Friday, September 29, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

Clonal haematopoiesis – a novel entity that modifies pathological processes in elderly – Cell Death Discovery


  • Arsenic R, Treue D, Lehmann A, Hummel M, Dietel M, Denkert C, et al. Comparison of targeted next-generation sequencing and Sanger sequencing for the detection of PIK3CA mutations in breast cancer. BMC Clin Pathol. 2015;15:20.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rohlin A, Wernersson J, Engwall Y, Wiklund L, Björk J, Nordling M. Parallel sequencing used in detection of mosaic mutations: comparison with four diagnostic DNA screening techniques. Hum Mutat. 2009;30:1012–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choi S, Chu J, Kim B, Ha SY, Kim ST, Lee J, et al. Tumor heterogeneity index to detect human epidermal growth factor receptor 2 amplification by next-generation sequencing: a direct comparison study with immunohistochemistry. J Mol Diagnostics. 2019;21:612–22.

    Article 
    CAS 

    Google Scholar
     

  • Buscarlet M, Provost S, Zada YF, Barhdadi A, Bourgoin V, Lépine G, et al. DNMT3A and TET2 dominate clonal hematopoiesis and demonstrate benign phenotypes and different genetic predispositions. Blood 2017;130:753–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Busque L, Patel JP, Figueroa ME, Vasanthakumar A, Provost S, Hamilou Z, et al. Recurrent somatic TET2 mutations in normal elderly individuals with clonal hematopoiesis. Nat Genet. 2012;44:1179–81.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Genovese G, Kähler AK, Handsaker RE, Lindberg J, Rose SA, Bakhoum SF, et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med. 2014;371:2477–87.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gillis NK, Ball M, Zhang Q, Ma Z, Zhao Y, Yoder SJ, et al. Clonal haemopoiesis and therapy-related myeloid malignancies in elderly patients: a proof-of-concept, case-control study. Lancet Oncol. 2017;18:112–21.

    Article 
    PubMed 

    Google Scholar
     

  • Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014;371:2488–98.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takahashi K, Wang F, Kantarjian H, Doss D, Khanna K, Thompson E, et al. Preleukaemic clonal haemopoiesis and risk of therapy-related myeloid neoplasms: a case-control study. Lancet Oncol. 2017;18:100–11.

    Article 
    PubMed 

    Google Scholar
     

  • Xie M, Lu C, Wang J, McLellan MD, Johnson KJ, Wendl MC, et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat Med. 2014;20:1472–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Steensma DP, Bejar R, Jaiswal S, Lindsley RC, Sekeres MA, Hasserjian RP, et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood 2015;126:9–16.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gibson CJ, Lindsley RC, Tchekmedyian V, Mar BG, Shi J, Jaiswal S, et al. Clonal hematopoiesis associated with adverse outcomes after autologous stem-cell transplantation for lymphoma. J Clin Oncol. 2017;35:1598–605.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Husby S, Favero F, Nielsen C, Sørensen BS, Bæch J, Grell K, et al. Clinical impact of clonal hematopoiesis in patients with lymphoma undergoing ASCT: a national population-based cohort study. Leukemia 2020;34:3256–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Venanzi A, Marra A, Schiavoni G, Milner SG, Limongello R, Santi A, et al. Dissecting clonal hematopoiesis in tissues of patients with classic hodgkin lymphoma. Blood Cancer Discov. 2021;2:216–25.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chitre S, Stölzel F, Cuthill K, Streetly M, Graham C, Dill C, et al. Clonal hematopoiesis in patients with multiple myeloma undergoing autologous stem cell transplantation. Leukemia 2018;32:2020–4.

    Article 
    PubMed 

    Google Scholar
     

  • Mouhieddine TH, Sperling AS, Redd R, Park J, Leventhal M, Gibson CJ, et al. Clonal hematopoiesis is associated with adverse outcomes in multiple myeloma patients undergoing transplant. Nat Commun. 2020;11:1–9.

    Article 

    Google Scholar
     

  • Mas-Peiro S, Hoffmann J, Fichtlscherer S, Dorsheimer L, Rieger MA, Dimmeler S, et al. Clonal haematopoiesis in patients with degenerative aortic valve stenosis undergoing transcatheter aortic valve implantation. Eur Heart J. 2020;41:933–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jaiswal S, Natarajan P, Silver AJ, Gibson CJ, Bick AG, Shvartz E, et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N. Engl J Med. 2017;377:111–21.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cremer S, Kirschbaum K, Berkowitsch A, John D, Kiefer K, Dorsheimer L, et al. Multiple somatic mutations for clonal hematopoiesis are associated with increased mortality in patients with chronic heart failure. Circ Genom Precis Med. 2020;13:e003003.

    Article 
    PubMed 

    Google Scholar
     

  • Coombs CC, Zehir A, Devlin SM, Kishtagari A, Syed A, Jonsson P, et al. Therapy-related clonal hematopoiesis in patients with non-hematologic cancers is common and associated with adverse clinical outcomes. Cell Stem Cell. 2017;21:374–82.e4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bick AG, Weinstock JS, Nandakumar SK, Fulco CP, Leventhal MJ, Bao EL, et al. Inherited causes of clonal hematopoiesis of indeterminate potential in TOPMed whole genomes. bioRxiv. 2019. https://doi.org/10.1101/782748.

  • Zink F, Stacey SN, Norddahl GL, Frigge ML, Magnusson OT, Jonsdottir I, et al. Clonal hematopoiesis, with and without candidate driver mutations, is common in the elderly. Blood 2017;130:742–52.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hsu JI, Dayaram T, Tovy A, De Braekeleer E, Jeong M, Wang F, et al. PPM1D mutations drive clonal hematopoiesis in response to cytotoxic chemotherapy. Cell Stem Cell. 2018;23:700–13.e6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haferlach T, Nagata Y, Grossmann V, Okuno Y, Bacher U, Nagae G, et al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia 2014;28:241–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE, et al. DNMT3A mutations in acute myeloid leukemia. N. Engl J Med. 2010;363:2424–33.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chou WC, Huang HH, Hou HA, Chen CY, Tang JL, Yao M, et al. Distinct clinical and biological features of de novo acute myeloid leukemia with additional sex comb-like 1 (ASXL1) mutations. Blood 2010;116:4086–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Delhommeau F, Dupont S, Valle VD, James C, Trannoy S, Massé A, et al. Mutation in TET2 in myeloid cancers. N Engl J Med. 2009;360:2289–301.

    Article 
    PubMed 

    Google Scholar
     

  • Weissmann S, Alpermann T, Grossmann V, Kowarsch A, Nadarajah N, Eder C, et al. Landscape of TET2 mutations in acute myeloid leukemia. Leukemia 2012;26:934–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Holz-Schietinger C, Matje DM, Reich NO. Mutations in DNA methyltransferase (DNMT3A) observed in acute myeloid leukemia patients disrupt processive methylation. J Biol Chem. 2012;287:30941–51.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chuman Y, Kurihashi W, Mizukami Y, Nashimoto T, Yagi H, Sakaguchi K. PPM1D430, a novel alternative splicing variant of the human PPM1D, can dephosphorylate p53 and exhibits specific tissue expression. J Biochem 2009;145:1–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kleiblova P, Shaltiel IA, Benada J, Ševčík J, Pecháčková S, Pohlreich P, et al. Gain-of-function mutations of PPM1D/Wip1 impair the p53-dependent G1 checkpoint. J Cell Biol. 2013;201:511–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kahn JD, Miller PG, Silver AJ, Sellar RS, Bhatt S, Gibson C, et al. PPM1D-truncating mutations confer resistance to chemotherapy and sensitivity to PPM1D inhibition in hematopoietic cells. Blood 2018;132:1095–105.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bulavin DV, Demidov ON, Saito S, Kauraniemi P, Phillips C, Amundson SA, et al. Amplification of PPM1D in human tumors abrogates p53 tumor-suppressor activity. Nat Genet. 2002;31:210–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li J, Yang Y, Peng Y, Austin RJ, van Eyndhoven WG, Nguyen KCQ, et al. Oncogenic properties of PPM1D located within a breast cancer amplification epicenter at 17q23. Nat Genet. 2002;31:133–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kochetkova EU, Grigorash BBDO. Sensitivity of cells with different levels of expression of the ppm1d gene to the action of the classical combination of chemicals for the treatment of column cancer. Cell Tissue Biol. 2019;61:393.


    Google Scholar
     

  • Arends CM, Galan-Sousa J, Hoyer K, Chan W, Jäger M, Yoshida K, et al. Hematopoietic lineage distribution and evolutionary dynamics of clonal hematopoiesis. Leukemia. 2018;32:1908–19.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Buscarlet M, Provost S, Zada YF, Bourgoin V, Mollica L, Dubé MP, et al. Lineage restriction analyses in CHIP indicate myeloid bias for TET2 and multipotent stem cell origin for DNMT3A. Blood. 2018;132:277–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hartmann L, Hecker JS, Rothenberg-Thurley M, Rivière J, Jentzsch M, Ksienzyk B, et al. Compartment-specific mutational landscape of clonal hematopoiesis. Leukemia. 2022;36:2647–55.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Franceschi C, Zaikin A, Gordleeva S, Ivanchenko M, Bonifazi F, Storci G, et al. Inflammaging 2018: an update and a model. Semin Immunol. 2018;40:1–5.

    Article 
    PubMed 

    Google Scholar
     

  • Choi J, Nannenga B, Demidov ON, Bulavin DV, Cooney A, Brayton C, et al. Mice deficient for the wild-type p53-induced phosphatase gene (Wip1) exhibit defects in reproductive organs, immune function, and cell cycle control. Mol Cell Biol. 2002;22:1094–105.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hou HA, Chou WC, Kuo YY, Liu CY, Lin LI, Tseng MH, et al. TP53 mutations in de novo acute myeloid leukemia patients: longitudinal follow-ups show the mutation is stable during disease evolution. Blood Cancer J. 2015;5:e331.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Uyanik B, Grigorash BB, Goloudina AR, Demidov ON. DNA damage-induced phosphatase Wip1 in regulation of hematopoiesis, immune system and inflammation. Cell Death Discov. 2017;3:17018.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu X, Nguyen TA, Moon SH, Darlington Y, Sommer M, Donehower LA. The type 2C phosphatase Wip1: an oncogenic regulator of tumor suppressor and DNA damage response pathways. Cancer Metast Rev. 2008;27:123–35.

    Article 

    Google Scholar
     

  • Lowe J, Cha H, Lee MO, Mazur SJ, Appella E, Fornace AJ Jr. Regulation of the Wip1 phosphatase and its effects on the stress response. Front Biosci. 2012;17:1480–98.

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Chen Z, Yi W, Morita Y, Wang H, Cong Y, Liu JP, et al. Wip1 deficiency impairs haematopoietic stem cell function via p53 and mTORC1 pathways. Nat Commun. 2015;6:6808.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Demidov ON, Kek C, Shreeram S, Timofeev O, Fornace AJ, Appella E, et al. The role of the MKK6/p38 MAPK pathway in Wip1-dependent regulation of ErbB2-driven mammary gland tumorigenesis. Oncogene 2007;26:2502–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Demidov ON, Timofeev O, Lwin HNY, Kek C, Appella E, Bulavin DV. Wip1 phosphatase regulates p53-dependent apoptosis of stem cells and tumorigenesis in the mouse intestine. Cell Stem Cell. 2007;1:180–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee JS, Lee MO, Moon BH, Shim SH, Fornace AJ Jr, Cha HJ. Senescent growth arrest in mesenchymal stem cells is bypassed by Wip1-mediated downregulation of intrinsic stress signaling pathways. Stem Cells. 2009;27:1963–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang L, Liu L, He Z, Li G, Liu J, Song Z, et al. Inhibition of wild-type p53-induced phosphatase 1 promotes liver regeneration in mice by direct activation of mammalian target of rapamycin. Hepatology 2015;61:2030–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Le Guezennec X, Brichkina A, Huang YF, Kostromina E, Han W, Bulavin DV. Wip1-dependent regulation of autophagy, obesity, and atherosclerosis. Cell Metab. 2012;16:68–80.

    Article 
    PubMed 

    Google Scholar
     

  • Fontana MC, Nanni J, Ghelli Luserna di Rorà A, Petracci E, Padella A, Ghetti M, et al. Pharmacological inhibition of WIP1 sensitizes acute myeloid leukemia cells to the MDM2 inhibitor nutlin-3a. Biomedicines 2021;9:388.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang Y, Pan B, Zhou X, Xiong K, Gao Q, Huang L, et al. Wip1-dependent modulation of macrophage migration and phagocytosis. Redox Biol. 2017;13:665–73.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yin S, Wang P, Yang L, Liu Y, Wang Y, Liu M, et al. Wip1 suppresses ovarian cancer metastasis through the ATM/AKT/Snail mediated signaling. Oncotarget. 2016;7:29359–70.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buss MC, Remke M, Lee J, Gandhi K, Schniederjan MJ, Kool M, et al. The WIP1 oncogene promotes progression and invasion of aggressive medulloblastoma variants. Oncogene 2015;34:1126–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schito ML, Demidov ON, Saito S, Ashwell JD, Appella E. Wip1 phosphatase-deficient mice exhibit defective T cell maturation due to sustained p53 activation. J Immunol. 2006;176:4818–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yi W, Hu X, Chen Z, Liu L, Tian Y, Chen H, et al. Phosphatase Wip1 controls antigen-independent B-cell development in a p53-dependent manner. Blood 2015;126:620–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun L, Li H, Luo H, Zhang L, Hu X, Yang T, et al. Phosphatase Wip1 is essential for the maturation and homeostasis of medullary thymic epithelial cells in mice. J Immunol. 2013;191:3210–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu X, Wang P, Du J, Yang F, Tian Y, Shen X, et al. Phosphatase Wip1 masters IL-17–producing neutrophil-mediated colitis in mice. Inflamm Bowel Dis. 2016;22:1316–25.

    Article 
    PubMed 

    Google Scholar
     

  • Tan X, Zhang J, Jin W, Li L, Xu W, Zheng H, et al. Wip1 phosphatase involved in lipopolysaccharide-induced neuroinflammation. J Mol Neurosci. 2013;51:959–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhong H, Cui L, Xu F, Chen L, Jiang L, Huang H, et al. Up-regulation of Wip1 involves in neuroinflammation of retinal astrocytes after optic nerve crush via NF-κB signaling pathway. Inflamm Res. 2016;65:709–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu G, Hu X, Sun B, Yang T, Shi J, Zhang L, et al. Phosphatase Wip1 negatively regulates neutrophil development through p38 MAPK-STAT1. Blood 2013;121:519–29.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bick AG, Pirruccello JP, Griffin GK, Gupta N, Gabriel S, Saleheen D, et al. Genetic interleukin 6 signaling deficiency attenuates cardiovascular risk in clonal hematopoiesis. Circulation 2020;141:124–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hecker JS, Hartmann L, Rivière J, Buck MC, van der Garde M, Rothenberg-Thurley M, et al. CHIP & HIPs: clonal hematopoiesis is common in hip arthroplasty patients and associates with autoimmune disease. Blood 2021;138:1727–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dorsheimer L, Assmus B, Rasper T, Ortmann CA, Ecke A, Abou-El-Ardat K, et al. Association of mutations contributing to clonal hematopoiesis with prognosis in chronic ischemic heart failure. JAMA Cardiol. 2019;4:25–33.

    Article 
    PubMed 

    Google Scholar
     

  • Jan M, Ebert BL, Jaiswal S. Clonal hematopoiesis. Semin Hematol 2017;54:43–50.

    Article 
    PubMed 

    Google Scholar
     

  • Shlush LI. Age-related clonal hematopoiesis. Blood 2018;131:496–504.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Verovskaya E, Broekhuis MJC, Zwart E, Ritsema M, van Os R, de Haan G, et al. Heterogeneity of young and aged murine hematopoietic stem cells revealed by quantitative clonal analysis using cellular barcoding. Blood 2013;122:523–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van den Akker EB, Pitts SJ, Deelen J, Moed MH, Potluri S, van Rooij J, et al. Uncompromised 10-year survival of oldest old carrying somatic mutations in DNMT3A and TET2. Blood 2016;127:1512–5.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Zeventer IA, Salzbrunn JB, de Graaf AO, van der Reijden BA, Boezen HM, Vonk JM, et al. Prevalence, predictors, and outcomes of clonal hematopoiesis in individuals aged ≥80 years. Blood Adv. 2021;5:2115–22.

    Article 
    PubMed 

    Google Scholar
     

  • A. PFD, Antoni BG, Miriam DD, Álvaro HV, David VA, Jorge de la B, et al. Clonal hematopoiesis and risk of progression of heart failure with reduced left ventricular ejection fraction. J Am Coll Cardiol. 2021;77:1747–59.

    Article 

    Google Scholar
     

  • Jaiswal S, Libby P. Clonal haematopoiesis: connecting ageing and inflammation in cardiovascular disease. Nat Rev Cardiol. 2020;17:137–44.

    Article 
    PubMed 

    Google Scholar
     

  • Cook EK, Izukawa T, Young S, Rosen G, Jamali M, Zhang L, et al. Comorbid and inflammatory characteristics of genetic subtypes of clonal hematopoiesis. Blood Adv. 2019;3:2482–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fuster JJ, MacLauchlan S, Zuriaga MA, Polackal MN, Ostriker AC, Chakraborty R, et al. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science. 2017;355:842–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heyde A, Rohde D, McAlpine CS, Zhang S, Hoyer FF, Gerold JM, et al. Increased stem cell proliferation in atherosclerosis accelerates clonal hematopoiesis. Cell 2021;184:1348–61.e22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lusis AJ. A vicious cycle in atherosclerosis. Cell 2021;184:1139–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grigorash BB, Uyanik B, Kochetkova EY, Goloudina AR, Demidov ON. Wip1 inhibition leads to severe pro-inflammatory phenotype in skin in response to chemical irritation. J Dermatol Sci. 2017;87:85–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goloudina AR, Kochetkova EY, Pospelova TV, Demidov ON. Wip1 phosphatase: between p53 and MAPK kinases pathways. Oncotarget 2016;7:31563–71.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruark E, Snape K, Humburg P, Loveday C, Bajrami I, Brough R, et al. Mosaic PPM1D mutations are associated with predisposition to breast and ovarian cancer. Nature 2013;493:406–10.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bolton KL, Koh Y, Foote MB, Im H, Jee J, Sun CH, et al. Clonal hematopoiesis is associated with risk of severe Covid-19. medRxiv. 2020;11.25.20233163. https://doi.org/10.1101/2020.11.25.20233163.

  • Dharan NJ, Yeh P, Bloch M, Yeung MM, Baker D, Guinto J, et al. HIV is associated with an increased risk of age-related clonal hematopoiesis among older adults. Nat Med. 2021;27:1006–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duployez N, Demonchy J, Berthon C, Goutay J, Caplan M, Moreau AS, et al. Clinico-biological features and clonal hematopoiesis in patients with severe covid-19. Cancers (Basel). 2020;12:1–11.

    Article 

    Google Scholar
     

  • Petzer V, Schwendinger S, Haschka D, Vogi V, Tymoszuk P, Burkert F, et al. Clonal hematopoiesis in patients with COVID-19 is stable and not linked to an aggravated clinical course. Am J Hematol. 2021;96:E331–E333.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hameister E, Stolz SM, Fuhrer Y, Thienemann F, Schaer DJ, Nemeth J, et al. Clonal hematopoiesis in hospitalized elderly patients with COVID-19. Hemasphere. 2020;4:e453.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Busque L, Sun M, Buscarlet M, Ayachi S, Feroz Zada Y, Provost S, et al. High-sensitivity C-reactive protein is associated with clonal hematopoiesis of indeterminate potential. Blood Adv. 2020;4:2430–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han H, Ma Q, Li C, Liu R, Zhao L, Wang W, et al. Profiling serum cytokines in COVID-19 patients reveals IL-6 and IL-10 are disease severity predictors. Emerg Microbes Infect. 2020;9:1123–30.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang G, Wu C, Zhang Q, Wu F, Yu B, Lv J, et al. C-reactive protein level may predict the risk of COVID-19 aggravation. Open Forum Infect Dis. 2020;7:1–5.

    Article 

    Google Scholar
     

  • Chan HT, Nagayama S, Chin YM, Otaki M, Hayashi R, Kiyotani K, et al. Clinical significance of clonal hematopoiesis in the interpretation of blood liquid biopsy. Mol Oncol. 2020;14:1719–30.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Razavi P, Li BT, Brown DN, Jung B, Hubbell E, Shen R, et al. High-intensity sequencing reveals the sources of plasma circulating cell-free DNA variants. Nat Med. 2019;25:1928–37.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Okamura R, Piccioni DE, Boichard A, Lee S, Jimenez RE, Sicklick JK, et al. High prevalence of clonal hematopoiesis-type genomic abnormalities in cell-free DNA in invasive gliomas after treatment. Int J Cancer. 2021;148:2839–47.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suehara Y, Sakata-Yanagimoto M, Hattori K, Kusakabe M, Nanmoku T, Sato T, et al. Mutations found in cell-free DNAs of patients with malignant lymphoma at remission can derive from clonal hematopoiesis. Cancer Sci. 2019;110:3375–81.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Okano M, Xie S, Li E. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet. 1998;19:219–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kaneda M, Okano M, Hata K, Sado T, Tsujimoto H, Li E, et al. Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature 2004;429:900–3.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ley TJ, Miller C, Ding L, Raphael BJ, Mungall AJ, Robertson A, et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368:2059–74.

    Article 
    PubMed 

    Google Scholar
     

  • Yuan XQ, Peng L, Zeng WJ, Jiang BY, Li GC, Chen XP. DNMT3A R882 mutations predict a poor prognosis in AML: a meta-analysis from 4474 patients. Medicine 2016;95:e3519.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thol F, Winschel C, Lüdeking A, Yun H, Friesen I, Damm F, et al. Rare occurrence of DNMT3A mutations in myelodysplastic syndromes. Haematologica 2011;96:1870–3.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walter MJ, Ding L, Shen D, Shao J, Grillot M, Fulton R, et al. Recurrent DNMT3A mutations in patients with myelodysplastic syndromes. Leukemia. 2012;25:1153–8.

    Article 

    Google Scholar
     

  • Brecqueville M, Cervera N, Gelsi-Boyer V, Murati A, Adélaïde J, Chaffanet M, et al. Rare mutations in DNMT3A in myeloproliferative neoplasms and myelodysplastic syndromes. Blood Cancer J. 2011;1:10–1.

    Article 

    Google Scholar
     

  • Roller A, Grossmann V, Bacher U, Poetzinger F, Weissmann S, Nadarajah N, et al. Landmark analysis of DNMT3A mutations in hematological malignancies. Leukemia 2013;27:1573–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chesnais V, Renneville A, Toma A, Lambert J, Passet M, Dumont F, et al. Effect of lenalidomide treatment on clonal architecture of myelodysplastic syndromes without 5q deletion. Blood 2016;127:749–60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ribeiro AFT, Pratcorona M, Erpelinck-Verschueren C, Rockova V, Sanders M, Abbas S, et al. Mutant DNMT3A: a marker of poor prognosis in acute myeloid leukemia. Blood 2012;119:5824–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sano S, Oshima K, Wang Y, MacLauchlan S, Katanasaka Y, Sano M, et al. Tet2-mediated clonal hematopoiesis accelerates heart failure through a mechanism involving the IL-1β/NLRP3 inflammasome. J Am Coll Cardiol. 2018;71:875–86.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sano S, Oshima K, Wang Y, Katanasaka Y, Sano M, Walsh K. CRISPR-mediated gene editing to assess the roles of Tet2 and Dnmt3a in clonal hematopoiesis and cardiovascular disease. Circ Res. 2018;123:335–41.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jan M, Snyder TM, Corces-Zimmerman MR, Vyas P, Weissman IL, Quake SR, et al. Clonal evolution of preleukemic hematopoietic stem cells precedes human acute myeloid leukemia. Sci Transl Med. 2012;4:149ra118–149ra118. https://pubmed.ncbi.nlm.nih.gov/22932223.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Link DC, Walter MJ. ‘CHIP’ping away at clonal hematopoiesis. Leukemia 2016;30:1633–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science (1979). 2011;333:1300–3.

    CAS 

    Google Scholar
     

  • Ko M, Huang Y, Jankowska AM, Pape UJ, Tahiliani M, Bandukwala HS, et al. Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature. 2011;468:839–43.

    Article 

    Google Scholar
     

  • Moran-Crusio K, Reavie L, Shih A, Abdel-Wahab O, Ndiaye-Lobry D, Lobry C, et al. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell. 2011;20:11–24.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rasmussen KD, Jia G, Johansen JV, Pedersen MT, Rapin N, Bagger FO, et al. Loss of TET2 in hematopoietic cells leads to DNA hypermethylation of active enhancers and induction of leukemogenesis. Genes Dev. 2015;29:910–22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Langemeijer SMC, Kuiper RP, Berends M, Knops R, Aslanyan MG, Massop M, et al. Acquired mutations in TET2 are common in myelodysplastic syndromes. Nat Genet. 2009;41:838–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bejar R, Stevenson K, Abdel-Wahab O, Galili N, Nilsson B, Garcia-Manero G, et al. Clinical effect of point mutations in myelodysplastic syndromes. N. Engl J Med. 2011;364:2496–506.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Papaemmanuil E, Gerstung M, Malcovati L, Tauro S, Gundem G, Van Loo P, et al. Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood 2013;122:3616–27.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang R, Gao X, Yu L. The prognostic impact of tet oncogene family member 2 mutations in patients with acute myeloid leukemia: a systematic-review and meta-analysis. BMC Cancer. 2019;19:1–11.


    Google Scholar
     

  • Abdel-Wahab O, Mullally A, Hedvat C, Garcia-Manero G, Patel J, Wadleigh M, et al. Genetic characterization of TET1, TET2, and TET3 alterations in myeloid malignancies. Blood 2009;114:144–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin PH, Li HY, Fan SC, Yuan TH, Chen M, Hsu YH, et al. A targeted next-generation sequencing in the molecular risk stratification of adult acute myeloid leukemia: implications for clinical practice. Cancer Med. 2017;6:349–60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abdel-Wahab O, Adli M, LaFave LM, Gao J, Hricik T, Shih AH, et al. ASXL1 mutations promote myeloid transformation through loss of PRC2-mediated gene repression. Cancer Cell. 2012;22:180–93.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Asada S, Kitamura T. Aberrant histone modifications induced by mutant ASXL1 in myeloid neoplasms. Int J Hematol. 2019;110:179–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Asada S, Goyama S, Inoue D, Shikata S, Takeda R, Fukushima T, et al. Mutant ASXL1 cooperates with BAP1 to promote myeloid leukaemogenesis. Nat Commun. 2018;9:2733.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Balasubramani A, Larjo A, Bassein JA, Chang X, Hastie RB, Togher SM, et al. Cancer-associated ASXL1 mutations may act as gain-of-function mutations of the ASXL1–BAP1 complex. Nat Commun. 2015;6:7307.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fujino T, Goyama S, Sugiura Y, Inoue D, Asada S, Yamasaki S, et al. Mutant ASXL1 induces age-related expansion of phenotypic hematopoietic stem cells through activation of Akt/mTOR pathway. Nat Commun. 2021;12:1826.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Inoue D, Matsumoto M, Nagase R, Saika M, Fujino T, Nakayama KI, et al. Truncation mutants of ASXL1 observed in myeloid malignancies are expressed at detectable protein levels. Exp Hematol. 2016;44:172–6.e1.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schnittger S, Eder C, Jeromin S, Alpermann T, Fasan A, Grossmann V, et al. ASXL1 exon 12 mutations are frequent in AML with intermediate risk karyotype and are independently associated with an adverse outcome. Leukemia 2013;27:82–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pratcorona M, Abbas S, Sanders MA, Koenders JE, Kavelaars FG, Erpelinck-Verschueren CAJ, et al. Acquired mutations in ASXL1 in acute myeloid leukemia: prevalence and prognostic value. Haematologica 2012;97:388–92.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Asada S, Fujino T, Goyama S, Kitamura T. The role of ASXL1 in hematopoiesis and myeloid malignancies. Cell Mol Life Sci. 2019;76:2511–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fiscella M, Zhang HL, Fan S, Sakaguchi K, Shen SF, Mercer W, et al. EWip1, a novel human protein phosphatase that is induced in response to ionising radiation in a p53-dependent manner. Proc Natl Acad Sci USA. 1997;94:6048–53.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barford D, Das AK, Egloff MP. The structure and mechanism of protein phosphatases: insights into catalysis and regulation. Annu Rev Biophys Biomol Struct. 1998;27:133–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lindsley RC, Saber W, Mar BG, Redd R, Wang T, Haagenson MD, et al. Prognostic mutations in myelodysplastic syndrome after stem-cell transplantation. N Engl J Med. 2017;376:536–47.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kartal-Kaess M, Bochtler T, Kraft B, Kirsch M, Maier B, Stoelzel F, et al. PPM1D mutations are rare in de novo and therapy-related acute myeloid leukemia. Blood 2018;132:1472.

    Article 

    Google Scholar
     

  • Levine AJ, Oren M. The first 30 years of p53: growing ever more complex. Nat Rev Cancer. 2009;9:749–58.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen S, Wang Q, Yu H, Capitano ML, Vemula S, Nabinger SC, et al. Mutant p53 drives clonal hematopoiesis through modulating epigenetic pathway. Nat Commun. 2019;10:5649.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kulasekararaj AG, Smith AE, Mian SA, Mohamedali AM, Krishnamurthy P, Lea NC, et al. TP53 mutations in myelodysplastic syndrome are strongly correlated with aberrations of chromosome 5, and correlate with adverse prognosis. Br J Haematol. 2013;160:660–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Olivier M, Hollstein M, Hainaut P. TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol. 2010;2:a001008.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kadia TM, Jain P, Ravandi F, Garcia-Manero G, Andreef M, Takahashi K, et al. TP53 mutations in newly diagnosed acute myeloid leukemia: clinicomolecular characteristics, response to therapy, and outcomes. Cancer 2016;122:3484–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Metzeler KH, Herold T, Rothenberg-Thurley M, Amler S, Sauerland MC, Görlich D, et al. Spectrum and prognostic relevance of driver gene mutations in acute myeloid leukemia. Blood 2016;128:686–98.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wong TN, Ramsingh G, Young AL, Miller CA, Touma W, Welch JS, et al. Role of TP53 mutations in the origin and evolution of therapy-related acute myeloid leukaemia. Nature 2015;518:552–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nelson ME, Steensma DP. JAK2 V617F in myeloid disorders: What do we know now, and where are we headed? Leuk Lymphoma. 2006;47:177–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • James C, Ugo V, Le Couédic JP, Staerk J, Delhommeau F, Lacout C, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 2005;434:1144–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nielsen C, Birgens HS, Nordestgaard BG, Bojesen SE. Diagnostic value of JAK2 V617F somatic mutation for myeloproliferative cancer in 49 488 individuals from the general population. Br J Haematol. 2013;160:70–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nielsen C, Birgens HS, Nordestgaard BG, Kjaer L, Bojesen SE. The JAK2 V617F somatic mutation, mortality and cancer risk in the general population. Haematologica 2011;96:450–3.

    Article 
    PubMed 

    Google Scholar
     

  • Sidon P, El Housni H, Dessars B, Heimann P. The JAK2V617F mutation is detectable at very low level in peripheral blood of healthy donors. Leukemia 2006;20:1622.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Steensma DP, Dewald GW, Lasho TL, Powell HL, McClure RF, Levine RL, et al. The JAK2 V617F activating tyrosine kinase mutation is an infrequent event in both ‘atypical’ myeloproliferative disorders and myelodysplastic syndromes. Blood 2005;106:1207–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jelinek J, Oki Y, Gharibyan V, Bueso-Ramos C, Prchal JT, Verstovsek S, et al. JAK2 mutation 1849G>T is rare in acute leukemias but can be found in CMML, Philadelphia chromosome-negative CML, and megakaryocytic leukemia. Blood 2005;106:3370–3.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee JW, Kim YG, Soung YH, Han KJ, Kim SY, Rhim HS, et al. The JAK2 V617F mutation in de novo acute myelogenous leukemias. Oncogene 2006;25:1434–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Steensma DP, McClure RF, Karp JE, Tefferi A, Lasho TL, Powell HL, et al. JAK2 V617F is a rare finding in de novo acute myeloid leukemia, but STAT3 activation is common and remains unexplained. Leukemia 2006;20:971–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Swaminathan S, Madkaikar M, Ghosh K, Vundinti BR, Kerketta L, Gupta M. Novel immunophenotypic and morphologic presentation in acute myeloid leukemia (AML) with JAK2 V617F mutation. Eur J Haematol. 2010;84:180–2.

    Article 
    PubMed 

    Google Scholar
     

  • Illmer T, Schaich M, Ehninger G, Thiede C. Tyrosine kinase mutations of JAK2 are rare events in AML but influence prognosis of patients with CBF-leukemias. Haematologica. 2007;92:137–8.

    Article 
    PubMed 

    Google Scholar
     

  • Balatzenko G, Spassov B, Georgieva Y, Hrischev V, Guenova M. Low incidence of V617FJAK2 mutation in acute myeloid leukemia and myelodysplastic syndromes. Blood 2015;126:4957.

    Article 

    Google Scholar
     

  • Hinds DA, Barnholt KE, Mesa RA, Kiefer AK, Do CB, Eriksson N, et al. Germ line variants predispose to both JAK2 V617F clonal hematopoiesis and myeloproliferative neoplasms. Blood 2016;128:1121–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wolach O, Sellar RS, Martinod K, Cherpokova D, McConkey M, Chappell RJ, et al. Increased neutrophil extracellular trap formation promotes thrombosis in myeloproliferative neoplasms. Sci Transl Med. 2018;10:eaan8292.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang W, Liu W, Fidler T, Wang Y, Tang Y, Woods B, et al. Macrophage inflammation, erythrophagocytosis, and accelerated atherosclerosis in Jak2 (V617F) mice. Circ Res. 2018;123:e35–47.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    Stay Connected

    9FansLike
    4FollowersFollow
    0SubscribersSubscribe
    - Advertisement -spot_img

    Latest Articles

    %d bloggers like this: