Sunday, October 1, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

Deep learning model improves tumor-infiltrating lymphocyte evaluation and therapeutic response prediction in breast cancer – npj Breast Cancer


  • Savas, P. et al. Clinical relevance of host immunity in breast cancer: from TILs to the clinic. Nat. Rev. Clin. Oncol. 13, 228–241 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stanton, S. E., Adams, S. & Disis, M. L. Variation in the incidence and magnitude of tumor-infiltrating lymphocytes in breast cancer subtypes: a systematic review. JAMA Oncol. 2, 1354–1360 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Denkert, C. et al. Standardized evaluation of tumor-infiltrating lymphocytes in breast cancer: results of the ring studies of the international immuno-oncology biomarker working group. Mod. Pathol. 29, 1155–1164 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Esteva, F. J., Hubbard-Lucey, V. M., Tang, J. & Pusztai, L. Immunotherapy and targeted therapy combinations in metastatic breast cancer. Lancet Oncol. 20, e175–e186 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Loi, S. et al. Tumor-infiltrating lymphocytes and prognosis: a pooled individual patient analysis of early-stage triple-negative breast cancers. J. Clin. Oncol. 37, 559–569 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Jong, V. M. T. et al. Prognostic value of stromal tumor-infiltrating lymphocytes in young, node-negative, triple-negative breast cancer patients who did not receive (neo)adjuvant systemic therapy. J. Clin. Oncol. 40, 2361–2374 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tarantino, P. et al. Immunotherapy for early triple negative breast cancer: research agenda for the next decade. NPJ Breast Cancer 8, 23 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salgado, R. et al. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Ann. Oncol. 26, 259–271 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hendry, S. et al. Assessing tumor-infiltrating lymphocytes in solid tumors: a practical review for pathologists and proposal for a standardized method from the International Immunooncology Biomarkers Working Group: part 1: assessing the host immune response, TILs in invasive breast carcinoma and ductal carcinoma in situ, metastatic tumor deposits and areas for further research. Adv. Anat. Pathol. 24, 235–251 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Swisher, S. K. et al. Interobserver agreement between pathologists assessing tumor-infiltrating lymphocytes (TILs) in breast cancer using methodology proposed by the International TILs Working Group. Ann. Surg. Oncol. 23, 2242–2248 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Buisseret, L. et al. Reliability of tumor-infiltrating lymphocyte and tertiary lymphoid structure assessment in human breast cancer. Mod. Pathol. 30, 1204–1212 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kos, Z. et al. Pitfalls in assessing stromal tumor infiltrating lymphocytes (sTILs) in breast cancer. NPJ Breast Cancer 6, 17 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, F., Casalino, L. P. & Khullar, D. Deep learning in medicine-promise, progress, and challenges. JAMA Intern. Med. 179, 293–294 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Topol, E. J. High-performance medicine: the convergence of human and artificial intelligence. Nat. Med. 25, 44–56 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bera, K., Schalper, K. A., Rimm, D. L., Velcheti, V. & Madabhushi, A. Artificial intelligence in digital pathology – new tools for diagnosis and precision oncology. Nat. Rev. Clin. Oncol. 16, 703–715 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Colling, R. et al. Artificial intelligence in digital pathology: a roadmap to routine use in clinical practice. J. Pathol. 249, 143–150 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Niazi, M. K. K., Parwani, A. V. & Gurcan, M. N. Digital pathology and artificial intelligence. Lancet Oncol. 20, e253–e261 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van der Laak, J., Litjens, G. & Ciompi, F. Deep learning in histopathology: the path to the clinic. Nat. Med. 27, 775–784 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Tizhoosh, H. R. et al. Searching images for consensus: can AI remove observer variability in pathology? Am. J. Pathol. 191, 1702–1708 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Amgad, M. et al. Report on computational assessment of Tumor Infiltrating Lymphocytes from the International Immuno-Oncology Biomarker Working Group. NPJ Breast Cancer 6, 16 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yousif, M. et al. Artificial intelligence applied to breast pathology. Virch. Arch. 480, 191–209 (2021).

    Article 

    Google Scholar
     

  • Cheng, J. Y., Abel, J. T., Balis, U. G. J., McClintock, D. S. & Pantanowitz, L. Challenges in the development, deployment, and regulation of artificial intelligence in anatomic pathology. Am. J. Pathol. 191, 1684–1692 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Park, S. et al. Artificial intelligence-powered spatial analysis of tumor-infiltrating lymphocytes as complementary biomarker for immune checkpoint inhibition in non-small-cell lung cancer. J. Clin. Oncol. 40, 1916–1928 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choi, S. et al. Artificial intelligence-powered programmed death ligand 1 analyser reduces interobserver variation in tumour proportion score for non-small cell lung cancer with better prediction of immunotherapy response. Eur. J. Cancer 170, 17–26 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khoury, T., Peng, X., Yan, L., Wang, D. & Nagrale, V. Tumor-infiltrating lymphocytes in breast cancer: evaluating interobserver variability, heterogeneity, and fidelity of scoring core biopsies. Am. J. Clin. Pathol. 150, 441–450 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Asano, Y. et al. Prediction of treatment response to neoadjuvant chemotherapy in breast cancer by subtype using tumor-infiltrating lymphocytes. Anticancer Res. 38, 2311–2321 (2018).

    PubMed 

    Google Scholar
     

  • Hong, J., Rui, W., Fei, X., Chen, X. & Shen, K. Association of tumor-infiltrating lymphocytes before and after neoadjuvant chemotherapy with pathological complete response and prognosis in patients with breast cancer. Cancer Med. 10, 7921–7933 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kolberg-Liedtke, C. et al. Impact of stromal tumor-infiltrating lymphocytes (sTILs) on response to neoadjuvant chemotherapy in triple-negative early breast cancer in the WSG-ADAPT TN trial. Breast Cancer Res. 24, 58 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Denkert, C. et al. Tumor-infiltrating lymphocytes and response to neoadjuvant chemotherapy with or without carboplatin in human epidermal growth factor receptor 2-positive and triple-negative primary breast cancers. J. Clin. Oncol. 33, 983–991 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ochi, T. et al. Predictive and prognostic value of stromal tumour-infiltrating lymphocytes before and after neoadjuvant therapy in triple negative and HER2-positive breast cancer. Eur. J. Cancer 118, 41–48 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ono, M. et al. Tumor-infiltrating lymphocytes are correlated with response to neoadjuvant chemotherapy in triple-negative breast cancer. Breast Cancer Res. Treat. 132, 793–805 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yamaguchi, R. et al. Tumor-infiltrating lymphocytes are important pathologic predictors for neoadjuvant chemotherapy in patients with breast cancer. Hum. Pathol. 43, 1688–1694 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bai, Y. et al. An open-source, automated tumor-infiltrating lymphocyte algorithm for prognosis in triple-negative breast cancer. Clin. Cancer Res. 27, 5557–5565 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, P. et al. A computational tumor-infiltrating lymphocyte assessment method comparable with visual reporting guidelines for triple-negative breast cancer. EBioMedicine 70, 103492 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Le, H. et al. Utilizing automated breast cancer detection to identify spatial distributions of tumor-infiltrating lymphocytes in invasive breast cancer. Am. J. Pathol. 190, 1491–1504 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, Z. H., Li, C. X., Liu, M. & Jiang, J. Y. Predictive and prognostic role of tumour-infiltrating lymphocytes in breast cancer patients with different molecular subtypes: a meta-analysis. BMC Cancer 20, 1150 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, X. et al. Prognostic and predictive value of tumor-infiltrating lymphocytes in breast cancer: a systematic review and meta-analysis. Clin. Transl. Oncol. 18, 497–506 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ibrahim, E. M., Al-Foheidi, M. E., Al-Mansour, M. M. & Kazkaz, G. A. The prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancer: a meta-analysis. Breast Cancer Res. Treat. 148, 467–476 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lotfinejad, P. et al. Prognostic role and clinical significance of tumor-infiltrating lymphocyte (TIL) and programmed death ligand 1 (PD-L1) expression in triple-negative breast cancer (TNBC): a systematic review and meta-analysis study. Diagnostics (Basel) 10, 704 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • El Bairi, K. et al. The tale of TILs in breast cancer: a report from The International Immuno-Oncology Biomarker Working Group. NPJ Breast Cancer 7, 150 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Loi, S. et al. Tumor infiltrating lymphocyte stratification of prognostic staging of early-stage triple negative breast cancer. NPJ Breast Cancer 8, 3 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Loi, S. et al. The journey of tumor-infiltrating lymphocytes as a biomarker in breast cancer: clinical utility in an era of checkpoint inhibition. Ann. Oncol. 32, 1236–1244 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Burstein, H. J. et al. Estimating the benefits of therapy for early-stage breast cancer: the St. Gallen International Consensus Guidelines for the primary therapy of early breast cancer 2019. Ann. Oncol. 30, 1541–1557 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cardoso, F. et al. Early breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 30, 1674 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hida, A. I. et al. Diffuse distribution of tumor-infiltrating lymphocytes is a marker for better prognosis and chemotherapeutic effect in triple-negative breast cancer. Breast Cancer Res. Treat. 178, 283–294 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Althobiti, M. et al. Heterogeneity of tumour-infiltrating lymphocytes in breast cancer and its prognostic significance. Histopathology 73, 887–896 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Mercan, C. et al. Deep learning for fully-automated nuclear pleomorphism scoring in breast cancer. NPJ Breast Cancer 8, 120 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Basavanhally, A. N. et al. Computerized image-based detection and grading of lymphocytic infiltration in HER2+ breast cancer histopathology. IEEE Trans. Biomed. Eng. 57, 642–653 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Amgad, M. et al. Joint region and nucleus segmentation for characterization of tumor infiltrating lymphocytes in breast cancer. Proc SPIE Int. Soc. Opt. Eng. 10956, 109560M (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rasmusson, A. et al. Immunogradient indicators for antitumor response assessment by automated tumor-stroma interface zone detection. Am. J. Pathol. 190, 1309–1322 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Howard, F. M. et al. The impact of site-specific digital histology signatures on deep learning model accuracy and bias. Nat. Commun. 12, 4423 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schomig-Markiefka, B. et al. Quality control stress test for deep learning-based diagnostic model in digital pathology. Mod. Pathol. 34, 2098–2108 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wells, A., Patel, S., Lee, J. B. & Motaparthi, K. Artificial intelligence in dermatopathology: diagnosis, education, and research. J. Cutan. Pathol. 48, 1061–1068 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Bulusu, S., Kailkhura, B., Li, B., Varshney, P. K. & Song, D. Anomalous example detection in deep learning: a survey. IEEE Access 8, 132330–132347 (2020).

    Article 

    Google Scholar
     

  • Nguyen, A., Yosinski, J. & Clune, J. Deep neural networks are easily fooled: High confidence predictions for unrecognizable images. Proc. IEEE Conf. Comput. Vis. Pattern Recognit. 427–436. https://ieeexplore.ieee.org/document/7298640 (2015).

  • Ma, X. et al. Understanding adversarial attacks on deep learning based medical image analysis systems. Pattern Recognit. 110, 107332 (2021).

    Article 

    Google Scholar
     

  • Bazoukis, G. et al. The inclusion of augmented intelligence in medicine: a framework for successful implementation. Cell Rep. Med. 3, 100485 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tille, J. C. et al. Tumor-infiltrating lymphocytes are associated with poor prognosis in invasive lobular breast carcinoma. Mod. Pathol. 33, 2198–2207 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thike, A. A. et al. Triple-negative breast cancer: clinicopathological characteristics and relationship with basal-like breast cancer. Mod. Pathol. 23, 123–133 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dieci, M. V. et al. Prognostic value of tumor-infiltrating lymphocytes on residual disease after primary chemotherapy for triple-negative breast cancer: a retrospective multicenter study. Ann. Oncol. 25, 611–618 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khoury, T. et al. Prognostic significance of stromal versus intratumoral infiltrating lymphocytes in different subtypes of breast cancer treated with cytotoxic neoadjuvant chemotherapy. Appl. Immunohistochem. Mol. Morphol. 26, 523–532 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Catacchio, I. et al. Intratumoral, rather than stromal, CD8+ T cells could be a potential negative prognostic marker in invasive breast cancer patients. Transl. Oncol. 12, 585–595 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahn, S. et al. Changes and prognostic values of tumor-infiltrating lymphocyte subsets after primary systemic therapy in breast cancer. PLoS ONE 15, e0233037 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saltz, J. et al. Spatial organization and molecular correlation of tumor-infiltrating lymphocytes using deep learning on pathology images. Cell Rep. 23, 181–193.e7 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, Z. et al. Deep-learning-based characterization of tumor-infiltrating lymphocytes in breast cancers from histopathology images and multiomics data. JCO Clin. Cancer Inform. 4, 480–490 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Corredor, G. et al. Spatial architecture and arrangement of tumor-infiltrating lymphocytes for predicting likelihood of recurrence in early-stage non-small cell lung cancer. Clin Cancer Res. 25, 1526–1534 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thagaard, J. et al. Automated quantification of sTIL density with H&E-based digital image analysis has prognostic potential in triple-negative breast cancers. Cancers (Basel) 13, 3050 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reisenbichler, E. S. et al. Prospective multi-institutional evaluation of pathologist assessment of PD-L1 assays for patient selection in triple negative breast cancer. Mod. Pathol. 33, 1746–1752 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deng, J. et al. ImageNet: a large-scale hierarchical image database. 2009 IEEE Conf. Comput. Vis. Pattern Recognit. 248–255. https://doi.org/10.1109/CVPR.2009.5206848 (2009).

  • Paszke, A. et al. Pytorch: an imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 32, 8024–8035 (2019).


    Google Scholar
     

  • Ren, S., He, K., Girshick, R. & Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. Proc. Adv. Neural Inf. Process Syst. 28, 91–99 (2015).


    Google Scholar
     

  • He, K., Zhang, X., Ren, S., & Sun, J. Deep residual learning for image recognition. 2016 Proc. IEEE Conf. Comput. Vis. Pattern Recognit. 770–778. https://doi.org/10.1109/CVPR.2016.90 (2016).

  • Milletari, F., Navab, N. & Ahmadi, S. A. V-Net: Fully convolutional neural networks for volumetric medical image segmentation. 2016 Fourth International Conference on 3D Vision (3DV) 565–571. https://ieeexplore.ieee.org/abstract/document/7785132 (2016).

  • Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. Proc. Int. Conf. on Learning Representations (ICLR). https://iclr.cc/archive/www/doku.php%3Fid=iclr2015:main.html (2015).

  • Chen, L.-C., Papandreou, G., Schroff, F. & Adam, H. Rethinking atrous convolution for semantic image segmentation. Preprint at arXiv https://arxiv.org/abs/1706.05587 (2017).

  • Tan, M. & Le, Q. Efficientnet: rethinking model scaling for convolutional neural networks. Proc. 36th Int. Conf. Mach. Learning (PMLR). 97, 6105–6114 (2019).


    Google Scholar
     

  • Tomczak, K., Czerwinska, P. & Wiznerowicz, M. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp. Oncol. (Pozn.) 19, A68–A77 (2015).

    PubMed 

    Google Scholar
     

  • Ogston, K. N. et al. A new histological grading system to assess response of breast cancers to primary chemotherapy: prognostic significance and survival. Breast 12, 320–327 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Zhu, Q. et al. Pathologic response prediction to neoadjuvant chemotherapy utilizing pretreatment near-infrared imaging parameters and tumor pathologic criteria. Breast Cancer Res. 16, 456 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, Y. et al. Early prediction of response to neoadjuvant chemotherapy using dynamic contrast-enhanced MRI and ULtrasound in Breast Cancer. Korean J. Radiol. 19, 682–691 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, L. I. A concordance correlation coefficient to evaluate reproducibility. Biometrics 45, 255–268 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Giavarina, D. Understanding Bland Altman analysis. Biochem. Med. (Zagreb) 25, 141–151 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Fotina, I., Lutgendorf-Caucig, C., Stock, M., Potter, R. & Georg, D. Critical discussion of evaluation parameters for inter-observer variability in target definition for radiation therapy. Strahlenther Onkol. 188, 160–167 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    Stay Connected

    9FansLike
    4FollowersFollow
    0SubscribersSubscribe
    - Advertisement -spot_img

    Latest Articles

    %d bloggers like this: