Saturday, June 10, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

Defective NCOA4-dependent ferroptosis in senescent fibroblasts retards diabetic wound healing – Cell Death Discovery


  • Jeffcoate WJ, Vileikyte L, Boyko EJ, Armstrong DG, Boulton AJM. Current challenges and opportunities in the prevention and management of diabetic foot ulcers. Diabetes Care. 2018;41:645–52.

    Article 
    PubMed 

    Google Scholar
     

  • Armstrong DG, Boulton AJM, Bus SA. Diabetic foot ulcers and their recurrence. N Engl J Med. 2017;376:2367–75.

    Article 
    PubMed 

    Google Scholar
     

  • Wilkinson HN, Hardman MJ. Cellular senescence in acute and chronic wound repair. Cold Spring Harb Perspect Biol. 2022;14:a041221.

    Article 
    PubMed 

    Google Scholar
     

  • Wilkinson HN, Clowes C, Banyard KL, Matteuci P, Mace KA, Hardman MJ. Elevated local senescence in diabetic wound healing is linked to pathological repair via CXCR2. J Invest Dermatol. 2019;139:1171–1181.e1176.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Louiselle AE, Niemiec SM, Zgheib C, Liechty KW. Macrophage polarization and diabetic wound healing. Transl Res. 2021;236:109–16.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Furman D, Chang J, Lartigue L, Bolen CR, Haddad F, Gaudilliere B, et al. Expression of specific inflammasome gene modules stratifies older individuals into two extreme clinical and immunological states. Nat Med. 2017;23:174–84.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sampson MJ, Winterbone MS, Hughes JC, Dozio N, Hughes DA. Monocyte telomere shortening and oxidative DNA damage in type 2 diabetes. Diabetes Care. 2006;29:283–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Elks CE, Scott RA. The long and short of telomere length and diabetes. Diabetes. 2014;63:65–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shanmugam N, Reddy MA, Guha M, Natarajan R. High glucose-induced expression of proinflammatory cytokine and chemokine genes in monocytic cells. Diabetes. 2003;52:1256–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Prattichizzo F, De Nigris V, Mancuso E, Spiga R, Giuliani A, Matacchione G, et al. Short-term sustained hyperglycaemia fosters an archetypal senescence-associated secretory phenotype in endothelial cells and macrophages. Redox Biol. 2018;15:170–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bana B, Cabreiro F. The microbiome and aging. Annu Rev Genet. 2019;53:239–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeidan RS, Han SM, Leeuwenburgh C, Xiao R. Iron homeostasis and organismal aging. Ageing Res Rev. 2021;72:101510.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zucca FA, Segura-Aguilar J, Ferrari E, Munoz P, Paris I, Sulzer D, et al. Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson’s disease. Prog Neurobiol. 2017;155:96–119.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Smith MJ, Fowler M, Naftalin RJ, Siow RCM. UVA irradiation increases ferrous iron release from human skin fibroblast and endothelial cell ferritin: consequences for cell senescence and aging. Free Radic Biol Med. 2020;155:49–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Killilea DW, Atamna H, Liao C, Ames BN. Iron accumulation during cellular senescence in human fibroblasts in vitro. Antioxid Redox Signal. 2003;5:507–16.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • DeRuisseau KC, Park YM, DeRuisseau LR, Cowley PM, Fazen CH, Doyle RP. Aging-related changes in the iron status of skeletal muscle. Exp Gerontol. 2013;48:1294–302.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Park E, Chung SW. ROS-mediated autophagy increases intracellular iron levels and ferroptosis by ferritin and transferrin receptor regulation. Cell Death Dis. 2019;10:822.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149:1060–72.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou RP, Chen Y, Wei X, Yu B, Xiong ZG, Lu C, et al. Novel insights into ferroptosis: implications for age-related diseases. Theranostics. 2020;10:11976–97.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jomova K, Valko M. Advances in metal-induced oxidative stress and human disease. Toxicology. 2011;283:65–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Simcox JA, McClain DA. Iron and diabetes risk. Cell Metab. 2013;17:329–41.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Azevedo-Martins AK, Lortz S, Lenzen S, Curi R, Eizirik DL, Tiedge M. Improvement of the mitochondrial antioxidant defense status prevents cytokine-induced nuclear factor-kappaB activation in insulin-producing cells. Diabetes. 2003;52:93–101.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hughes CE, Coody TK, Jeong MY, Berg JA, Winge DR, Hughes AL. Cysteine toxicity drives age-related mitochondrial decline by altering iron homeostasis. Cell. 2020;180:296–310.e218.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mancias JD, Wang X, Gygi SP, Harper JW, Kimmelman AC. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature. 2014;509:105–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mizushima N, Levine B. Autophagy in human diseases. N Engl J Med. 2020;383:1564–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tai H, Wang Z, Gong H, Han X, Zhou J, Wang X, et al. Autophagy impairment with lysosomal and mitochondrial dysfunction is an important characteristic of oxidative stress-induced senescence. Autophagy. 2017;13:99–113.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lynch MD, Watt FM. Fibroblast heterogeneity: implications for human disease. J Clin Invest. 2018;128:26–35.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mascharak S, desJardins-Park HE, Longaker MT. Fibroblast heterogeneity in wound healing: hurdles to clinical translation. Trends Mol Med. 2020;26:1101–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 2021;22:266–82.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, et al. Regulation of ferroptotic cancer cell death by GPX4. Cell. 2014;156:317–31.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Friedmann Angeli JP, Schneider M, Proneth B, Tyurina YY, Tyurin VA, Hammond VJ, et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol. 2014;16:1180–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sato T, Shapiro JS, Chang HC, Miller RA, Ardehali H. Aging is associated with increased brain iron through cortex-derived hepcidin expression. Elife. 2022;11:e73456.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hou W, Xie Y, Song X, Sun X, Lotze MT, Zeh HJ 3rd, et al. Autophagy promotes ferroptosis by degradation of ferritin. Autophagy. 2016;12:1425–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Masaldan S, Clatworthy SAS, Gamell C, Meggyesy PM, Rigopoulos AT, Haupt S, et al. Iron accumulation in senescent cells is coupled with impaired ferritinophagy and inhibition of ferroptosis. Redox Biol. 2018;14:100–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fuhrmann DC, Mondorf A, Beifuss J, Jung M, Brune B. Hypoxia inhibits ferritinophagy, increases mitochondrial ferritin, and protects from ferroptosis. Redox Biol. 2020;36:101670.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Palmer AK, Gustafson B, Kirkland JL, Smith U. Cellular senescence: at the nexus between ageing and diabetes. Diabetologia. 2019;62:1835–41.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wilkinson HN, Hardman MJ. Wound senescence: a functional link between diabetes and ageing? Exp Dermatol. 2021;30:68–73.

    Article 
    PubMed 

    Google Scholar
     

  • Coppe JP, Patil CK, Rodier F, Sun Y, Munoz DP, Goldstein J, et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 2008;6:2853–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Parrinello S, Samper E, Krtolica A, Goldstein J, Melov S, Campisi J. Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts. Nat Cell Biol. 2003;5:741–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duan J, Duan J, Zhang Z, Tong T. Irreversible cellular senescence induced by prolonged exposure to H2O2 involves DNA-damage-and-repair genes and telomere shortening. Int J Biochem Cell Biol. 2005;37:1407–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bannon P, Wood S, Restivo T, Campbell L, Hardman MJ, Mace KA. Diabetes induces stable intrinsic changes to myeloid cells that contribute to chronic inflammation during wound healing in mice. Dis Model Mech. 2013;6:1434–47.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao R, Jin X, Li A, Xu B, Shen Y, Wang W, et al. Precise diabetic wound therapy: PLS nanospheres eliminate senescent cells via DPP4 targeting and PARP1 activation. Adv Sci (Weinh). 2022;9:e2104128.

    Article 
    PubMed 

    Google Scholar
     

  • He J, Li Z, Xia P, Shi A, FuChen X, Zhang J, et al. Ferroptosis and ferritinophagy in diabetes complications. Mol Metab. 2022;60:101470.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Altamura S, Kopf S, Schmidt J, Mudder K, da Silva AR, Nawroth P, et al. Uncoupled iron homeostasis in type 2 diabetes mellitus. J Mol Med (Berl). 2017;95:1387–98.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu Y, Zhao Y, Yang HZ, Wang YJ, Chen Y. HMGB1 regulates ferroptosis through Nrf2 pathway in mesangial cells in response to high glucose. Biosci Rep. 2021;41:BSR20202924.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cundy T, Holden A, Stallworthy E. Early worsening of diabetic nephropathy in type 2 diabetes after rapid improvement in chronic severe hyperglycemia. Diabetes Care. 2021;44:e55–e56.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou B, Liu J, Kang R, Klionsky DJ, Kroemer G, Tang D. Ferroptosis is a type of autophagy-dependent cell death. Semin Cancer Biol. 2020;66:89–100.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Venkatesan P, Varghese J, Arthi TS, James JV, Anura A, Prasad J, et al. Evidence of dysregulated iron homeostasis in newly diagnosed diabetics, but not in pre-diabetics. J Diabetes Complications. 2021;35:107977.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Q, Nie L, Zhao P, Zhou X, Ding Y, Chen Q, et al. Diabetes fuels periodontal lesions via GLUT1-driven macrophage inflammaging. Int J Oral Sci. 2021;13:11.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bertelli PM, Pedrini E, Hughes D, McDonnell S, Pathak V, Peixoto E, et al. Long term high glucose exposure induces premature senescence in retinal endothelial cells. Front Physiol. 2022;13:929118.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maschalidi S, Mehrotra P, Keceli BN, De Cleene HKL, Lecomte K, Van der Cruyssen R, et al. Targeting SLC7A11 improves efferocytosis by dendritic cells and wound healing in diabetes. Nature. 2022;606:776–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lichti U, Anders J, Yuspa SH. Isolation and short-term culture of primary keratinocytes, hair follicle populations and dermal cells from newborn mice and keratinocytes from adult mice for in vitro analysis and for grafting to immunodeficient mice. Nat Protoc. 2008;3:799–810.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    Stay Connected

    9FansLike
    4FollowersFollow
    0SubscribersSubscribe
    - Advertisement -spot_img

    Latest Articles

    %d bloggers like this: