Friday, December 1, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

Developmental and foliation changes due to dysregulation of adenosine kinase in the cerebellum – Scientific Reports


  • Newby, A. C. Adenosine and the concept of “retaliatory metabolites”. Trends Biochem. Sci. 9, 42–44 (1984).

    Article 
    CAS 

    Google Scholar
     

  • Fredholm, B. B., Johansson, S. & Wang, Y. Q. Adenosine and the regulation of metabolism and body temperature. Adv. Pharmacol. 61, 77–94. https://doi.org/10.1016/B978-0-12-385526-8.00003-5 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boison, D. & Yegutkin, G. G. Adenosine metabolism: Emerging concepts for cancer therapy. Cancer Cell 36, 582–596 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park, J. & Gupta, R. S. In Adenosine: A Key Link Between Metabolism and Central Nervous System Activity (eds Boison, D. & Masino, M. A.) 23–54 (Springer, 2013).

    Chapter 

    Google Scholar
     

  • Boison, D. Adenosine dysfunction in epilepsy. Glia 60, 1234–1243 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Garcia-Gil, M., Camici, M., Allegrini, S., Pesi, R. & Tozzi, M. G. Metabolic aspects of adenosine functions in the brain. Front. Pharmacol. https://doi.org/10.3389/fphar.2021.672182 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boison, D. Adenosine kinase: exploitation for therapeutic gain. Pharmacol. Rev. 65, 906–943 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cui, X. A., Singh, B., Park, J. & Gupta, R. S. Subcellular localization of adenosine kinase in mammalian cells: The long isoform of AdK is localized in the nucleus. Biochem. Biophys. Res. Commun. 388, 46–50 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boison, D. & Rho, J. M. Epigenetics and epilepsy prevention: The therapeutic potential of adenosine and metabolic therapies. Neuropharmacology 167, 107741. https://doi.org/10.1016/j.neuropharm.2019.107741 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sandau, U. S. et al. Adenosine kinase deficiency in the brain results in maladaptive synaptic plasticity. J. Neurosci. 30, 187–192 (2016).


    Google Scholar
     

  • Williams-Karnesky, R. L. et al. Epigenetic changes induced by adenosine augmentation therapy prevent epileptogenesis. J. Clin. Investig. 123, 3552–3563 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Y. et al. Adenosine kinase is critical for neointima formation after vascular injury by inducing aberrant DNA hypermethylation. Cardiovasc. Res. 117, 561–575. https://doi.org/10.1093/cvr/cvaa040 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, Y. et al. Regulation of endothelial intracellular adenosine via adenosine kinase epigenetically modulates vascular inflammation. Nat. Commun. 8, 943. https://doi.org/10.1038/s41467-017-00986-7 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Boison, D. Adenosine kinase: Exploitation for therapeutic gain. Pharmacol. Rev. 65, 906–943. https://doi.org/10.1124/pr.112.006361 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gouder, N., Scheurer, L., Fritschy, J.-M. & Boison, D. Overexpression of adenosine kinase in epileptic hippocampus contributes to epileptogenesis. J. Neurosci. 24, 692–701 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Studer, F. E. et al. Shift of adenosine kinase expression from neurons to astrocytes during postnatal development suggests dual functionality of the enzyme. Neuroscience 142, 125–137. https://doi.org/10.1016/j.neuroscience.2006.06.016 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Gebril, H. et al. Developmental role of adenosine kinase in the cerebellum. eNeuro https://doi.org/10.1523/ENEURO.0011-21.2021 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kiese, K., Jablonski, J., Boison, D. & Kobow, K. Dynamic regulation of the adenosine kinase gene during early postnatal brain development and maturation. Front. Mol. Neurosci. 9, 99 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stiles, J. & Jernigan, T. L. The basics of brain development. Neuropsychol. Rev. 20, 327–348. https://doi.org/10.1007/s11065-010-9148-4 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sudarov, A. & Joyner, A. L. Cerebellum morphogenesis: The foliation pattern is orchestrated by multi-cellular anchoring centers. Neural Dev. 2, 26. https://doi.org/10.1186/1749-8104-2-26 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lancaster, M. A. et al. Defective Wnt-dependent cerebellar midline fusion in a mouse model of Joubert syndrome. Nat. Med. 17, 726–731. https://doi.org/10.1038/nm.2380 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maresˇ, V. & Lodin, Z. The cellular kinetics of the developing mouse cerebellum. II. The function of the external granular layer in the process of gyrification. Brain Res. 23, 343–352. https://doi.org/10.1016/0006-8993(70)90061-2 (1970).

    Article 
    PubMed 

    Google Scholar
     

  • Corrales, J. D., Blaess, S., Mahoney, E. M. & Joyner, A. L. The level of sonic hedgehog signaling regulates the complexity of cerebellar foliation. Development (Cambridge, England) 133, 1811–1821. https://doi.org/10.1242/dev.02351 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gebril, H. M. et al. Adenosine kinase inhibition promotes proliferation of neural stem cells after traumatic brain injury. Brain Commun. 2, fcaa017. https://doi.org/10.1093/braincomms/fcaa017 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Najmabadi, H. et al. Homozygosity mapping in consanguineous families reveals extreme heterogeneity of non-syndromic autosomal recessive mental retardation and identifies 8 novel gene loci. Hum. Genet. 121, 43–48. https://doi.org/10.1007/s00439-006-0292-0 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bjursell, M. K. et al. Adenosine kinase deficiency disrupts the methionine cycle and causes hypermethioninemia, encephalopathy, and abnormal liver function. Am. J. Hum. Genet. 89, 507–515. https://doi.org/10.1016/j.ajhg.2011.09.004 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Becker, P.-H. et al. Adenosine kinase deficiency: Three new cases and diagnostic value of hypermethioninemia. Mol. Genet. Metab. 132, 38–43. https://doi.org/10.1016/j.ymgme.2020.11.007 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fedele, D. E. et al. Astrogliosis in epilepsy leads to overexpression of adenosine kinase resulting in seizure aggravation. Brain 128, 2383–2395 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • El-Andari, R., Cunha, F., Tschirren, B. & Iwaniuk, A. N. Selection for divergent reproductive investment affects neuron size and foliation in the cerebellum. Brain Behav. Evol. 95, 69–77. https://doi.org/10.1159/000509068 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Pillay, P. & Manger, P. R. Order-specific quantitative patterns of cortical gyrification. Eur. J. Neurosci. 25, 2705–2712. https://doi.org/10.1111/j.1460-9568.2007.05524.x (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Wahlsten, D. & Andison, M. Patterns of cerebellar foliation in recombinant inbred mice. Brain Res. 557, 184–189. https://doi.org/10.1016/0006-8993(91)90133-G (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hou, C. et al. Abnormal cerebellar development and Purkinje cell defects in Lgl1-Pax2 conditional knockout mice. Dev. Biol. 395, 167–181. https://doi.org/10.1016/j.ydbio.2014.07.007 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chang, J. C. et al. Mitotic events in cerebellar granule progenitor cells that expand cerebellar surface area are critical for normal cerebellar cortical lamination in mice. J. Neuropathol. Exp. Neurol. 74, 261–272. https://doi.org/10.1097/nen.0000000000000171 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Butts, T., Green, M. J. & Wingate, R. J. T. Development of the cerebellum: Simple steps to make a ‘little brain’. Development (Cambridge, England) 141, 4031–4041. https://doi.org/10.1242/dev.106559 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Falluel-Morel, A., Tascau, L. I., Sokolowski, K., Brabet, P. & DiCicco-Bloom, E. Granule cell survival is deficient in PAC1−/− mutant cerebellum. J. Mol. Neurosci. 36, 38–44. https://doi.org/10.1007/s12031-008-9066-6 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luan, G. et al. Overexpression of adenosine kinase in patients with epilepsy associated with Sturge-Weber syndrome. Neuropsychiatry 7, 640–647. https://doi.org/10.4172/Neuropsychiatry.1000364 (2017).

    Article 

    Google Scholar
     

  • Boison, D. et al. Neonatal hepatic steatosis by disruption of the adenosine kinase gene. Proc. Natl. Acad. Sci. USA 99, 6985–6990. https://doi.org/10.1073/pnas.092642899 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Atterbury, A. & Wall, M. J. Adenosine signalling at immature parallel fibre–Purkinje cell synapses in rat cerebellum. J. Physiol. 587, 4497–4508. https://doi.org/10.1113/jphysiol.2009.176420 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beekhof, G. C. et al. Differential spatiotemporal development of Purkinje cell populations and cerebellum-dependent sensorimotor behaviors. Elife https://doi.org/10.7554/eLife.63668 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aldinger, K. A. & Doherty, D. The genetics of cerebellar malformations. Semin. Fetal Neonatal Med. 21, 321–332. https://doi.org/10.1016/j.siny.2016.04.008 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Palchykova, S. et al. Manipulation of adenosine kinase affects sleep regulation in mice. J. Neurosci. 30, 13157–13165. https://doi.org/10.1523/JNEUROSCI.1359-10.2010%JTheJournalofNeuroscience (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yee, B. K., Singer, P., Chen, J. F., Feldon, J. & Boison, D. Transgenic overexpression of adenosine kinase in brain leads to multiple learning impairments and altered sensitivity to psychomimetic drugs. Eur. J. Neurosci. 26, 3237–3252. https://doi.org/10.1111/j.1460-9568.2007.05897.x (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Li, T., Lan, J.-Q. & Boison, D. Uncoupling of astrogliosis from epileptogenesis in adenosine kinase (ADK) transgenic mice. Neuron Glia Biol. 4, 91–99. https://doi.org/10.1017/S1740925X09990135 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Aldinger, K. A. et al. FOXC1 is required for normal cerebellar development and is a major contributor to chromosome 6p253 Dandy–Walker malformation. Nat. Genet. 41, 1037–1042. https://doi.org/10.1038/ng.422 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kolanczyk, M. et al. Missense variant in CCDC22 causes X-linked recessive intellectual disability with features of Ritscher–Schinzel/3C syndrome. Eur. J. Hum. Genet. 23, 633–638. https://doi.org/10.1038/ejhg.2014.109 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hong, S. E. et al. Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nat. Genet. 26, 93–96. https://doi.org/10.1038/79246 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boycott, K. M. et al. Mutations in VLDLR as a cause for autosomal recessive cerebellar ataxia with mental retardation (dysequilibrium syndrome). J. Child Neurol. 24, 1310–1315. https://doi.org/10.1177/0883073809332696 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Doherty, D., Millen, K. J. & Barkovich, A. J. Midbrain and hindbrain malformations: Advances in clinical diagnosis, imaging, and genetics. Lancet Neurol. 12, 381–393. https://doi.org/10.1016/s1474-4422(13)70024-3 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pichiecchio, A. et al. “Acquired” Dandy-Walker malformation and cerebellar hemorrhage: Usefulness of serial MRI. Eur. J. Paediatr. Neurol. 20, 188–191. https://doi.org/10.1016/j.ejpn.2015.09.009 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Lee, J. H. et al. De novo somatic mutations in components of the PI3K-AKT3-mTOR pathway cause hemimegalencephaly. Nat. Genet. 44, 941–945. https://doi.org/10.1038/ng.2329 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Annes, J. P. et al. Adenosine kinase inhibition selectively promotes rodent and porcine islet β-cell replication. Proc. Natl. Acad. Sci. 109, 3915–3920. https://doi.org/10.1073/pnas.1201149109 (2012).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Iwasato, T. et al. Dorsal telencephalon-specific expression of Cre recombinase in PAC transgenic mice. Genesis 38, 130–138 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Crews, F. T., Mdzinarishvili, A., Kim, D., He, J. & Nixon, K. Neurogenesis in adolescent brain is potently inhibited by ethanol. Neuroscience 137, 437–445. https://doi.org/10.1016/j.neuroscience.2005.08.090 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    Stay Connected

    10FansLike
    4FollowersFollow
    0SubscribersSubscribe
    - Advertisement -spot_img

    Latest Articles

    %d bloggers like this: