Monday, October 2, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

Deciphering migraine pain mechanisms through electrophysiological insights of trigeminal ganglion neurons – Scientific Reports


  • Hadjikhani, N. et al. Mechanisms of migraine aura revealed by functional MRI in human visual cortex. Proc. Natl. Acad. Sci. U S A 98, 4687–4692. https://doi.org/10.1073/pnas.071582498 (2001).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao, Y., Welch, K. M. A., Aurora, S. & Vikingstad, E. M. Functional MRI-BOLD of visually triggered headache in patients with migraine. Arch. Neurol. 56, 548–554. https://doi.org/10.1001/archneur.56.5.548 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Strassman, A. M., Raymond, S. A. & Burstein, R. Sensitization of meningeal sensory neurons and the origin of headaches. Nature 384, 560–564. https://doi.org/10.1038/384560a0 (1996).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Burstein, R., Cutrer, M. F. & Yarnitsky, D. The development of cutaneous allodynia during a migraine attack clinical evidence for the sequential recruitment of spinal and supraspinal nociceptive neurons in Migraine. Brain 123, 1703–1709. https://doi.org/10.1093/brain/123.8.1703 (2000).

    Article 
    PubMed 

    Google Scholar
     

  • Burstein, R. et al. Thalamic sensitization transforms localized pain into widespread allodynia. Ann. Neurol. 68, 81–91. https://doi.org/10.1002/ana.21994 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, X. et al. Activation of meningeal nociceptors by cortical spreading depression: Implications for migraine with Aura. J. Neurosci. 30, 8807–8814. https://doi.org/10.1523/JNEUROSCI.0511-10.2010 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, X. et al. Activation of central trigeminovascular neurons by cortical spreading depression. Ann. Neurol. 69, 855–865. https://doi.org/10.1002/ana.22329 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amemori, T. & Bures, J. Ketamine blockade of spreading depression: Rapid development of tolerance. Brain Res. 519, 351–354. https://doi.org/10.1016/0006-8993(90)90101-g (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Charles, A. & Brennan, K. Cortical spreading depression—new insights and persistent questions. Cephalalgia 29, 1115–1124. https://doi.org/10.1111/j.1468-2982.2009.01983.x (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martens-Mantai, T., Speckmann, E.-J. & Gorji, A. Propagation of cortical spreading depression into the hippocampus: The role of the Entorhinal Cortex. Synapse 68, 574–584. https://doi.org/10.1002/syn.21769 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mun-Bryce, S., Roberts, L., Bartolo, A. & Okada, Y. Transhemispheric depolarizations persist in the intracerebral hemorrhage swine brain following Corpus Callosal transection. Brain Res. 1073–1074, 481–490. https://doi.org/10.1016/j.brainres.2005.12.071 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Somjen, G. G. Mechanisms of spreading depression and hypoxic spreading depression-like depolarization. Physiol. Rev. 81, 1065–1096. https://doi.org/10.1152/physrev.2001.81.3.1065 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Taga, K., Patel, P. M., Drummond, J. C., Cole, D. J. & Kelly, P. J. Transient neuronal depolarization induces tolerance to subsequent forebrain ischemia in rats. Anesthesiology 87, 918–925. https://doi.org/10.1097/00000542-199710000-00027 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Matsushima, K., Schmidt-Kastner, R., Hogan, M. J. & Hakim, A. M. Cortical spreading depression activates trophic factor expression in neurons and astrocytes and protects against subsequent focal brain ischemia. Brain Res. 807, 47–60. https://doi.org/10.1016/s0006-8993(98)00716-1 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • le Grand, S. M., Supornsilpchai, W., Saengjaroentham, C. & Srikiatkhachorn, A. Serotonin depletion leads to cortical hyperexcitability and trigeminal nociceptive facilitation via the nitric oxide pathway. Headache 51, 1152–1160. https://doi.org/10.1111/j.1526-4610.2011.01931.x (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Supornsilpchai, W., Sanguanrangsirikul, S., Maneesri, S. & Srikiatkhachorn, A. Serotonin depletion, cortical spreading depression, and trigeminal nociception. Headache 46, 34–39. https://doi.org/10.1111/j.1526-4610.2006.00310.x (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Anderson, R. F. & Harris, T. A. Dopamine and uric acid act as antioxidants in the repair of DNA radicals: Implications in Parkinson’s disease. Free Radic. Res. 37, 1131–1136. https://doi.org/10.1080/10715760310001604134 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dallé, E. & Mabandla, M. V. Early life stress, depression and Parkinson’s disease: A new approach. Mol. Brain 11, 18. https://doi.org/10.1186/s13041-018-0356-9 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dauer, W. & Przedborski, S. Parkinson’s disease: mechanisms and models. Neuron 39, 889–909. https://doi.org/10.1016/s0896-6273(03)00568-3 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Doder, M., Rabiner, E. A., Turjanski, N., Lees, A. J. & Brooks, D. J. Tremor in Parkinson’s disease and serotonergic dysfunction: An 11C-WAY 100635 PET study. Neurology 60, 601–605. https://doi.org/10.1212/01.wnl.0000031424.51127.2b (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Garbarino, V. R., Gilman, T. L., Daws, L. C. & Gould, G. G. Extreme enhancement or depletion of serotonin transporter function and serotonin availability in autism spectrum disorder. Pharmacol. Res. 140, 85–99. https://doi.org/10.1016/j.phrs.2018.07.010 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jacobs, B. L. & Fornal, C. A. Serotonin and motor activity. Curr. Opin. Neurobiol. 7, 820–825. https://doi.org/10.1016/s0959-4388(97)80141-9 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jenkins, T., Nguyen, J., Polglaze, K. & Bertrand, P. Influence of tryptophan and serotonin on mood and cognition with a possible role of the gut-brain axis. Nutrients 8, 56. https://doi.org/10.3390/nu8010056 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mace, J., Porter, R., Dalrymple-Alford, J., Wesnes, K. & Anderson, T. Effects of acute tryptophan depletion on neuropsychological and motor function in Parkinson’s disease. J. Psychopharmacol. 24, 1465–1472. https://doi.org/10.1177/0269881109105721 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Spanos, M. et al. Quantitation of hydrogen peroxide fluctuations and their modulation of dopamine dynamics in the rat dorsal striatum using fast-scan cyclic voltammetry. ACS Chem. Neurosci. 4, 782–789. https://doi.org/10.1021/cn4000499 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Srikiatkhachorn, A., Anuntasethakul, T., Phansuwan-Pujito, P., Patumraj, S. & Kasantikul, V. Effect of serotonin depletion on nitric oxide-induced cerebrovascular nociceptive response. NeuroReport 12, 967–971. https://doi.org/10.1097/00001756-200104170-00021 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Edvinsson, L., Grell, A.-S. & Warfvinge, K. Expression of the CGRP family of neuropeptides and their receptors in the trigeminal ganglion. J. Mol. Neurosci. 70, 930–944. https://doi.org/10.1007/s12031-020-01493-z (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eftekhari, S. & Edvinsson, L. Possible sites of action of the new calcitonin gene-related peptide receptor antagonists. Ther. Adv. Neurol. Disord. 3, 369–378. https://doi.org/10.1177/1756285610388343 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Julius, D. & Basbaum, A. I. Molecular mechanisms of nociception. Nature 413, 203–210. https://doi.org/10.1038/35093019 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tel’ka, M. V., Rykhal’skii, O. V. & Veselovskii, N. S. Electrophysiological properties of cultured neurons of the rat trigeminal ganglion. Neurophysiology 45, 84–88. https://doi.org/10.1007/s11062-013-9340-2 (2013).

    Article 

    Google Scholar
     

  • Eftekhari, S., Warfvinge, K., Blixt, F. W. & Edvinsson, L. Differentiation of nerve fibers storing CGRP and CGRP receptors in the peripheral trigeminovascular system. J. Pain 14, 1289–1303. https://doi.org/10.1016/j.jpain.2013.03.010 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Edvinsson, J. C. A. et al. C-fibers may modulate adjacent Aδ-fibers through axon-axon CGRP signaling at nodes of Ranvier in the trigeminal system. J. Headache Pain 20, 105. https://doi.org/10.1186/s10194-019-1055-3 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vaden, R. J. & Gu, J. G. Non-nociceptive and nociceptive-like trigeminal Aβ-afferent neurons of rats: Distinct electrophysiological properties, mechanical and chemical sensitivity. Mol. Pain 19, 174480692211489. https://doi.org/10.1177/17448069221148958 (2023).

    Article 

    Google Scholar
     

  • Li, L. et al. The functional organization of cutaneous low-threshold mechanosensory neurons. Cell 147, 1615–1627. https://doi.org/10.1016/j.cell.2011.11.027 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vermeiren, S., Bellefroid, E. J. & Desiderio, S. Vertebrate sensory ganglia: Common and divergent features of the transcriptional programs generating their functional specialization. Front. Cell Dev. Biol. 8, 587699. https://doi.org/10.3389/fcell.2020.587699 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maneepark, M., Srikiatkhachorn, A. & Bongsebandhu-phubhakdi, S. Involvement of AMPA receptors in CSD-induced impairment of LTP in the hippocampus. Headache 52, 1535–1545. https://doi.org/10.1111/j.1526-4610.2012.02229.x (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Saleeon, W., Jansri, U., Srikiatkhachorn, A. & Bongsebandhu-phubhakdi, S. Estrous cycle induces peripheral sensitization in trigeminal ganglion neurons: An animal model of menstrual migraine. J. Med. Assoc. 99, 206–212 (2016).


    Google Scholar
     

  • Yisarakun, W. et al. Up-regulation of calcitonin gene-related peptide in trigeminal ganglion following chronic exposure to paracetamol in a CSD migraine animal model. Neuropeptides 51, 9–16. https://doi.org/10.1016/j.npep.2015.03.008 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Y.-J. et al. NMDARs mediate peripheral and central sensitization contributing to chronic orofacial pain. Front. Cell Neurosci. 16, 999509. https://doi.org/10.3389/fncel.2022.999509 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jensen, T. S. & Finnerup, N. B. Allodynia and Hyperalgesia in neuropathic pain: Clinical manifestations and mechanisms. Lancet Neurol 13, 924–935. https://doi.org/10.1016/S1474-4422(14)70102-4 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Reuter, U. et al. Perivascular nerves contribute to cortical spreading depression-associated hyperemia in rats. Am. J. Physiol. 274, H1979-1987. https://doi.org/10.1152/ajpheart.1998.274.6.H1979 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shinoda, M., Kubo, A., Hayashi, Y. & Iwata, K. Peripheral and central mechanisms of persistent orofacial pain. Front. Neurosci. 13, 1227. https://doi.org/10.3389/fnins.2019.01227 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wahl, M., Schilling, L., Parsons, A. A. & Kaumann, A. Involvement of calcitonin gene-related peptide (CGRP) and nitric oxide (NO) in the pial artery dilatation elicited by cortical spreading depression. Brain Res. 637, 204–210. https://doi.org/10.1016/0006-8993(94)91234-3 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goadsby, P. J. Migraine, Allodynia, sensitisation and all of that. Eur. Neurol. 53, 10–16. https://doi.org/10.1159/000085060 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Burstein, R., Yamamura, H., Malick, A. & Strassman, A. M. Chemical stimulation of the intracranial dura induces enhanced responses to facial stimulation in brain stem trigeminal neurons. J. Neurophysiol. 79, 964–982. https://doi.org/10.1152/jn.1998.79.2.964 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dubner, R. & Ruda, M. A. Activity-dependent neuronal plasticity following tissue injury and inflammation. Trends Neurosci. 15, 96–103. https://doi.org/10.1016/0166-2236(92)90019-5 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ren, K., Hylden, J. L. K., Williams, G. M., Ruda, M. A. & Dubner, R. The effects of a non-competitive NMDA receptor antagonist, MK-801, on behavioral hyperalgesia and dorsal horn neuronal activity in rats with unilateral inflammation. Pain 50, 331–344. https://doi.org/10.1016/0304-3959(92)90039-E (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bolay, H. et al. Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model. Nat. Med. 8, 136–142. https://doi.org/10.1038/nm0202-136 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moskowitz, M., Nozaki, K. & Kraig, R. Neocortical spreading depression provokes the expression of c-fos protein-like immunoreactivity within trigeminal nucleus caudalis via trigeminovascular mechanisms. J. Neurosci. 13, 1167–1177. https://doi.org/10.1523/JNEUROSCI.13-03-01167.1993 (1993).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bongsebandhu-Phubhakdi, S., Phisonkulkasem, T. & Srikiatkhachorn, A. Nociceptin/orphanin FQ modulates cortical activity and trigeminal nociception. Headache 51, 1245–1253. https://doi.org/10.1111/j.1526-4610.2011.01958.x (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Volobueva, M. N., Suleymanova, E. M., Smirnova, M. P., Bolshakov, A. P. & Vinogradova, L. V. A single episode of cortical spreading depolarization increases mRNA levels of proinflammatory cytokines, calcitonin gene-related peptide and pannexin-1 channels in the cerebral cortex. Int. J. Mol. Sci. 24, 85. https://doi.org/10.3390/ijms24010085 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Y. et al. Induction of calcitonin gene-related peptide expression in rats by cortical spreading depression. Cephalalgia 39, 333–341. https://doi.org/10.1177/0333102416678388 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Edvinsson, L. CGRP and migraine: From bench to bedside. Rev. Neurol. (Paris) 177, 785–790. https://doi.org/10.1016/j.neurol.2021.06.003 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Podkowa, K., Czarnacki, K., Borończyk, A., Borończyk, M. & Paprocka, J. The NMDA receptor antagonists memantine and ketamine as anti-migraine agents. Naunyn Schmiedebergs Arch. Pharmacol. 396, 1371–1398. https://doi.org/10.1007/s00210-023-02444-2 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bilhimer, M. H., Groth, M. E. & Holmes, A. K. Ketamine for migraine in the emergency department. Adv. Emerg. Nurs. J. 42, 96–102. https://doi.org/10.1097/TME.0000000000000296 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Makino, H. et al. A selective inhibition of c-Fos/activator protein-1 as a potential therapeutic target for intervertebral disc degeneration and associated pain. Sci. Rep. 7, 16983. https://doi.org/10.1038/s41598-017-17289-y (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    Stay Connected

    9FansLike
    4FollowersFollow
    0SubscribersSubscribe
    - Advertisement -spot_img

    Latest Articles

    %d bloggers like this: