Sunday, June 4, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

Decentralized federated learning through proxy model sharing – Nature Communications


  • Deng, J. et al. Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, 248–255. (2009).

  • Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P. SQuAD: 100,000+ questions for machine comprehension of text. In: EMNLP, 2383–2392 (2016).

  • Tizhoosh, H. R. and Pantanowitz, L. Artificial intelligence and digital pathology: challenges and opportunities. J. Pathol. Inform. 9, 38 (2018).

  • Cohen, J. P. et al. Problems in the deployment of machine-learned models in health care. CMAJ 193, E1391–E1394 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McCoy, L. G., Banja, J. D., Ghassemi, M., and Celi, L. A. Ensuring machine learning for healthcare works for all. BMJ Health Care Inform. 27, e100237 (2020).

  • Vokinger, K. N., Feuerriegel, S. & Kesselheim, A. S. Mitigating bias in machine learning for medicine. Commun. Med. 1, 1–3 (2021).

    Article 

    Google Scholar
     

  • McMahan, H. B., Moore, E., Ramage, D., Hampson, S., and y Arcas, B. A. Communication-efficient learning of deep networks from decentralized data. In: Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS) (2017).

  • Li, T., Sahu, A. K., Talwalkar, A. & Smith, V. Federated learning: challenges, methods, and future directions. IEEE Signal Processing Magazine 37, 50–60 (2020).

    CAS 

    Google Scholar
     

  • Carlini, N., Liu, C., Erlingsson, Ú., Kos, J., and Song, D. The Secret Sharer: evaluating and testing unintended memorization in neural networks. In: Proceedings of the 28th USENIX Conference on Security Symposium, SEC’19, page 267–284, USA (2019). USENIX Association.

  • Dwork, C., McSherry, F., Nissim, K., and Smith, A. Calibrating noise to sensitivity in private data analysis. In: Theory of Cryptography, 265–284, Berlin, Heidelberg (2006).

  • Dwork, C. & Roth, A. The algorithmic foundations of differential privacy. Found. Trends Theor. Comput. Sci. 9, 211–407 (2014). ISSN 1551-305X.

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Dwork, C., Rothblum, G. N., and Vadhan, S. Boosting and differential privacy. In 2010 IEEE 51st Annual Symposium on Foundations of Computer Science, 51–60, (2010).

  • Kempe, D., Dobra, A., and Gehrke, J. Gossip-based computation of aggregate information. In 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings, 482–491. (2003).

  • Nedić, A. & Olshevsky, A. Stochastic gradient-push for strongly convex functions on time-varying directed graphs. IEEE Trans. Automat. Control 61, 3936–3947 (2016).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Nedić, A., Olshevsky, A. & Rabbat, M. G. Network topology and communication-computation tradeoffs in decentralized optimization. Proc. IEEE 106, 953–976 (2018).

    Article 

    Google Scholar
     

  • Li, C., Li, G. & Varshney, P. K. Decentralized federated learning via mutual knowledge transfer. IEEE Internet Things J. 9, 1136–1147 (2022).

    Article 

    Google Scholar
     

  • Huang, Y. et al. Personalized cross-silo federated learning on non-IID data. In Proceedings of the AAAI Conference on Artificial Intelligence. 35–9, 7865–7873 (2021).

  • Wittkopp, T. and Acker, A. Decentralized federated learning preserves model and data privacy. In International Conference on Service-Oriented Computing, 176–187. Springer (2020).

  • Lin, T., Kong, L., Stich, S. U., and Jaggi, M. Ensemble distillation for robust model fusion in federated learning. In Advances in Neural Information Processing Systems. 33, 2351–2363 (2020).

  • Ma, J., Yonetani, R., and Iqbal, Z. Adaptive distillation for decentralized learning from heterogeneous clients. In 2020 25th International Conference on Pattern Recognition (ICPR), 7486–7492 (2021).

  • Chang, K. et al. Distributed deep learning networks among institutions for medical imaging. J. Am. Med. Inform. Assoc. 25, 945–954 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gupta, O. & Raskar, R. Distributed learning of deep neural network over multiple agents. J. Netw. Comput. Appl. 116, 1–8 (2018).

    Article 

    Google Scholar
     

  • Warnat-Herresthal, S. et al. Swarm learning for decentralized and confidential clinical machine learning. Nature 594, 265–270 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y., Xiang, T., Hospedales, T. M., and Lu, H. Deep mutual learning. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, 4320–4328 (2018).

  • Hinton, G., Vinyals, O., and Dean, J. Distilling the knowledge in a neural network. arXiv https://arxiv.org/abs/1503.02531 (2015).

  • Shen, T. et al. Federated mutual learning. arXiv https://arxiv.org/abs/2006.16765 (2020).

  • Melis, L., Song, C., De Cristofaro, E., and Shmatikov, V. Exploiting unintended feature leakage in collaborative learning. In: 2019 IEEE Symposium on Security and Privacy (SP), 691–706. (2019).

  • Bhowmick, A., Duchi, J., Freudiger, J., Kapoor, G., and Rogers, R. Protection against reconstruction and its applications in private federated learning. arXiv https://arxiv.org/abs/1812.00984 (2018).

  • McMahan, H. B., Ramage, D., Talwar, K., and Zhang, L. Learning differentially private recurrent language models. In: International Conference on Learning Representations (2018).

  • Abadi, M. et al. Deep learning with differential privacy. In: Proceedings of the 2016 ACM SIGSAC conference on computer and communications security, 308–318 (2016).

  • Li, W. et al. Privacy-preserving federated brain tumour segmentation. In: International Workshop on Machine Learning in Medical Imaging, 133–141 (2019).

  • Ke, J., Shen, Y., and Lu, Y. Style normalization in histology with federated learning. In: 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), 953–956 (2021).

  • Li, X. et al. Multi-site fMRI analysis using privacy-preserving federated learning and domain adaptation: ABIDE results. Med. Image Anal. 65, 101765 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, M. Y. et al. Federated learning for computational pathology on gigapixel whole slide images. Med. Image Anal. 76, 102298 (2022). ISSN 1361-8415.

    Article 
    PubMed 

    Google Scholar
     

  • Assran, M., Loizou, N., Ballas, N., and Rabbat, M. Stochastic gradient push for distributed deep learning. In: International Conference on Machine Learning, 344–353. PMLR (2019).

  • Graham, R. L., Woodall, T. S., and Squyres, J. M. Open MPI: a flexible high performance MPI. In: International Conference on Parallel Processing and Applied Mathematics, 228–239, Springer (2005).

  • LeCun, Y., Bottou, L. éon, Bengio, Y. & Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998).

    Article 

    Google Scholar
     

  • Xiao, H., Rasul, K., and Vollgraf, R. Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. arXiv https://arxiv.org/abs/1708.07747 (2017).

  • Krizhevsky, A. Learning multiple layers of features from tiny images. Technical Report, University of Toronto, Toronto (2009).

  • Adnan, M., Kalra, S., Cresswell, J. C., Taylor, G. W. & Tizhoosh, H. R. Federated learning and differential privacy for medical image analysis. Scientific reports 12, 1–10 (2022).

    Article 

    Google Scholar
     

  • Kingma, D. P. and Ba, J. Adam: a method for stochastic optimization. In: International Conference on Learning Representations, (2014).

  • Yu, L., Liu, L., Pu, C., Gursoy, Mehmet Emre, and Truex, S. Differentially private model publishing for deep learning. In: 2019 IEEE Symposium on Security and Privacy (SP), 332–349. (2019).

  • Pogorelov, K. et al. Kvasir: A multi-class image dataset for computer aided gastrointestinal disease detection. In: Proceedings of the 8th ACM on Multimedia Systems Conference, 164–169 (2017).

  • Yang, Q., Zhang, J., Hao, W., Spell, G. P., and Carin, L. Flop: Federated learning on medical datasets using partial networks. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, 3845–3853 (2021).

  • Yurochkin, M. et al. Bayesian nonparametric federated learning of neural networks. In: International Conference on Machine Learning, 7252–7261. PMLR (2019).

  • Bándi, P. et al. From detection of individual metastases to classification of lymph node status at the patient level: the camelyon17 challenge. IEEE Trans. Med. Imaging 38, 550–560 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Andreux, M., du Terrail, J. O., Beguier, C., and Tramel, E. W. Siloed federated learning for multi-centric histopathology datasets. In Domain Adaptation and Representation Transfer, and Distributed and Collaborative Learning, 129–139. Springer (2020).

  • Kelly, C. J., Karthikesalingam, A., Suleyman, M., Corrado, G. & King, D. Key challenges for delivering clinical impact with artificial intelligence. BMC Med. 17, 1–9 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Park, S. H. & Han, K. Methodologic guide for evaluating clinical performance and effect of artificial intelligence technology for medical diagnosis and prediction. Radiology 286, 800–809 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Bizzego, A. et al. Evaluating reproducibility of ai algorithms in digital pathology with dapper. PLoS Comput. Biol. 15, e1006269 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bluemke, D. A. et al. Assessing radiology research on artificial intelligence: a brief guide for authors, reviewers, and readers-From the Radiology editorial board. Radiology 294, 487–489 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June (2016).

  • TorchVision. Torchvision: Pytorch’s computer vision library. https://github.com/pytorch/vision, (2016).

  • Ioffe, S. and Szegedy, C. Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Proceedings of the 32nd International Conference on Machine Learning, 37, 448–456 (2015).

  • Wu, Y. and He, K. Group normalization. In: Proceedings of the European Conference on Computer Vision (ECCV), September (2018).

  • Fredrikson, M., Jha, S., and Ristenpart, T. Model inversion attacks that exploit confidence information and basic countermeasures. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, CCS ’15, 1322–1333 (2015). https://doi.org/10.1145/2810103.2813677.

  • Truex, S., Liu, L., Gursoy, M. E., Yu, L., and Wei, W. Demystifying membership inference attacks in machine learning as a service. IEEE Transactions on Services Computing, 1–1 (2019). https://doi.org/10.1109/TSC.2019.2897554.

  • Carlini, N. and Wagner, D. Towards evaluating the robustness of neural networks. In: 2017 IEEE Symposium on Security and Privacy, 39–57, IEEE (2017).

  • Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., and Naor, M. Our data, ourselves: privacy via distributed noise generation. In: Advances in Cryptology (EUROCRYPT 2006), volume 4004 of Lecture Notes in Computer Science, 486–503. Springer Verlag, May (2006).

  • Mironov, I. Rényi differential privacy. 2017 IEEE 30th Computer Security Foundations Symposium (CSF) (2017). https://doi.org/10.1109/csf.2017.11.

  • Mironov, I., Talwar, K., and Zhang, L. Rényi differential privacy of the sampled Gaussian mechanism. arXiv https://arxiv.org/abs/1908.10530 (2019).

  • Balle, B., Barthe, G., Gaboardi, M., Hsu, J., and Sato, T. Hypothesis testing interpretations and Renyi differential privacy. In: Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics, 108, 2496–2506. PMLR (2020).

  • Seneta, E. Non-negative matrices and Markov chains. Springer Series in Statistics. Springer New York, (2006).

  • Kalra, S., Wen, J., Cresswell, J., Volkovs, M. and Tizhoosh, H. Decentralized federated learning through proxy model sharing. GitHub repository. https://github.com/layer6ai-labs/ProxyFL.



  • Source link

    Related Articles

    Leave a Reply

    Stay Connected

    9FansLike
    4FollowersFollow
    0SubscribersSubscribe
    - Advertisement -spot_img

    Latest Articles

    %d bloggers like this: