in localized prostate cancer. Cell 176, 831 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Jagtap, U., Anderson, E. S. & Slack, F. J. The emerging value of circular noncoding RNA research in cancer diagnosis and treatment. Cancer Res. 83, 809–813 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    Stay Connected

    9FansLike
    4FollowersFollow
    0SubscribersSubscribe
    - Advertisement -spot_img

    Latest Articles

    %d bloggers like this: