Tuesday, September 26, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

Clustering and trajectories of key noncommunicable disease risk factors in Norway: the NCDNOR project – Scientific Reports


  • The World Health Organization. Premature deaths due to noncommunicable diseases (NCD) as a proportion of all NCD deaths. https://www.who.int/data/gho/data/indicators/indicator-details/GHO/ncd-deaths-under-age-70-(percent-of-all-ncd-deaths). Accessed 14 June 2022.

  • The World Health Organization. Noncommunicable diseases. https://www.who.int/en/news-room/fact-sheets/detail/noncommunicable-diseases. Accessed 14 June 2022.

  • Skou, S. T. et al. Multimorbidity. Nat. Rev. Dis. Primers 8(1), 48 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghebreyesus, T. A. Acting on NCDs: Counting the cost. The Lancet 391(10134), 1973–1974 (2018).

    Article 

    Google Scholar
     

  • The World Health Organization. Global Action Plan for the Prevention and Control of Noncommunicable Diseases 2013–2020 (World Health Organization, 2013).


    Google Scholar
     

  • The United Nations (UN). Transforming our world: The 2030 Agenda for Sustainable Development. Geneva: United Nations General Assembly, 2015.

  • The World Health Organization. Noncommunicable diseases: Risk factors. https://www.who.int/data/gho/data/themes/topics/topic-details/GHO/ncd-risk-factors. Accessed 30 Jan 2023.

  • Meader, N. et al. A systematic review on the clustering and co-occurrence of multiple risk behaviours. BMC Public Health 16(1), 657 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McAloney, K., Graham, H., Law, C. & Platt, L. A scoping review of statistical approaches to the analysis of multiple health-related behaviours. Prev Med 56(6), 365–371 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Sharma, S., Malarcher, A. M., Giles, W. H. & Myers, G. Racial, ethnic and socioeconomic disparities in the clustering of cardiovascular disease risk factors. Ethn. Dis. 14(1), 43–48 (2004).

    PubMed 

    Google Scholar
     

  • Kontari, P., Fife-Schaw, C. & Smith, K. Clustering of cardiometabolic risk factors and dementia incidence in older adults: A cross-country comparison in England, the United States, and China. J Gerontol Ser A 2, 58 (2022).


    Google Scholar
     

  • Bu, F., Steptoe, A. & Fancourt, D. Relationship between loneliness, social isolation and modifiable risk factors for cardiovascular disease: A latent class analysis. J. Epidemiol. Community Health 75(8), 749–754 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Mkuu, R. S. et al. Identifying individuals with multiple non-communicable disease risk factors in Kenya: A latent class analysis. Public Health 198, 180–186 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pelzom, D., Isaakidis, P., Oo, M. M., Gurung, M. S. & Yangchen, P. Alarming prevalence and clustering of modifiable noncommunicable disease risk factors among adults in Bhutan: A nationwide cross-sectional community survey. BMC Public Health 17(1), 975 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Birch, J. et al. Clustering of behavioural risk factors for health in UK adults in 2016: A cross-sectional survey. J. Public Health 41(3), e226–e236 (2018).

    Article 

    Google Scholar
     

  • Uddin, R., Lee, E.-Y., Khan, S. R., Tremblay, M. S. & Khan, A. Clustering of lifestyle risk factors for non-communicable diseases in 304,779 adolescents from 89 countries: A global perspective. Prev. Med. 131, 105955 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Perrier, F. et al. Life-course trajectories of physical activity and melanoma risk in a large cohort of Norwegian women. Clin. Epidemiol. 14, 1571–1584 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Artaud, F. et al. Trajectories of unhealthy behaviors in midlife and risk of disability at older ages in the Whitehall II Cohort Study. J. Gerontol. Ser. A 71(11), 1500–1506 (2016).

    Article 

    Google Scholar
     

  • Hsu, H.-C., Luh, D.-L., Chang, W.-C. & Pan, L.-Y. Joint trajectories of multiple health-related behaviors among the elderly. Int. J. Public Health 58(1), 109–120 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Li, F., Lin, Q., Li, M., Chen, L. & Li, Y. The association between blood pressure trajectories and risk of cardiovascular diseases among non-hypertensive Chinese population: A population-based cohort study. Int. J. Environ. Res. Public Health 18(6), 2909 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duncan, M. S., Vasan, R. S. & Xanthakis, V. Trajectories of blood lipid concentrations over the adult life course and risk of cardiovascular disease and all-cause mortality: Observations from the framingham study over 35 years. J. Am. Heart Assoc. 8(11), e011433 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marmot, M. & Bell, R. Social inequalities in health: A proper concern of epidemiology. Ann. Epidemiol. 26(4), 238–240 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Bjartveit, K. & Tverdal, A. Health consequences of sustained smoking cessation. Tob. Control 18(3), 197–205 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meyer, H. E. & Vollsetse, T. A. Moderated Poster Session II: Prevention and health policy. Eur. J. Cardiovascu. Prev. Rehabil. 16, S26–S8 (2009).


    Google Scholar
     

  • Holme, I., Tonstad, S. & Hjermann, I. Risikofaktorer for hjerte- og karsykdom blant 40-åringer i Oslo 1981–99. Tidsskrift for Den Norske Laegeforening (2004).

  • Tverdal, A. & Selmer, R. M. 40-åringsundersøkelsene–400 000 menn og kvinner har møtt opp. Tidsskrift for Den norske legeforening (2002).

  • Åsvold, B. O. et al. Cohort Profile Update: The HUNT Study (International Journal of Epidemiology, 2022).


    Google Scholar
     

  • Hopstock, L. A. et al. The seventh survey of the Tromsø Study (Tromsø7) 2015–2016: Study design, data collection, attendance, and prevalence of risk factors and disease in a multipurpose population-based health survey. Scand. J. Public Health 52, 14034948221092294 (2022).


    Google Scholar
     

  • Naess, O. et al. Cohort profile: Cohort of Norway (CONOR). Int. J. Epidemiol. 37(3), 481–485 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Tverdal, A. & Bjartveit, K. Health consequences of reduced daily cigarette consumption. Tob. Control 15, 472–480 (2007).

    Article 

    Google Scholar
     

  • Jenum, A. K., Stensvold, I., Bjartveit, K., Thelle, D. S. & Hjermann, I. Risikofaktorer for hjerte- og karsykdom i Oslo, Sogn og Fjordane og Finnmark. Tidsskrift for Den Norske Laegeforening 1998.

  • Norwegian Institute of Public Health Landsomfattende helseundersøkelser (LHU). https://www.fhi.no/div/helseundersokelser/landsomfattende-helseundersokelser-lhu/. Accessed 13 Jan 2023.

  • UIT The Arctic University of Norway. The Tromsø Study. https://uit.no/research/tromsostudy. Accessed 21 March 2023.

  • Norwegian Institute of Public Health Cohort of Norway (CONOR). https://www.fhi.no/studier/cohort-of-norway/. Accessed 16 Jan 2023.

  • Norwegian University of Science and Technology. HUNT Databank. https://www.ntnu.edu/hunt/databank. Accessed 21 March 2023.

  • The Directorate for e-Health. Helsedata. https://helsedata.no/en/. Accessed 21 March 2023.

  • Graff-Iversen, S., Anderssen, S. A., Holme, I. M., Jenum, A. K. & Raastad, T. Two short questionnaires on leisure-time physical activity compared with serum lipids, anthropometric measurements and aerobic power in a suburban population from Oslo, Norway. Eur. J. Epidemiol. 23(3), 167–174 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Kurtze, N., Rangul, V., Hustvedt, B. E. & Flanders, W. D. Reliability and validity of self-reported physical activity in the Nord-Trøndelag Health Study: HUNT 1. Scand. J. Public Health 36(1), 52–61 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Saltin, B. & Grimby, G. Physiological analysis of middle-aged and old former athletes. Comparison with still active athletes of the same ages. Circulation 38(6), 1104–15 (1968).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Norwegian Institute of Public Health Heavy episodic drinking (Indicator 4). https://www.fhi.no/en/nc/Indicators-for-NCD/alcohol/heavy-episodic-drinking-indicator-4/?term. Accessed 01 Agu 2023.

  • Degerud, E. et al. Life course socioeconomic position, alcohol drinking patterns in midlife, and cardiovascular mortality: Analysis of Norwegian population-based health surveys. PLoS Med 15(1), e1002476 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jenum, A. K., Graff-Iversen, S., Selmer, R. & Søgaard, A.-J. Risikofaktorer for hjerte-og karsykdom og diabetes gjennom 30 år. Tidsskrift for Den norske legeforening 2007.

  • Lund-Larsen, P. G. Blood pressure measured with a sphygmomanometer and with Dinamap under field conditions–a comparison. Norsk Epidemiologi 7(2), 235–241 (1997).


    Google Scholar
     

  • Williams, B. et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology (ESC) and the European Society of Hypertension (ESH). Eur. Heart J. 39(33), 3021–3104 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Klemsdal, T. O. et al. New guidelines for the prevention of cardiovascular disease. Tidsskrift for den Norske laegeforening tidsskrift for praktisk medicin, ny raekke 2017; 137(16).

  • Foss, O. & Urdal, P. Cholesterol for more than 25 years: Could the results be compared throughout all this time. Norsk Epidemiologi 13(1), 85–88 (2003).


    Google Scholar
     

  • Keirns, B. H., Sciarrillo, C. M., Koemel, N. A. & Emerson, S. R. Fasting, non-fasting and postprandial triglycerides for screening cardiometabolic risk. J. Nutr. Sci. 10, e75 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mach, F. et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur. Heart J. 41(1), 111–188 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Norsk Epidemiologi. The 27th Norwegian Conference on Epidemiology. Norsk Epidemiologi 29(1) (2021).

  • Statistisk sentralbyrå (Statistics Norway). Official statistics since 1876. https://www.ssb.no/en (accessed 17.03.2023).

  • The Norwegian Agency for Quality Assurance in Education (NOKUT). General information about education in Norway. https://www.nokut.no/en/norwegian-education/general-information-about-education-in-norway/. Accessed 17 Mar 2023.

  • Lex, A. & Gehlenborg, N. Sets and intersections. Nat. Methods 11(8), 779 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Linzer, D. A. & Lewis, J. B. poLCA: An R package for polytomous variable latent class analysis. J. Stat. Softw. 42(10), 1–29 (2011).

    Article 

    Google Scholar
     

  • Nguena Nguefack, H. L. et al. Trajectory modelling techniques useful to epidemiological research: A comparative narrative review of approaches. Clin. Epidemiol. 12, 1205–1222 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Proust-Lima, C., Philipps, V. & Liquet, B. Estimation of extended mixed models using latent classes and latent processes: The R package lcmm. J. Stat. Softw. 78(2), 1–56 (2017).

    Article 

    Google Scholar
     

  • Proust-Lima, C., Philipps, V., Diakite, A., Liquet, B. & Proust, M. C. Package ‘lcmm’. 2022.

  • van de Schoot, R., Sijbrandij, M., Winter, S. D., Depaoli, S. & Vermunt, J. K. The GRoLTS-checklist: Guidelines for reporting on latent trajectory studies. Struct. Equ. Model. 24(3), 451–467 (2017).

    Article 
    MathSciNet 

    Google Scholar
     

  • Morgan, G. B., Hodge, K. J. & Baggett, A. R. Latent profile analysis with nonnormal mixtures: A Monte Carlo examination of model selection using fit indices. Comput. Stat. Data Anal. 93, 146–161 (2016).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Lergenmuller, S. et al. Lifetime sunburn trajectories and associated risks of cutaneous melanoma and squamous cell carcinoma among a cohort of Norwegian women. JAMA Dermatol 158(12), 1367–1377 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Ezzati, M. et al. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: A pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults; 2017.

  • Zhou, B. et al. Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: A pooled analysis of 1201 population-representative studies with 104 million participants. The Lancet 398(10304), 957–980 (2021).

    Article 

    Google Scholar
     

  • Dalene, K. E. et al. Occupational physical activity and longevity in working men and women in Norway: A prospective cohort study. The Lancet Public health 6(6), e386–e395 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Bahorik, A. L. et al. Early to midlife smoking trajectories and cognitive function in middle-aged US adults: The CARDIA study. J. Gen. Intern. Med. 37(5), 1023–1030 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Brook, D. W., Rubenstone, E., Zhang, C. & Brook, J. S. Trajectories of cigarette smoking in adulthood predict insomnia among women in late mid-life. Sleep Med. 13(9), 1130–1137 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frosch, Z. A. K., Dierker, L. C., Rose, J. S. & Waldinger, R. J. Smoking trajectories, health, and mortality across the adult lifespan. Addict. Behav. 34(8), 701–704 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lounassalo, I. et al. Distinct trajectories of physical activity and related factors during the life course in the general population: A systematic review. BMC Public Health 19(1), 271 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barnett, T. A., Gauvin, L., Craig, C. L. & Katzmarzyk, P. T. Distinct trajectories of leisure time physical activity and predictors of trajectory class membership: A 22 year cohort study. Int. J. Behav. Nutr. Phys. Act. 5(1), 57 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laddu, D. R. et al. 25-year physical activity trajectories and development of subclinical coronary artery disease as measured by coronary artery calcium: The coronary artery risk development in young adults (CARDIA) study. Mayo Clin. Proc. 92(11), 1660–1670 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rovio, S. P. et al. Longitudinal physical activity trajectories from childhood to adulthood and their determinants: The Young Finns Study. Scand. J. Med. Sci. Spr. 28(3), 1073–1083 (2018).

    Article 
    CAS 

    Google Scholar
     

  • De Rubeis, V. et al. Trajectories of body mass index, from adolescence to older adulthood, and pancreatic cancer risk; a population-based case–control study in Ontario, Canada. Cancer Causes Control 30(9), 955–966 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, M. et al. Trajectories of body mass index from young adulthood to middle age among Canadian men and women. Adv. Epidemiol. 2015, 121806 (2015).


    Google Scholar
     

  • Lavalette, C. et al. Body mass index trajectories and prostate cancer risk: Results from the EPICAP study. Cancer Med. 9(17), 6421–6429 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kelly, S. P. et al. Body mass index trajectories across adulthood and smoking in relation to prostate cancer risks: The NIH-AARP Diet and Health Study. Int. J. Epidemiol. 48(2), 464–473 (2018).

    Article 
    PubMed Central 

    Google Scholar
     

  • De Rubeis, V. et al. Group-based trajectory modeling of body mass index and body size over the life course: A scoping review. Obes. Sci. Pract. 7(1), 100–128 (2021).

    Article 

    Google Scholar
     

  • Allen, N. B. & Khan, S. S. Blood pressure trajectories across the life course. Am. J. Hypertens. 34(3), 234–241 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Portegies, M. L. et al. Mid- to Late-Life trajectories of blood pressure and the risk of stroke: The Rotterdam study. Hypertension 67(6), 1126–1132 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, H. et al. Blood pressure trajectories in early adulthood and myocardial structure and function in later life. ESC Heart Failure 9(2), 1258–1268 (2022).

    Article 
    MathSciNet 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, Y., Möller, J., Wang, R. & Liang, Y. Life-course blood pressure trajectories and cardiovascular diseases: A population-based cohort study in China. PLoS ONE 15(10), e0240804 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elovainio, M. et al. Lipid trajectories as predictors of depressive symptoms: The Young Finns Study. Health Psychol. 29, 237–245 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan, Y. et al. Associations between life-course lipid trajectories and subclinical atherosclerosis in midlife. JAMA Netw. Open 5(10), e2234862 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Langhammer, A., Krokstad, S., Romundstad, P., Heggland, J. & Holmen, J. The HUNT Study: Participation is associated with survival and depends on socioeconomic status, diseases and symptoms. BMC Med. Res. Methodol. 12, 143 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hernán, M. A., Hernández-Díaz, S. & Robins, J. M. A structural approach to selection bias. Epidemiology 15(5), 615–625 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Linnansaari, A. et al. Towards Tobacco-Free Generation: Implementation of preventive tobacco policies in the Nordic countries. Scand. J. Public Health 5, 14034948221106868 (2022).


    Google Scholar
     

  • Galobardes, B., Shaw, M., Lawlor, D. A., Lynch, J. W. & Davey Smith, G. Indicators of socioeconomic position (part 1). J. Epidemiol. Community Health 60(1), 7–12 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Althubaiti, A. Information bias in health research: Definition, pitfalls, and adjustment methods. J. Multidiscip. Healthc 9, 211–217 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    Stay Connected

    9FansLike
    4FollowersFollow
    0SubscribersSubscribe
    - Advertisement -spot_img

    Latest Articles

    %d bloggers like this: