Thursday, June 1, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

Distinct activation mechanisms regulate subtype selectivity of Cannabinoid receptors – Communications Biology


  • Herkenham, M. et al. Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J. Neurosci. 11, 563–583 (1991).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Munro, S., Thomas, K. L. & Abu-Shaar, M. Molecular characterization of a peripheral receptor for cannabinoids. Nature 365, 61–65 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Battista, N., Tommaso, M. D., Bari, M. & Maccarrone, M. The endocannabinoid system: An overview. Front. Behav. Neurosci. 6, 9 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mechoulam, R. & Parker, L. A. The endocannabinoid system and the brain. Ann. Rev. Psychol. 64, 21–47 (2013).

    Article 

    Google Scholar
     

  • Lu, H.-C. & Mackie, K. An introduction to the endogenous cannabinoid system. Biol. Psychiatry 79, 516–525 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zou, S. & Kumar, U. Cannabinoid receptors and the endocannabinoid system: Signaling and function in the central nervous system. Int. J. Mol. Sci. 19, 833 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walsh, K. B. & Andersen, H. K. Molecular pharmacology of synthetic cannabinoids: Delineating CB1 receptor-mediated cell signaling. Int. J. Mol. Sci. 21, 6115 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Malfitano, A. M., Basu, S., Maresz, K., Bifulco, M. & Dittel, B. N. What we know and do not know about the cannabinoid receptor 2 (CB2). Semin. Immunol. 26, 369–379 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hua, T. et al. Crystal structure of the human cannabinoid receptor CB1. Cell 167, 750–762.e14 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shao, Z. et al. High-resolution crystal structure of the human CB1 cannabinoid receptor. Nature 540, 602–606 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hua, T. et al. Crystal structures of agonist-bound human cannabinoid receptor CB1. Nature 547, 468–471 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, X. et al. Crystal structure of the human cannabinoid receptor CB2. Cell 176, 459–467.e13 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar, K. K. et al. Structure of a signaling cannabinoid receptor 1-g protein complex. Cell 176, 448–458.e12 (2019).

    PubMed Central 

    Google Scholar
     

  • Shao, Z. et al. Structure of an allosteric modulator bound to the CB1 cannabinoid receptor. Nat. Chem. Biol. 15, 1199–1205 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xing, C. et al. Cryo-EM structure of the human cannabinoid receptor CB2-gi signaling complex. Cell 180, 645–654.e13 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hua, T. et al. Activation and signaling mechanism revealed by cannabinoid receptor-gi complex structures. Cell 180, 655–665.e18 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, X. et al. A genetically encoded f-19 NMR probe reveals the allosteric modulation mechanism of cannabinoid receptor 1. J. American Chem. Soc. 143, 16320–16325 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Rosenbaum, D. M., Rasmussen, S. G. F. & Kobilka, B. K. The structure and function of g-protein-coupled receptors. Nature 459, 356–363 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Latorraca, N. R., Venkatakrishnan, A. J. & Dror, R. O. GPCR dynamics: Structures in motion. Chem. Rev. 117, 139–155 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Weis, W. I. & Kobilka, B. K. The molecular basis of g protein–coupled receptor activation. Ann. Rev. Biochem. 87, 897–919 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hauser, A. S., Attwood, M. M., Rask-Andersen, M., Schiöth, H. B. & Gloriam, D. E. Trends in GPCR drug discovery: New agents, targets and indications. Nat. Rev. Drug Discov. 16, 829–842 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Odoemelam, C. S. et al. G-protein coupled receptors: Structure and function in drug discovery. RSC Adv. 10, 36337–36348 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, D. et al. G protein-coupled receptors: Structure- and function-based drug discovery. Signal Transduc. Targeted Ther. 6, 7 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Pertwee, R. G. Pharmacology of cannabinoid receptor ligands. Curr. Med. Chem. 6, 635–664 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Howlett, A. C. International union of pharmacology. XXVII. classification of cannabinoid receptors. Pharmacol. Rev. 54, 161–202 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pertwee, R. G. & Ross, R. Cannabinoid receptors and their ligands. Prostaglandins, Leukotrienes Essential Fatty Acids (PLEFA) 66, 101–121 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Pertwee, R. G. Cannabinoid pharmacology: The first 66 years. Brit. J. Pharmacol. 147, S163–S171 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Shafi, A., Berry, A. J., Sumnall, H., Wood, D. M. & Tracy, D. K. New psychoactive substances: A review and updates. Ther. Adv. Psychopharmacol. 10, 204512532096719 (2020).

    Article 

    Google Scholar
     

  • Wiley, J. L., Marusich, J. A. & Huffman, J. W. Moving around the molecule: Relationship between chemical structure and in vivo activity of synthetic cannabinoids. Life Sci. 97, 55–63 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Davis, M. P. Cannabinoids in pain management: CB1, CB2 and non-classic receptor ligands. Expert Opin. Investigational Drugs 23, 1123–1140 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Li, X., Shen, L., Hua, T. & Liu, Z.-J. Structural and functional insights into cannabinoid receptors. Trends Pharmacol. Sci. 41, 665–677 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pertwee, R. Receptors and channels targeted by synthetic cannabinoid receptor agonists and antagonists. Curr. Med. Chem. 17, 1360–1381 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rogers, N. Cannabinoid receptor with an ‘identity crisis’ gets a second look. Nat. Med. 21, 966–967 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Soethoudt, M. et al. Cannabinoid CB2 receptor ligand profiling reveals biased signalling and off-target activity. Nat. Commun. 8, 13958 (2017).

  • Li, X., Shen, L., Hua, T. & Liu, Z.-J. Structural and functional insights into cannabinoid receptors. Trends Pharmacol. Sci. 41, 665–677 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Magham, S. V., krishnamurthy, P. T., Shaji, N., Mani, L. & Balasubramanian, S. Cannabinoid receptor 2 selective agonists and alzheimers disease: An insight into the therapeutic potentials. J. Neurosci. Res. 99, 2888–2905 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Whiting, Z. M., Yin, J., de la Harpe, S. M., Vernall, A. J. & Grimsey, N. L. Developing the cannabinoid receptor 2 (CB2) pharmacopoeia: Past, present, and future. Trends Pharmacol. Sci. 43, 754–771 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peng, Y. et al. 5-HT2c receptor structures reveal the structural basis of GPCR polypharmacology. Cell 172, 719–730.e14 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Katritch, V., Kufareva, I. & Abagyan, R. Structure based prediction of subtype-selectivity for adenosine receptor antagonists. Neuropharmacology 60, 108–115 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ostopovici-Halip, L., Curpăn, R., Mracec, M. & Bologa, C. G. Structural determinants of the alpha2 adrenoceptor subtype selectivity. J. Mol. Graphics Modelling 29, 1030–1038 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Sallander, J., Wallinder, C., Hallberg, A., Åqvist, J. & de Terán, H. G. Structural determinants of subtype selectivity and functional activity of angiotensin II receptors. Bioorganic Med. Chem. Lett. 26, 1355–1359 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Rataj, K. et al. Fingerprint-based machine learning approach to identify potent and selective 5-HT2br ligands. Molecules 23, 1137 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, C., Wang, L. & Xie, X.-Q. Ligand classifier of adaptively boosting ensemble decision stumps (LiCABEDS) and its application on modeling ligand functionality for 5ht-subtype GPCR families. J. Chem. Inform. Modeling 51, 521–531 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Rodríguez, D., Brea, J., Loza, M. I. & Carlsson, J. Structure-based discovery of selective serotonin 5-HT 1b receptor ligands. Structure 22, 1140–1151 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Glukhova, A. et al. Structure of the adenosine a1 receptor reveals the basis for subtype selectivity. Cell 168, 867–877.e13 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Ma, C., Wang, L., Yang, P., Myint, K. Z. & Xie, X.-Q. LiCABEDS II. modeling of ligand selectivity for g-protein-coupled cannabinoid receptors. J. Chem. Inform. Modeling 53, 11–26 (2013).

    Article 

    Google Scholar
     

  • Hu, B. et al. Three-dimensional biologically relevant spectrum (BRS-3d): Shape similarity profile based on PDB ligands as molecular descriptors. Molecules 21, 1554 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mardt, A., Pasquali, L., Wu, H. & Noé, F. VAMPnets for deep learning of molecular kinetics. Nat. Commun. 9, 5 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fleetwood, O., Carlsson, J. & Delemotte, L. Identification of ligand-specific g protein-coupled receptor states and prediction of downstream efficacy via data-driven modeling. eLife 10, e60715 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maharana, J., Banerjee, R., Yadav, M. K., Sarma, P. & Shukla, A. K. Emerging structural insights into GPCR–β-arrestin interaction and functional outcomes. Curr. Opin. Struc. Biol. 75, 102406 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Bhattacharya, S. & Vaidehi, N. Differences in allosteric communication pipelines in the inactive and active states of a gpcr. Biophys. J. 107, 422–434 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paul, F. & Weikl, T. R. How to distinguish conformational selection and induced fit based on chemical relaxation rates. PLOS Comput. Biol. 12, e1005067 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Case, D. et al. AMBER 2018. University of California, San Francisco.https://ambermd.org/doc12/Amber18.pdf (2020).

  • Mark, P. & Nilsson, L. Structure and dynamics of the TIP3p, SPC, and SPC/e water models at 298 k. J. Phys. Chem. A 105, 9954–9960 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Li, Y., Sun, J., Li, D. & Lin, J. The full activation mechanism of the adenosine a1 receptor revealed by gamd and su-gamd simulations. Proc. Natl. Acad. Sci. 119, e2203702119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ding, T., Karlov, D. S., Pino-Angeles, A. & Tikhonova, I. G. Intermolecular interactions in g protein-coupled receptor allosteric sites at the membrane interface from molecular dynamics simulations and quantum chemical calculations. J. Chem. Inform. Modeling 62, 4736–4747 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Li, Y., Yin, C., Liu, P., Li, D. & Lin, J. Identification of a different agonist-binding site and activation mechanism of the human p2y1 receptor. Scientific Rep. 7, 13764 (2017).

  • Maier, J. A. et al. ff14sb: improving the accuracy of protein side chain and backbone parameters from ff99sb. J. Chem. Theory Comput. 11, 3696–3713 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A. & Case, D. A. Development and testing of a general amber force field. J. Computat. Chem. 25, 1157–1174 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Wang, J., Wang, W., Kollman, P. A. & Case, D. A. Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graphics Modelling 25, 247–260 (2006).

    Article 

    Google Scholar
     

  • Jo, S., Kim, T., Iyer, V. G. & Im, W. Charmm-gui: a web-based graphical user interface for charmm. J. Comput. Chem. 29, 1859–1865 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Salomon-Ferrer, R., Götz, A. W., Poole, D., Grand, S. L. & Walker, R. C. Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. explicit solvent particle mesh ewald. J. Chem. Theory Comput. 9, 3878–3888 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A. & Haak, J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984).

    Article 
    CAS 

    Google Scholar
     

  • Krautler, V., van Gunsteren, W. F. & Hunenberger, P. H. A fast SHAKE algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations. J. Comput. Chem. 22, 501–508 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Essmann, U. et al. A smooth particle mesh ewald method. J. Chem. Phys. 103, 8577–8593 (1995).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, Q. et al. Common activation mechanism of class a GPCRs. eLife 8, 50279 (2019).

    Article 

    Google Scholar
     

  • Bansal, P. D., Dutta, S. & Shukla, D. Activation mechanism of the human smoothened receptor. Biophys. J. 122, 1400–1413 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kohlhoff, K. J. et al. Cloud-based simulations on google exacycle reveal ligand modulation of GPCR activation pathways. Nat. Chem. 6, 15–21 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dror, R. O. et al. Activation mechanism of the β 2-adrenergic receptor. Proc. Natl. Acad. Sci. 108, 18684–18689 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vilardaga, J.-P. Theme and variations on kinetics of GPCR activation/deactivation. J. Recep. Signal Transduc. 30, 304–312 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Braun, E. et al. Best practices for foundations in molecular simulations [article v1.0]. Living J. Comput. Molecular Sci. 1, 5957 (2019).

    Article 

    Google Scholar
     

  • Zimmerman, M. I., Porter, J. R., Sun, X., Silva, R. R. & Bowman, G. R. Choice of adaptive sampling strategy impacts state discovery, transition probabilities, and the apparent mechanism of conformational changes. J. Chem. Theory Comput. 14, 5459–5475 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bowman, G. R., Ensign, D. L. & Pande, V. S. Enhanced modeling via network theory: Adaptive sampling of markov state models. J. Chem. Theory Comput. 6, 787–794 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kleiman, D. E. & Shukla, D. Multiagent reinforcement learning-based adaptive sampling for conformational dynamics of proteins. J. Chem. Theory Comput. 18, 5422–5434 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shamsi, Z., Cheng, K. J. & Shukla, D. Reinforcement learning based adaptive sampling: REAPing rewards by exploring protein conformational landscapes. J. Phys. Chem. B 122, 8386–8395 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dutta, S., Selvam, B., Das, A. & Shukla, D. Mechanistic origin of partial agonism of tetrahydrocannabinol for cannabinoid receptors. J. Biol. Chem. 298, 101764 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shukla, S., Zhao, C. & Shukla, D. Dewetting controls plant hormone perception and initiation of drought resistance signaling. Structure 27, 692–702.e3 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Buch, I., Giorgino, T. & Fabritiis, G. D. Complete reconstruction of an enzyme-inhibitor binding process by molecular dynamics simulations. Proc. Natl. Acad. Sci. 108, 10184–10189 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Betz, R. M. & Dror, R. O. How effectively can adaptive sampling methods capture spontaneous ligand binding? J. Chem. Theory Comput. 15, 2053–2063 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Doerr, S. & De Fabritiis, G. On-the-fly learning and sampling of ligand binding by high-throughput molecular simulations. J. Chem. Theory Comput. 10, 2064–2069 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dutta, S., Selvam, B. & Shukla, D. Distinct binding mechanisms for allosteric sodium ion in cannabinoid receptors. ACS Chem. Neurosci. 13, 379–389 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pereira, G. V. et al. Degradation of complex arabinoxylans by human colonic bacteroidetes. Nat. Commun. 12, 459 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Husic, B. E. & Pande, V. S. Markov state models: From an art to a science. J. American Chem. Soc. 140, 2386–2396 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Konovalov, K. A., Unarta, I. C., Cao, S., Goonetilleke, E. C. & Huang, X. Markov state models to study the functional dynamics of proteins in the wake of machine learning. JACS Au 1, 1330–1341 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shukla, D., Hernández, C. X., Weber, J. K. & Pande, V. S. Markov state models provide insights into dynamic modulation of protein function. Acc. Chem. Res. 48, 414–422 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prinz, J.-H. et al. Markov models of molecular kinetics: Generation and validation. J. Chem. Phys. 134, 174105 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Schwantes, C. R. & Pande, V. S. Improvements in markov state model construction reveal many non-native interactions in the folding of ntl9. J. Chem. Theory Comput. 9, 2000–2009 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sultan, M. M., Kiss, G. & Pande, V. S. Towards simple kinetic models of functional dynamics for a kinase subfamily. Nat. Chem. 10, 903–909 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Noé, F. & Nuske, F. A variational approach to modeling slow processes in stochastic dynamical systems. Multiscale Modeling Simulation 11, 635–655 (2013).

    Article 

    Google Scholar
     

  • McGibbon, R. T. & Pande, V. S. Variational cross-validation of slow dynamical modes in molecular kinetics. J. Chemical Phys. 142, 124105 (2015).

    Article 

    Google Scholar
     

  • Noé, F., Tkatchenko, A., Müller, K.-R. & Clementi, C. Machine learning for molecular simulation. Ann. Rev. Phys. Chem. 71, 361–390 (2020).

    Article 

    Google Scholar
     

  • Scherer, M. K. et al. Pyemma 2: A software package for estimation, validation, and analysis of markov models. J. Chem. Theory Comput. 11, 5525–5542 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McGibbon, R. T. et al. Mdtraj: A modern open library for the analysis of molecular dynamics trajectories. Biophys. J. 109, 1528 – 1532 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Humphrey, W., Dalke, A. & Schulten, K. Vmd: visual molecular dynamics. J. Mol. Graphics 14, 33–38 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Roe, D. R. & Cheatham III, T. E. Ptraj and cpptraj: software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput. 9, 3084–3095 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wagner, J. R. et al. Povme 3.0: software for mapping binding pocket flexibility. J. Chem. Theory Comput. 13, 4584–4592 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Glielmo, A. et al. Unsupervised learning methods for molecular simulation data. Chem. Rev. 121, 9722–9758 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoffmann, M. et al. Deeptime: a python library for machine learning dynamical models from time series data. Machine Learning: Sci. Technol. 3, 015009 (2021).


    Google Scholar
     

  • Hernández, C. X. & Pande, V. S. MDEntropy: Information-theoretic analyses for molecular dynamics. J. Open Source Softw. 2, 427 (2017).

    Article 

    Google Scholar
     

  • Kim, S. et al. PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Res. 49, D1388–D1395 (2020).

    Article 
    PubMed Central 

    Google Scholar
     

  • Trott, O. & Olson, A. J. AutoDock vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461 (2009).


    Google Scholar
     

  • Eberhardt, J., Santos-Martins, D., Tillack, A. F. & Forli, S. AutoDock vina 1.2.0: New docking methods, expanded force field, and python bindings. J. Chem. Inform. Modeling 61, 3891–3898 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Noé, F., Schütte, C., Vanden-Eijnden, E., Reich, L. & Weikl, T. R. Constructing the equilibrium ensemble of folding pathways from short off-equilibrium simulations. Proc. Natl. Acad. Sci. 106, 19011–19016 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • E, W. & Vanden-Eijnden, E. Transition-path theory and path-finding algorithms for the study of rare events. Ann. Rev. Phys. Chem. 61, 391–420 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Shukla, D., Meng, Y., Roux, B. & Pande, V. S. Activation pathway of src kinase reveals intermediate states as targets for drug design. Nat. Commun. 5, 3397 (2014).

    Article 
    PubMed 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    Stay Connected

    9FansLike
    4FollowersFollow
    0SubscribersSubscribe
    - Advertisement -spot_img

    Latest Articles

    %d bloggers like this: