Friday, September 22, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

Coordinated single-cell tumor microenvironment dynamics reinforce pancreatic cancer subtype – Nature Communications


  • Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 70, 7–30 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Logsdon, C. D. et al. Molecular profiling of pancreatic adenocarcinoma and chronic pancreatitis identifies multiple genes differentially regulated in pancreatic cancer (Cancer Research (2003) (2649-2657)). Cancer Res. 63, 3445 (2003).

    CAS 

    Google Scholar
     

  • Maurer, H. C. et al. Experimental microdissection enables functional harmonisation of pancreatic cancer subtypes. Gut 68, 1034–1043 (2019).

  • Wolff, R. A. et al. Dynamic changes during the treatment of pancreatic cancer. Oncotarget 9, 14764–14790 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boj, S. F. et al. Organoid models of human and mouse ductal pancreatic cancer. Cell 160, 324–338 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Laise, P. et al. Pancreatic ductal adenocarcinoma comprises coexisting regulatory states with both common and distinct dependencies. bioRxiv https://www.biorxiv.org/content/10.1101/2020.10.27.357269v1 (2020).

  • Moffitt, R. A. et al. Virtual microdissection identifies distinct tumor- and stroma- specific subtypes of pancreatic ductal adenocarcinoma. Nat. Genet. 47, 1168–1178 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aung, K. L. et al. Genomics-driven precision medicine for advanced pancreatic cancer – early results from the COMPASS trial. Clinical Cancer Res. 24, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5968824/ (2017).

  • Grünwald, B. T. et al. Spatially confined sub-tumor microenvironments orchestrate pancreatic cancer pathobiology. bioRxiv https://www.biorxiv.org/content/10.1101/2021.02.18.431890v1 (2021).

  • Rashid, N.U. et al. Purity independent subtyping of tumors (PurIST), a clinically robust, single-sample classifier for tumor subtyping in pancreatic cancer. Clin. Cancer Res. (2019)https://doi.org/10.1158/1078-0432.CCR-19-1467.

  • Torre-Healy, L. A. et al. Open-source curation of a pancreatic ductal adenocarcinoma gene expression analysis platform (pdacR) supports a two-subtype model. Commun. Biol. 6, 163 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Whiteside, T. L. The tumor microenvironment and its role in promoting tumor growth. Oncogene 27, 5904–5912 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang, F. et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat. Methods 6, 377–382 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Trapnell, C., Cacchiarelli, D. & Qiu, X. Monocle: cell counting, differential expression, and trajectory analysis for single-cell RNA-Seq experiments. Bioconductor 10 http://bioconductor.org/packages/devel/bioc/vignettes/monocle/inst/doc/monocle-vignette.pdf (2017).

  • MD, C. et al. A distinct microglial subset at the tumor-stroma interface of glioma. Glia 69, 1767–1781 (2021).

    Article 

    Google Scholar
     

  • Azizi, E. et al. Single-cell map of diverse immune phenotypes in the breast tumor microenvironment. Cell 174, 1293–1308.e36 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rao, M. et al. Comparative single-cell RNA sequencing (scRNA-seq) reveals liver metastasis-specific targets in a patient with small intestinal neuroendocrine cancer. Cold Spring Harb. Mol. Case Stud. 6, 1–9 (2020).

    Article 

    Google Scholar
     

  • Muraro, M. J. J. et al. A single-cell transcriptome atlas of the human pancreas. Cell Syst. 3, 385–394.e3 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baron, M. et al. A single-cell transcriptomic map of the human and mouse pancreas reveals inter- and intra-cell population structure. Cell Syst. 3, 346–360.e4 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Segerstolpe, Å. et al. Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes. Cell Metab. 24, 593–607 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qadir, M. M. F. et al. Single-cell resolution analysis of the human pancreatic ductal progenitor cell niche. Proc. Natl Acad. Sci. USA 117, 10876–10887 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Öhlund, D. et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J. Exp. Med. 214, jem.20162024 (2017).

    Article 

    Google Scholar
     

  • Elyada, E. et al. Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discov. 9, 1102–1123 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Biffi, G. et al. IL1-induced JAK/STAT signaling is antagonized by TGFβ to shape CAF heterogeneity in pancreatic ductal adenocarcinoma. Cancer Discov. 9, 282–301 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Chen, K. et al. Single-cell RNA-seq reveals dynamic change in tumor microenvironment during pancreatic ductal adenocarcinoma malignant progression. EBioMedicine 66, 103315 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Y. et al. Single-cell analysis of pancreatic ductal adenocarcinoma identifies a novel fibroblast subtype associated with poor prognosis but better immunotherapy response. Cell Discov. 7, 36 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Q. et al. Landscape and dynamics of single immune. Cells 179, 829–845.e20 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Yang, J. et al. Calcium-binding proteins S100A8 and S100A9: investigation of their immune regulatory effect in myeloid cells. Int J. Mol. Sci. 19, 1833 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, L. et al. Spatially-resolved transcriptomics analyses of invasive fronts in solid tumors. bioRxiv https://www.biorxiv.org/content/10.1101/2021.10.21.465135v1 (2021).

  • Lauer, S. J. et al. Two copies of the human apolipoprotein C-I gene are linked closely to the apolipoprotein E gene. J. Biol. Chem. 263, 7277–7286 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Quaranta, V. et al. Macrophage-derived granulin drives resistance to immune checkpoint inhibition in metastatic pancreatic cancer. Cancer Res. 78, 4253–4269 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fleming, R. E., Crouch, E. C., Ruzicka, C. A. & Sly, W. S. Pulmonary carbonic anhydrase IV: developmental regulation and cell-specific expression in the capillary endothelium. Am. J. Physiol. 265, L627–L635 (1993).

    CAS 
    PubMed 

    Google Scholar
     

  • Thiriot, A. et al. Differential DARC/ACKR1 expression distinguishes venular from non-venular endothelial cells in murine tissues. BMC Biol. 15, 1–19 (2017).

    Article 

    Google Scholar
     

  • Su, T. et al. Single-cell analysis of early progenitor cells that build coronary arteries. Nature 559, 356–362 (2018).

  • Stahl, A. et al. SOCS3 is an endogenous inhibitor of pathologic angiogenesis. Blood 120, 2925 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, S. et al. Sprouty1 inhibits angiogenesis in association with up-regulation of p21 and p27. Mol. Cell Biochem. 338, 255–p261 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan, M. et al. Dynamic regulatory networks of T cell trajectory dissect transcriptional control of T cell state transition. Mol. Ther. Nucleic Acids 26, 1115–1129 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fei, Q. et al. High-dimensional single-cell analysis delineates radiofrequency ablation induced immune microenvironmental remodeling in pancreatic cancer. Cell Death Dis. 11, 1–13 (2020).

    Article 

    Google Scholar
     

  • Ng, S. S. et al. The NK cell granule protein NKG7 regulates cytotoxic granule exocytosis and inflammation. Nat. Immunol. 21, 1205–1218 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiao, Z., Mescher, M. F. & Jameson, S. C. Detuning CD8 T cells: down-regulation of CD8 expression, tetramer binding, and response during CTL activation. J. Exp. Med. 204, 2667–2677 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Punt, S. et al. Whole-transcriptome analysis of flow-sorted cervical cancer samples reveals that B cell expressed TCL1A is correlated with improved survival. Oncotarget 6, 38681–38694 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reimold, A. M. et al. Plasma cell differentiation requires the transcription factor XBP-1. Nature 412, 300–307 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Turnquist, H. R. et al. CCL21 induces extensive intratumoral immune cell infiltration and specific anti-tumor cellular immunity. Int. J. Oncol. 30, 631–639 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Binnewies, M. et al. Targeting TREM2 on tumor-associated macrophages enhances immunotherapy. Cell Rep. 37, 109844 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, W., Zhang, Y. & Fang, Q. [Effect of Galectin-9/Tim−3 pathway on the polarization of M1/M2 subtype in murine macrophages induced by lipopolysaccharide]. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 30, 836–841 (2018).

  • Tan, Y. & Cahan, P. SingleCellNet: a computational tool to classify single cell RNA-seq data across platforms and across species. Cell Syst. 9, 207–213.e2 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, X., Zhang, L., Chaudhry, A., Rapaport, A. S. & Ouyang, W. Unravelling the heterogeneity and dynamic relationships of tumor-infiltrating T cells by single-cell RNA sequencing analysis. J. Leukoc. Biol. 107, 917–932 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harricharran, T. & Ogunwobi, O. O. Oxytocin and oxytocin receptor alterations, decreased survival, and increased chemoresistance in patients with pancreatic cancer. Hepatobiliary Pancreat. Dis. Int. 19, 175–180 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Raghavan, S. et al. Microenvironment drives cell state, plasticity, and drug response in pancreatic cancer. Cell 184, 6119–6137.e26 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chakraborty, D. et al. Activation of STAT3 integrates common profibrotic pathways to promote fibroblast activation and tissue fibrosis. Nat. Commun. 8, 1–16 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Latchman, Y. et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat. Immunol. 2, 261–268 (2001).

  • Li, Y. et al. Stress-induced upregulation of TNFSF4 in cancer-associated fibroblast facilitates chemoresistance of lung adenocarcinoma through inhibiting apoptosis of tumor cells. Cancer Lett. 497, 212–220 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Niu, J. et al. Keratinocyte growth factor/fibroblast growth factor-7-regulated cell migration and invasion through activation of NF-κB transcription factors *. J. Biol. Chem. 282, 6001–6011 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Imaizumi, T., Yoshida, H. & Satoh, K. Regulation of CX3CL1/fractalkine expression in endothelial cells. J. Atheroscler. Thromb. 11, 15–21 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Larsen, A. M. H. et al. Collagen density modulates the immunosuppressive functions of macrophages. J. Immunol. 205, 1461–1472 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin-Sung Park, A. et al. Normalization of tumor vessels by Tie2 activation and Ang2 inhibition enhances drug delivery and produces a favorable tumor microenvironment. Cancer Cell 30, 953–967 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Hilton, D. J. LIF: lots of interesting functions. Trends Biochem Sci. 17, 72–76 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Juiz, N. et al. Basal-like and Classical cells coexistence in pancreatic cancer revealed by single cell analysis. bioRxiv https://doi.org/10.1101/2020.01.07.897454. (2020).

  • Sawey, E. T., Johnson, J. A. & Crawford, H. C. Matrix metalloproteinase 7 controls pancreatic acinar cell transdifferentiation by activating the Notch signaling pathway. Proc. Natl Acad. Sci. 104, 19327–19332 (2007).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fukuda, A. et al. Stat3 and MMP7 contribute to pancreatic ductal adenocarcinoma initiation and progression. Cancer Cell 19, 441 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prasad, N. B. et al. Gene expression profiles in pancreatic intraepithelial neoplasia reflect the effects of hedgehog signaling on pancreatic ductal epithelial cells. Cancer Res. 65, 1619–1626 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Delecourt, F. PACpAInt: a deep learning approach to identify molecular subtypes of pancreatic adenocarcinoma on histology slides. BioRxiv https://doi.org/10.1101/2022.01.04.474951 (2022)

  • Zhou, D. C. et al. Spatial drivers and pre-cancer populations collaborate with the microenvironment in untreated and chemo-resistant pancreatic cancer. bioRxiv https://www.biorxiv.org/content/10.1101/2021.01.13.426413v1 (2021).

  • Steele, N. G. et al. Inhibition of hedgehog signaling alters fibroblast composition in pancreatic cancer. Clin. Cancer Res. 27, 2023–2037 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gu, D., Schlotman, K. E. & Xie, J. Deciphering the role of hedgehog signaling in pancreatic cancer. J. Biomed. Res. 30, 353 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Colpitts, S. L., Dalton, N. M. & Scott, P. IL-7 receptor expression provides the potential for long-term survival of both CD62L high central memory T cells and Th1 effector cells during leishmania major infection. J. Immunol. 182, 5702–5711 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Quan, M. Y. et al. An FGFR/AKT/SOX2 signaling axis controls pancreatic cancer stemness. Front. Cell Dev. Biol. 8, 287 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chenivesse, C. et al. Pulmonary CCL18 recruits human regulatory T cells. J. Immunol. 189, 128–137 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Espiau-Romera, P., Courtois, S., Parejo-Alonso, B. & Sancho, P. Molecular and metabolic subtypes correspondence for pancreatic ductal adenocarcinoma classification. J. Clin. Med. 9, 1–21 (2020).

    Article 

    Google Scholar
     

  • Chen, H., Pan, Y., Jin, X. & Chen, G. An immune cell infiltration-related gene signature predicts prognosis for bladder cancer. Sci. Rep. 11, 1–13 (2021).


    Google Scholar
     

  • Tiriac, H. et al. Organoid profiling identifies common responders to chemotherapy in pancreatic cancer. Cancer Discov. 8, 1112–1129 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sarai, K. et al. Cell of origin affects tumour development and phenotype in pancreatic ductal adenocarcinoma. Gut 68, 487–498 (2018).

    PubMed 

    Google Scholar
     

  • Hayashi, A. et al. A Unifying paradigm for transcriptional heterogeneity and squamous features in pancreatic ductal adenocarcinoma. Nat. Cancer 1, 59–74 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Williams, H. L. et al. Spatially resolved single-cell assessment of pancreatic cancer expression subtypes reveals co-expressor phenotypes and extensive intratumoral heterogeneity. Cancer Res. 83, 441–455 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Song, J. S. et al. A highly selective and potent CXCR4 antagonist for hepatocellular carcinoma treatment. Proc. Natl Acad. Sci. USA 118, e2015433118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Santagata, S. et al. CXCR4 and CXCR7 signaling pathways: a focus on the cross-talk between cancer cells and tumor microenvironment. Front. Oncol. 11, 1225 (2021).

    Article 

    Google Scholar
     

  • Luker, G. D. et al. At the bench: pre-clinical evidence for multiple functions of CXCR4 in cancer. J. Leukoc. Biol. 109, 969–989 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cameron, A. M. et al. Inflammatory macrophage dependence on NAD + salvage is a consequence of reactive oxygen species-mediated DNA damage. Nat. Immunol. 20, 420–432 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Catakovic, K., Klieser, E., Neureiter, D. & Geisberger, R. T cell exhaustion: from pathophysiological basics to tumor immunotherapy. Cell Commun. Signal. 2017 15:1 15, 1–16 (2017).


    Google Scholar
     

  • Ayars, M. et al. IL2RG, identified as overexpressed by RNA-seq profiling of pancreatic intraepithelial neoplasia, mediates pancreatic cancer growth. Oncotarget 8, 83370–83383 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carter, E. P. et al. Dissecting FGF signalling to target cellular crosstalk in pancreatic cancer. Cells 10, 847 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, X. et al. ETV4 promotes pancreatic ductal adenocarcinoma metastasis through activation of the CXCL13/CXCR5 signaling axis. Cancer Lett. 524, 42–56 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Klussmeier, A., Aurich, S., Niederstadt, L., Wiedenmann, B. & Grötzinger, C. Secretin receptor as a target in gastrointestinal cancer: expression analysis and ligand development. Biomedicines 10, 536 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, K. et al. Single cell RNA-seq reveals the CCL5/SDC1 receptor-ligand interaction between T cells and tumor cells in pancreatic cancer. Cancer Lett. 545, 215834 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng, M. et al. Immunosuppressive role of SPP1-CD44 in the tumor microenvironment of intrahepatic cholangiocarcinoma assessed by single-cell RNA sequencing. J. Cancer Res. Clin. Oncol. 1–16 (2022) https://doi.org/10.1007/S00432-022-04498-W/FIGURES/7.

  • Waibl Polania, J., Lerner, E. C., Wilkinson, D. S., Hoyt-Miggelbrink, A. & Fecci, P. E. Pushing past the blockade: advancements in T cell-based cancer immunotherapies. Front. Immunol. 12, 4862 (2021).

    Article 

    Google Scholar
     

  • Xiang, X., Wang, J., Lu, D. & Xu, X. Targeting tumor-associated macrophages to synergize tumor immunotherapy. Signal Transduct. Target. Ther. 6, 1–12 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Abdelfattah, N. et al. Single-cell analysis of human glioma and immune cells identifies S100A4 as an immunotherapy target. Nat. Commun. 13, 1–18 (2022).

    Article 

    Google Scholar
     

  • Matrisian, L. M. & Berlin, J. D. The past, present, and future of pancreatic cancer clinical trials. Am. Soc. Clin. Oncol. Educ. Book 35, e205–e215 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Wang-Gillam, A. et al. A randomized phase II study of cabiralizumab (cabira) + nivolumab (nivo) ± chemotherapy (chemo) in advanced pancreatic ductal adenocarcinoma (PDAC). J. Clin. Oncol. 37, TPS465–TPS465 (2019).

  • Zhang, L. et al. Single-cell analyses inform mechanisms of myeloid-targeted therapies in colon cancer. Cell 181, 442–459.e29 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Srivastava, A., Malik, L., Smith, T., Sudbery, I. & Patro, R. Alevin efficiently estimates accurate gene abundances from dscRNA-seq data. Genome Biol. 20, 65 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alquicira-Hernandez, J. & Powell, J. E. Nebulosa recovers single-cell gene expression signals by kernel density estimation. Bioinformatics 37, 2485–2487 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hosein, A. N. et al. Cellular heterogeneity during mouse pancreatic ductal adenocarcinoma progression at single-cell resolution. JCI Insight 5, e129212 (2019).

  • Gabitova-Cornell, L. et al. Cholesterol pathway inhibition induces TGF-β signaling to promote basal differentiation in pancreatic cancer. Cancer Cell 38, 567–583.e11 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin, S. et al. Inference and analysis of cell-cell communication using CellChat. Nat. Commun. 12, 1–20 (2021).

    Article 

    Google Scholar
     

  • Oh, K., et al. Coordinated single cell tumor microenvironment dynamics reinforce pancreatic cancer subtype, scOh, https://doi.org/10.5281/zenodo.8066926, (2023)



  • Source link

    Related Articles

    Leave a Reply

    Stay Connected

    9FansLike
    4FollowersFollow
    0SubscribersSubscribe
    - Advertisement -spot_img

    Latest Articles

    %d bloggers like this: