Sunday, October 1, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

DNA methylation and the opposing NMDAR dysfunction in schizophrenia and major depression disorders: a converging model for the therapeutic effects of psychedelic compounds in the treatment of psychiatric illness – Molecular Psychiatry


  • Richetto J, Meyer U. Epigenetic modifications in schizophrenia and related disorders: molecular scars of environmental exposures and source of phenotypic variability. Biol Psychiatry. 2021;89:215–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Penner-Goeke S, Binder EB. Epigenetics and depression. Dialogues Clin Neurosci. 2019;21:397–405.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Levine A, Cantoni GL, Razin A. Inhibition of promoter activity by methylation: possible involvement of protein mediators. Proc Natl Acad Sci USA. 1991;88:6515–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boyes J, Bird A. Repression of genes by DNA methylation depends on CpG density and promoter strength: evidence for involvement of a methyl-CpG binding protein. Embo J. 1992;11:327–33.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hwu WL, Lee YM, Lee SC, Wang TR. In vitro DNA methylation inhibits FMR-1 promoter. Biochem Biophys Res Commun. 1993;193:324–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aran D, Toperoff G, Rosenberg M, Hellman A. Replication timing-related and gene body-specific methylation of active human genes. Hum Mol Genet. 2011;20:670–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ball MP, Li JB, Gao Y, Lee JH, LeProust EM, Park IH, et al. Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells. Nat Biotechnol. 2009;27:361–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hellman A, Chess A. Gene body-specific methylation on the active X chromosome. Science. 2007;315:1141–3.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rauch TA, Wu X, Zhong X, Riggs AD, Pfeifer GP. A human B cell methylome at 100-base pair resolution. Proc Natl Acad Sci USA. 2009;106:671–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakazawa K, Sapkota K. The origin of NMDA receptor hypofunction in schizophrenia. Pharm Ther. 2020;205:107426.

    Article 
    CAS 

    Google Scholar
     

  • Chan SY, Matthews E, Burnet PW. ON or OFF? Modulating the N-Methyl-D-aspartate receptor in major depression. Front Mol Neurosci. 2016;9:169.

    CAS 
    PubMed 

    Google Scholar
     

  • Zanos P, Moaddel R, Morris PJ, Georgiou P, Fischell J, Elmer GI, et al. NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature. 2016;533:481–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krystal JH, Abdallah CG, Sanacora G, Charney DS, Duman RS. Ketamine: a paradigm shift for depression research and treatment. Neuron. 2019;101:774–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krystal JH, Kavalali ET, Monteggia LM. Ketamine and rapid antidepressant action: new treatments and novel synaptic signaling mechanisms. Neuropsychopharmacology. 2023. https://doi.org/10.1038/s41386-023-01629-w. Online ahead of print.

  • Vollenweider FX, Preller KH. Psychedelic drugs: neurobiology and potential for treatment of psychiatric disorders. Nat Rev Neurosci. 2020;21:611–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aleksandrova LR, Phillips AG. Neuroplasticity as a convergent mechanism of ketamine and classical psychedelics. Trends Pharm Sci. 2021;42:929–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deichmann U. Epigenetics: the origins and evolution of a fashionable topic. Dev Biol. 2016;416:249–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kumar S, Cheng X, Klimasauskas S, Mi S, Posfai J, Roberts RJ, et al. The DNA (cytosine-5) methyltransferases. Nucleic Acids Res. 1994;22:1–10.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yen RW, Vertino PM, Nelkin BD, Yu JJ, el-Deiry W, Cumaraswamy A, et al. Isolation and characterization of the cDNA encoding human DNA methyltransferase. Nucleic Acids Res. 1992;20:2287–91.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie S, Wang Z, Okano M, Nogami M, Li Y, He WW, et al. Cloning, expression and chromosome locations of the human DNMT3 gene family. Gene. 1999;236:87–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Suetake I, Shinozaki F, Miyagawa J, Takeshima H, Tajima S. DNMT3L stimulates the DNA methylation activity of Dnmt3a and Dnmt3b through a direct interaction. J Biol Chem. 2004;279:27816–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grippo P, Iaccarino M, Parisi E, Scarano E. Methylation of DNA in developing sea urchin embryos. J Mol Biol. 1968;36:195–208.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bianchi NO, Vidal-Rioja L, Cleaver JE. Direct visualization of the sites of DNA methylation in human, and mosquito chromosomes. Chromosoma. 1986;94:362–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Edwards JR, O’Donnell AH, Rollins RA, Peckham HE, Lee C, Milekic MH, et al. Chromatin and sequence features that define the fine and gross structure of genomic methylation patterns. Genome Res. 2010;20:972–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ehrlich M, Gama-Sosa MA, Huang LH, Midgett RM, Kuo KC, McCune RA, et al. Amount and distribution of 5-methylcytosine in human DNA from different types of tissues of cells. Nucleic Acids Res. 1982;10:2709–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bird A, Taggart M, Frommer M, Miller OJ, Macleod D. A fraction of the mouse genome that is derived from islands of nonmethylated, CpG-rich DNA. Cell. 1985;40:91–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bird AP. DNA methylation and the frequency of CpG in animal DNA. Nucleic Acids Res. 1980;8:1499–504.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ioshikhes IP, Zhang MQ. Large-scale human promoter mapping using CpG islands. Nat Genet. 2000;26:61–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D’Souza C, Fouse SD, et al. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature. 2010;466:253–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meehan RR, Lewis JD, McKay S, Kleiner EL, Bird AP. Identification of a mammalian protein that binds specifically to DNA containing methylated CpGs. Cell. 1989;58:499–507.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kokura K, Kaul SC, Wadhwa R, Nomura T, Khan MM, Shinagawa T, et al. The Ski protein family is required for MeCP2-mediated transcriptional repression. J Biol Chem. 2001;276:34115–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jones PL, Veenstra GJ, Wade PA, Vermaak D, Kass SU, Landsberger N, et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet. 1998;19:187–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kyle SM, Vashi N, Justice MJ. Rett syndrome: a neurological disorder with metabolic components. Open Biol. 2018;8:170216.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mohn F, Weber M, Rebhan M, Roloff TC, Richter J, Stadler MB, et al. Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. Mol Cell. 2008;30:755–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rajarajan P, Jiang Y, Kassim BS, Akbarian S. Chromosomal conformations and epigenomic regulation in schizophrenia. Prog Mol Biol Transl Sci. 2018;157:21–40.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laurent L, Wong E, Li G, Huynh T, Tsirigos A, Ong CT, et al. Dynamic changes in the human methylome during differentiation. Genome Res. 2010;20:320–31.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roussos P, Mitchell AC, Voloudakis G, Fullard JF, Pothula VM, Tsang J, et al. A role for noncoding variation in schizophrenia. Cell Rep. 2014;9:1417–29.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wray NR, Ripke S, Mattheisen M, Trzaskowski M, Byrne EM, Abdellaoui A, et al. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat Genet. 2018;50:668–81.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhubi A, Veldic M, Puri NV, Kadriu B, Caruncho H, Loza I, et al. An upregulation of DNA-methyltransferase 1 and 3a expressed in telencephalic GABAergic neurons of schizophrenia patients is also detected in peripheral blood lymphocytes. Schizophr Res. 2009;111:115–22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong E, Ruzicka WB, Grayson DR, Guidotti A. DNA-methyltransferase1 (DNMT1) binding to CpG rich GABAergic and BDNF promoters is increased in the brain of schizophrenia and bipolar disorder patients. Schizophr Res. 2015;167:35–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Veldic M, Caruncho HJ, Liu WS, Davis J, Satta R, Grayson DR, et al. DNA-methyltransferase 1 mRNA is selectively overexpressed in telencephalic GABAergic interneurons of schizophrenia brains. Proc Natl Acad Sci USA. 2004;101:348–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Veldic M, Guidotti A, Maloku E, Davis JM, Costa E. In psychosis, cortical interneurons overexpress DNA-methyltransferase 1. Proc Natl Acad Sci USA. 2005;102:2152–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruzicka WB, Zhubi A, Veldic M, Grayson DR, Costa E, Guidotti A. Selective epigenetic alteration of layer I GABAergic neurons isolated from prefrontal cortex of schizophrenia patients using laser-assisted microdissection. Mol Psychiatry. 2007;12:385–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Veldic M, Kadriu B, Maloku E, Agis-Balboa RC, Guidotti A, Davis JM, et al. Epigenetic mechanisms expressed in basal ganglia GABAergic neurons differentiate schizophrenia from bipolar disorder. Schizophr Res. 2007;91:51–61.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Antun FT, Burnett GB, Cooper AJ, Daly RJ, Smythies JR, Zealley AK. The effects of L-methionine (without MAOI) in schizophrenia. J Psychiatr Res. 1971;8:63–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Noh JS, Sharma RP, Veldic M, Salvacion AA, Jia X, Chen Y, et al. DNA methyltransferase 1 regulates reelin mRNA expression in mouse primary cortical cultures. Proc Natl Acad Sci USA. 2005;102:1749–54.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jaffe AE, Gao Y, Deep-Soboslay A, Tao R, Hyde TM, Weinberger DR, et al. Mapping DNA methylation across development, genotype and schizophrenia in the human frontal cortex. Nat Neurosci. 2016;19:40–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hannon E, Dempster EL, Mansell G, Burrage J, Bass N, Bohlken MM, et al. DNA methylation meta-analysis reveals cellular alterations in psychosis and markers of treatment-resistant schizophrenia. Elife. 2021;10:e58430.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aberg KA, McClay JL, Nerella S, Clark S, Kumar G, Chen W, et al. Methylome-wide association study of schizophrenia: identifying blood biomarker signatures of environmental insults. JAMA Psychiatry. 2014;71:255–64.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang W, Li W, Wu Y, Tian X, Duan H, Li S, et al. Genome-wide DNA methylation and gene expression analyses in monozygotic twins identify potential biomarkers of depression. Transl Psychiatry. 2021;11:416.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grayson DR, Jia X, Chen Y, Sharma RP, Mitchell CP, Guidotti A, et al. Reelin promoter hypermethylation in schizophrenia. Proc Natl Acad Sci USA. 2005;102:9341–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abdolmaleky HM, Cheng KH, Russo A, Smith CL, Faraone SV, Wilcox M, et al. Hypermethylation of the reelin (RELN) promoter in the brain of schizophrenic patients: a preliminary report. Am J Med Genet B Neuropsychiatr Genet. 2005;134b:60–66.

    Article 
    PubMed 

    Google Scholar
     

  • Nabil Fikri RM, Norlelawati AT, Nour El-Huda AR, Hanisah MN, Kartini A, Norsidah K, et al. Reelin (RELN) DNA methylation in the peripheral blood of schizophrenia. J Psychiatr Res. 2017;88:28–37.

    Article 
    PubMed 

    Google Scholar
     

  • Zhou J, Zhou D, Yan T, Chen W, Xie H, Xiong Y. Association between CpG island DNA methylation in the promoter region of RELN and positive and negative types of schizophrenia. J Int Med Res. 2022;50:3000605221100345.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tochigi M, Iwamoto K, Bundo M, Komori A, Sasaki T, Kato N, et al. Methylation status of the reelin promoter region in the brain of schizophrenic patients. Biol Psychiatry. 2008;63:530–3.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bonsch D, Wunschel M, Lenz B, Janssen G, Weisbrod M, Sauer H. Methylation matters? Decreased methylation status of genomic DNA in the blood of schizophrenic twins. Psychiatry Res. 2012;198:533–7.

    Article 
    PubMed 

    Google Scholar
     

  • Dong E, Gavin DP, Chen Y, Davis J. Upregulation of TET1 and downregulation of APOBEC3A and APOBEC3C in the parietal cortex of psychotic patients. Transl Psychiatry. 2012;2:e159.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang HS, Akbarian S. GAD1 mRNA expression and DNA methylation in prefrontal cortex of subjects with schizophrenia. PLoS One. 2007;2:e809.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abdolmaleky HM, Cheng KH, Faraone SV, Wilcox M, Glatt SJ, Gao F, et al. Hypomethylation of MB-COMT promoter is a major risk factor for schizophrenia and bipolar disorder. Hum Mol Genet. 2006;15:3132–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nohesara S, Ghadirivasfi M, Mostafavi S, Eskandari MR, Ahmadkhaniha H, Thiagalingam S, et al. DNA hypomethylation of MB-COMT promoter in the DNA derived from saliva in schizophrenia and bipolar disorder. J Psychiatr Res. 2011;45:1432–8.

    Article 
    PubMed 

    Google Scholar
     

  • Walton E, Liu J, Hass J, White T, Scholz M, Roessner V, et al. MB-COMT promoter DNA methylation is associated with working-memory processing in schizophrenia patients and healthy controls. Epigenetics. 2014;9:1101–7.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dai D, Cheng J, Zhou K, Lv Y, Zhuang Q, Zheng R, et al. Significant association between DRD3 gene body methylation and schizophrenia. Psychiatry Res. 2014;220:772–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng J, Wang Y, Zhou K, Wang L, Li J, Zhuang Q, et al. Male-specific association between dopamine receptor D4 gene methylation and schizophrenia. PLoS One. 2014;9:e89128.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Funahashi Y, Yoshino Y, Yamazaki K, Ozaki Y, Mori Y, Mori T, et al. Analysis of methylation and -141C Ins/Del polymorphisms of the dopamine receptor D2 gene in patients with schizophrenia. Psychiatry Res. 2019;278:135–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Antoniuk S, Bijata M, Ponimaskin E, Wlodarczyk J. Chronic unpredictable mild stress for modeling depression in rodents: meta-analysis of model reliability. Neurosci Biobehav Rev. 2019;99:101–16.

    Article 
    PubMed 

    Google Scholar
     

  • Ferland CL, Schrader LA. Regulation of histone acetylation in the hippocampus of chronically stressed rats: a potential role of sirtuins. Neuroscience. 2011;174:104–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • LaPlant Q, Vialou V, Covington HE 3rd, Dumitriu D, Feng J, Warren BL, et al. Dnmt3a regulates emotional behavior and spine plasticity in the nucleus accumbens. Nat Neurosci. 2010;13:1137–43.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stankiewicz AM, Swiergiel AH, Lisowski P. Epigenetics of stress adaptations in the brain. Brain Res Bull. 2013;98:76–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li M, D’Arcy C, Li X, Zhang T, Joober R, Meng X. What do DNA methylation studies tell us about depression? A systematic review. Transl Psychiatry. 2019;9:68.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Uchida S, Hara K, Kobayashi A, Otsuki K, Yamagata H, Hobara T, et al. Epigenetic status of Gdnf in the ventral striatum determines susceptibility and adaptation to daily stressful events. Neuron. 2011;69:359–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Park C, Rosenblat JD, Brietzke E, Pan Z, Lee Y, Cao B, et al. Stress, epigenetics and depression: a systematic review. Neurosci Biobehav Rev. 2019;102:139–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sales AJ, Maciel IS, Suavinha A, Joca SRL. Modulation of DNA methylation and gene expression in rodent cortical neuroplasticity pathways exerts rapid antidepressant-like effects. Mol Neurobiol. 2021;58:777–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bang M, Kang JI, Kim SJ, Park JY, Kim KR, Lee SY, et al. Reduced DNA methylation of the oxytocin receptor gene is associated with anhedonia-asociality in women with recent-onset schizophrenia and ultra-high risk for psychosis. Schizophr Bull. 2019;45:1279–90.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo C, Pi X, Hu N, Wang X, Xiao Y, Li S, et al. Subtypes of schizophrenia identified by multi-omic measures associated with dysregulated immune function. Mol Psychiatry. 2021;26:6926–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yamagata H, Ogihara H, Matsuo K, Uchida S, Kobayashi A, Seki T, et al. Distinct epigenetic signatures between adult-onset and late-onset depression. Sci Rep. 2021;11:2296.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li Z, He Y, Ma X, Chen X. Epigenetic age analysis of brain in major depressive disorder. Psychiatry Res. 2018;269:621–4.

    Article 
    PubMed 

    Google Scholar
     

  • Hodes GE, Pfau ML, Purushothaman I, Ahn HF, Golden SA, Christoffel DJ, et al. Sex differences in nucleus accumbens transcriptome profiles associated with susceptibility versus resilience to subchronic variable stress. J Neurosci. 2015;35:16362–76.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Watkins JC, Evans RH. Excitatory amino acid transmitters. Annu Rev Pharm Toxicol. 1981;21:165–204.

    Article 
    CAS 

    Google Scholar
     

  • Johnson JW, Ascher P. Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature. 1987;325:529–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Clements JD, Westbrook GL. Activation kinetics reveal the number of glutamate and glycine binding sites on the N-methyl-D-aspartate receptor. Neuron. 1991;7:605–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moriyoshi K, Masu M, Ishii T, Shigemoto R, Mizuno N, Nakanishi S. Molecular cloning and characterization of the rat NMDA receptor. Nature. 1991;354:31–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Monyer H, Sprengel R, Schoepfer R, Herb A, Higuchi M, Lomeli H, et al. Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science. 1992;256:1217–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Das S, Sasaki YF, Rothe T, Premkumar LS, Takasu M, Crandall JE, et al. Increased NMDA current and spine density in mice lacking the NMDA receptor subunit NR3A. Nature. 1998;393:377–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun L, Margolis FL, Shipley MT, Lidow MS. Identification of a long variant of mRNA encoding the NR3 subunit of the NMDA receptor: its regional distribution and developmental expression in the rat brain. FEBS Lett. 1998;441:392–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sugihara H, Moriyoshi K, Ishii T, Masu M, Nakanishi S. Structures and properties of seven isoforms of the NMDA receptor generated by alternative splicing. Biochem Biophys Res Commun. 1992;185:826–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hollmann M, Boulter J, Maron C, Beasley L, Sullivan J, Pecht G, et al. Zinc potentiates agonist-induced currents at certain splice variants of the NMDA receptor. Neuron. 1993;10:943–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mandich P, Schito AM, Bellone E, Antonacci R, Finelli P, Rocchi M, et al. Mapping of the human NMDAR2B receptor subunit gene (GRIN2B) to chromosome 12p12. Genomics. 1994;22:216–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kalsi G, Whiting P, Bourdelles BL, Callen D, Barnard EA, Gurling H. Localization of the human NMDAR2D receptor subunit gene (GRIN2D) to 19q13.1-qter, the NMDAR2A subunit gene to 16p13.2 (GRIN2A), and the NMDAR2C subunit gene (GRIN2C) to 17q24-q25 using somatic cell hybrid and radiation hybrid mapping panels. Genomics. 1998;47:423–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Andersson O, Stenqvist A, Attersand A, von Euler G. Nucleotide sequence, genomic organization, and chromosomal localization of genes encoding the human NMDA receptor subunits NR3A and NR3B. Genomics. 2001;78:178–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tovar KR, Westbrook GL. Mobile NMDA receptors at hippocampal synapses. Neuron. 2002;34:255–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Delint-Ramirez I, Salcedo-Tello P, Bermudez-Rattoni F. Spatial memory formation induces recruitment of NMDA receptor and PSD-95 to synaptic lipid rafts. J Neurochem. 2008;106:1658–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Quinlan EM, Philpot BD, Huganir RL, Bear MF. Rapid, experience-dependent expression of synaptic NMDA receptors in visual cortex in vivo. Nat Neurosci. 1999;2:352–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Erreger K, Dravid SM, Banke TG, Wyllie DJ, Traynelis SF. Subunit-specific gating controls rat NR1/NR2A and NR1/NR2B NMDA channel kinetics and synaptic signalling profiles. J Physiol. 2005;563:345–58. Pt 2

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tovar KR, Westbrook GL. The incorporation of NMDA receptors with a distinct subunit composition at nascent hippocampal synapses in vitro. J Neurosci. 1999;19:4180–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xue M, Zhou SB, Liu RH, Chen QY, Zhuo M, Li XH. NMDA receptor-dependent synaptic depression in potentiated synapses of the anterior cingulate cortex of adult mice. Mol Pain. 2021;17:17448069211018045.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bennett MR, Lagopoulos J. Stress and trauma: BDNF control of dendritic-spine formation and regression. Prog Neurobiol. 2014;112:80–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Caldeira MV, Melo CV, Pereira DB, Carvalho RF, Carvalho AL, Duarte CB. BDNF regulates the expression and traffic of NMDA receptors in cultured hippocampal neurons. Mol Cell Neurosci. 2007;35:208–19.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Minichiello L. TrkB signalling pathways in LTP and learning. Nat Rev Neurosci. 2009;10:850–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Monaco SA, Gulchina Y, Gao WJ. NR2B subunit in the prefrontal cortex: a double-edged sword for working memory function and psychiatric disorders. Neurosci Biobehav Rev. 2015;56:127–38.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao WJ, Yang SS, Mack NR, Chamberlin LA. Aberrant maturation and connectivity of prefrontal cortex in schizophrenia-contribution of NMDA receptor development and hypofunction. Mol Psychiatry. 2022;27:731–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Perszyk RE, DiRaddo JO, Strong KL, Low CM, Ogden KK, Khatri A, et al. GluN2D-containing N-methyl-d-aspartate receptors mediate synaptic transmission in hippocampal interneurons and regulate interneuron activity. Mol Pharmacol. 2016;90:689–702.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Monyer H, Burnashev N, Laurie DJ, Sakmann B, Seeburg PH. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron. 1994;12:529–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wenzel A, Scheurer L, Künzi R, Fritschy JM, Mohler H, Benke D. Distribution of NMDA receptor subunit proteins NR2A, 2B, 2C and 2D in rat brain. Neuroreport. 1995;7:45–48.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Standaert DG, Landwehrmeyer GB, Kerner JA, Penney JB Jr., Young AB. Expression of NMDAR2D glutamate receptor subunit mRNA in neurochemically identified interneurons in the rat neostriatum, neocortex and hippocampus. Brain Res Mol Brain Res. 1996;42:89–102.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rauner C, Kohr G. Triheteromeric NR1/NR2A/NR2B receptors constitute the major N-methyl-D-aspartate receptor population in adult hippocampal synapses. J Biol Chem. 2011;286:7558–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luo J, Wang Y, Yasuda RP, Dunah AW, Wolfe BB. The majority of N-methyl-D-aspartate receptor complexes in adult rat cerebral cortex contain at least three different subunits (NR1/NR2A/NR2B). Mol Pharmacol. 1997;51:79–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gray JA, Shi Y, Usui H, During MJ, Sakimura K, Nicoll RA. Distinct modes of AMPA receptor suppression at developing synapses by GluN2A and GluN2B: single-cell NMDA receptor subunit deletion in vivo. Neuron. 2011;71:1085–101.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Williams K, Russell SL, Shen YM, Molinoff PB. Developmental switch in the expression of NMDA receptors occurs in vivo and in vitro. Neuron. 1993;10:267–78.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ogden KK, Traynelis SF. New advances in NMDA receptor pharmacology. Trends Pharm Sci. 2011;32:726–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vyklicky V, Korinek M, Smejkalova T, Balik A, Krausova B, Kaniakova M, et al. Structure, function, and pharmacology of NMDA receptor channels. Physiol Res. 2014;63:S191–203.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD, et al. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry. 1994;51:199–214.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Malhotra AK, Pinals DA, Weingartner H, Sirocco K, Missar CD, Pickar D, et al. NMDA receptor function and human cognition: the effects of ketamine in healthy volunteers. Neuropsychopharmacology. 1996;14:301–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Newcomer JW, Farber NB, Jevtovic-Todorovic V, Selke G, Melson AK, Hershey T, et al. Ketamine-induced NMDA receptor hypofunction as a model of memory impairment and psychosis. Neuropsychopharmacology. 1999;20:106–18.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Olney JW, Farber NB. NMDA antagonists as neurotherapeutic drugs, psychotogens, neurotoxins, and research tools for studying schizophrenia. Neuropsychopharmacology. 1995;13:335–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Malhotra AK, Adler CM, Kennison SD, Elman I, Pickar D, Breier A. Clozapine blunts N-methyl-D-aspartate antagonist-induced psychosis: a study with ketamine. Biol psychiatry. 1997;42:664–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lahti AC, Weiler MA, Tamara Michaelidis BA, Parwani A, Tamminga CA. Effects of ketamine in normal and schizophrenic volunteers. Neuropsychopharmacology. 2001;25:455–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Snyder MA, Gao WJ. NMDA receptor hypofunction for schizophrenia revisited: Perspectives from epigenetic mechanisms. Schizophr Res. 2020;217:60–70.

    Article 
    PubMed 

    Google Scholar
     

  • Adell A. Brain NMDA receptors in schizophrenia and depression. Biomolecules. 2020;10:947.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coyle JT. NMDA receptor and schizophrenia: a brief history. Schizophr Bull. 2012;38:920–6.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Catts VS, Lai YL, Weickert CS, Weickert TW, Catts SV. A quantitative review of the postmortem evidence for decreased cortical N-methyl-d-aspartate receptor expression levels in schizophrenia: How can we link molecular abnormalities to mismatch negativity deficits? Biol Psychol. 2016;116:57–67.

    Article 
    PubMed 

    Google Scholar
     

  • Singh T, Poterba T, Curtis D, Akil H, Al Eissa M, Barchas JD, et al. Rare coding variants in ten genes confer substantial risk for schizophrenia. Nature. 2022;604:509–16.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trubetskoy V, Pardiñas AF, Qi T, Panagiotaropoulou G, Awasthi S, Bigdeli TB, et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature. 2022;604:502–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Banerjee A, Wang HY, Borgmann-Winter KE, MacDonald ML, Kaprielian H, Stucky A, et al. Src kinase as a mediator of convergent molecular abnormalities leading to NMDAR hypoactivity in schizophrenia. Mol Psychiatry. 2015;20:1091–1100.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McNally JM, McCarley RW. Gamma band oscillations: a key to understanding schizophrenia symptoms and neural circuit abnormalities. Curr Opin Psychiatry. 2016;29:202–10.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Antonoudiou P, Tan YL, Kontou G, Upton AL, Mann EO. Parvalbumin and somatostatin interneurons contribute to the generation of hippocampal gamma oscillations. J Neurosci. 2020;40:7668–87.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gonzalez-Burgos G, Lewis DA. NMDA receptor hypofunction, parvalbumin-positive neurons, and cortical gamma oscillations in schizophrenia. Schizophr Bull. 2012;38:950–7.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pinault D. N-methyl d-aspartate receptor antagonists ketamine and MK-801 induce wake-related aberrant gamma oscillations in the rat neocortex. Biol Psychiatry. 2008;63:730–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hong LE, Summerfelt A, Buchanan RW, O’Donnell P, Thaker GK, Weiler MA, et al. Gamma and delta neural oscillations and association with clinical symptoms under subanesthetic ketamine. Neuropsychopharmacology. 2010;35:632–40.

    Article 
    PubMed 

    Google Scholar
     

  • Aguilar DD, Radzik LK, Schiffino FL, Folorunso OO, Zielinski MR, Coyle JT, et al. Altered neural oscillations and behavior in a genetic mouse model of NMDA receptor hypofunction. Sci Rep. 2021;11:9031.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jami SA, Cameron S, Wong JM, Daly ER, McAllister AK, Gray JA. Increased excitation-inhibition balance and loss of GABAergic synapses in the serine racemase knockout model of NMDA receptor hypofunction. J Neurophysiol. 2021;126:11–27.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alvarez RJ, Pafundo DE, Zold CL, Belforte JE. Interneuron NMDA receptor ablation induces hippocampus-prefrontal cortex functional hypoconnectivity after adolescence in a mouse model of schizophrenia. J Neurosci. 2020;40:3304–17.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tan Y, Fujita Y, Pu Y, Chang L, Qu Y, Wang X, et al. Repeated intermittent administration of (R)-ketamine during juvenile and adolescent stages prevents schizophrenia-relevant phenotypes in adult offspring after maternal immune activation: a role of TrkB signaling. Eur Arch Psychiatry Clin Neurosci. 2022;272:693–701.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kegeles LS, Abi-Dargham A, Zea-Ponce Y, Rodenhiser-Hill J, Mann JJ, Van Heertum RL, et al. Modulation of amphetamine-induced striatal dopamine release by ketamine in humans: implications for schizophrenia. Biol Psychiatry. 2000;48:627–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tanqueiro SR, Mouro FM, Ferreira CB, Freitas CF, Fonseca-Gomes J, Simoes do Couto F, et al. Sustained NMDA receptor hypofunction impairs brain-derived neurotropic factor signalling in the PFC, but not in the hippocampus, and disturbs PFC-dependent cognition in mice. J Psychopharmacol. 2021;35:730–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lopez-Gil X, Artigas F, Adell A. Role of different monoamine receptors controlling MK-801-induced release of serotonin and glutamate in the medial prefrontal cortex: relevance for antipsychotic action. Int J Neuropsychopharmacol. 2009;12:487–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Crane GE. Cyloserine as an antidepressant agent. Am J Psychiatry. 1959;115:1025–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Trullas R, Skolnick P. Functional antagonists at the NMDA receptor complex exhibit antidepressant actions. Eur J Pharm. 1990;185:1–10.

    Article 
    CAS 

    Google Scholar
     

  • Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, et al. Antidepressant effects of ketamine in depressed patients. Biol Psychiatry. 2000;47:351–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu YD, Xiang YT, Fang JX, Zu S, Sha S, Shi H, et al. Single i.v. ketamine augmentation of newly initiated escitalopram for major depression: results from a randomized, placebo-controlled 4-week study. Psychol Med. 2016;46:623–35.

    Article 
    PubMed 

    Google Scholar
     

  • Daly EJ, Trivedi MH, Janik A, Li H, Zhang Y, Li X, et al. Efficacy of esketamine nasal spray plus oral antidepressant treatment for relapse prevention in patients with treatment-resistant depression: a randomized clinical trial. JAMA Psychiatry. 2019;76:893–903.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Popova V, Daly EJ, Trivedi M, Cooper K, Lane R, Lim P, et al. Efficacy and safety of flexibly dosed esketamine nasal spray combined with a newly initiated oral antidepressant in treatment-resistant depression: a randomized double-blind active-controlled study. Am J Psychiatry. 2019;176:428–38.

    Article 
    PubMed 

    Google Scholar
     

  • Vázquez GH, Bahji A, Undurraga J, Tondo L, Baldessarini RJ. Efficacy and tolerability of combination treatments for major depression: antidepressants plus second-generation antipsychotics vs. esketamine vs. lithium. J Psychopharmacol. 2021;35:890–900.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jelen LA, Young AH, Stone JM. Ketamine: a tale of two enantiomers. J Psychopharmacol. 2021;35:109–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Breier A, Malhotra AK, Pinals DA, Weisenfeld NI, Pickar D. Association of ketamine-induced psychosis with focal activation of the prefrontal cortex in healthy volunteers. Am J Psychiatry. 1997;154:805–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moghaddam B, Adams B, Verma A, Daly D. Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J Neurosci. 1997;17:2921–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ebert B, Mikkelsen S, Thorkildsen C, Borgbjerg FM. Norketamine, the main metabolite of ketamine, is a non-competitive NMDA receptor antagonist in the rat cortex and spinal cord. Eur J Pharm. 1997;333:99–104.

    Article 
    CAS 

    Google Scholar
     

  • Yang C, Shirayama Y, Zhang JC, Ren Q, Yao W, Ma M, et al. R-ketamine: a rapid-onset and sustained antidepressant without psychotomimetic side effects. Transl Psychiatry. 2015;5:e632.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fukumoto K, Toki H, Iijima M, Hashihayata T, Yamaguchi JI, Hashimoto K, et al. Antidepressant potential of (R)-ketamine in rodent models: comparison with (S)-ketamine. J Pharm Exp Ther. 2017;361:9–16.

    Article 
    CAS 

    Google Scholar
     

  • Chang L, Zhang K, Pu Y, Qu Y, Wang SM, Xiong Z, et al. Comparison of antidepressant and side effects in mice after intranasal administration of (R,S)-ketamine, (R)-ketamine, and (S)-ketamine. Pharm Biochem Behav. 2019;181:53–59.

    Article 
    CAS 

    Google Scholar
     

  • Bonaventura J, Lam S, Carlton M, Boehm MA, Gomez JL, Solis O, et al. Pharmacological and behavioral divergence of ketamine enantiomers: implications for abuse liability. Mol Psychiatry. 2021;26:6704–22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hashimoto K, Kakiuchi T, Ohba H, Nishiyama S, Tsukada H. Reduction of dopamine D2/3 receptor binding in the striatum after a single administration of esketamine, but not R-ketamine: a PET study in conscious monkeys. Eur Arch Psychiatry Clin Neurosci. 2017;267:173–6.

    Article 
    PubMed 

    Google Scholar
     

  • Masaki Y, Kashiwagi Y, Watabe H, Abe K. (R)- and (S)-ketamine induce differential fMRI responses in conscious rats. Synapse. 2019;73:e22126.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miller OH, Yang L, Wang CC, Hargroder EA, Zhang Y, Delpire E, et al. GluN2B-containing NMDA receptors regulate depression-like behavior and are critical for the rapid antidepressant actions of ketamine. Elife. 2014;3:e03581.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jang S, Suh SH, Yoo HS, Lee YM, Oh S. Changes in iNOS, GFAP and NR1 expression in various brain regions and elevation of sphingosine-1-phosphate in serum after immobilized stress. Neurochem Res. 2008;33:842–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bartanusz V, Aubry JM, Pagliusi S, Jezova D, Baffi J, Kiss JZ. Stress-induced changes in messenger RNA levels of N-methyl-D-aspartate and AMPA receptor subunits in selected regions of the rat hippocampus and hypothalamus. Neuroscience. 1995;66:247–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fitzgerald LW, Ortiz J, Hamedani AG, Nestler EJ. Drugs of abuse and stress increase the expression of GluR1 and NMDAR1 glutamate receptor subunits in the rat ventral tegmental area: common adaptations among cross-sensitizing agents. J Neurosci. 1996;16:274–82.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Masrour FF, Peeri M, Azarbayjani MA, Hosseini MJ. Voluntary exercise during adolescence mitigated negative the effects of maternal separation stress on the depressive-like behaviors of adult male rats: role of NMDA receptors. Neurochem Res. 2018;43:1067–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dong BE, Chen H, Sakata K. BDNF deficiency and enriched environment treatment affect neurotransmitter gene expression differently across ages. J Neurochem. 2020;154:41–55.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sathyanesan M, Haiar JM, Watt MJ, Newton SS. Restraint stress differentially regulates inflammation and glutamate receptor gene expression in the hippocampus of C57BL/6 and BALB/c mice. Stress. 2017;20:197–204.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weiland NG, Orchinik M, Tanapat P. Chronic corticosterone treatment induces parallel changes in N-methyl-D-aspartate receptor subunit messenger RNA levels and antagonist binding sites in the hippocampus. Neuroscience. 1997;78:653–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pacheco A, Aguayo FI, Aliaga E, Munoz M, Garcia-Rojo G, Olave FA, et al. Chronic stress triggers expression of immediate early genes and differentially affects the expression of AMPA and NMDA subunits in dorsal and ventral hippocampus of rats. Front Mol Neurosci. 2017;10:244.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tordera RM, Garcia-García AL, Elizalde N, Segura V, Aso E, Venzala E, et al. Chronic stress and impaired glutamate function elicit a depressive-like phenotype and common changes in gene expression in the mouse frontal cortex. Eur Neuropsychopharmacol. 2011;21:23–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee YA, Goto Y. Chronic stress modulation of prefrontal cortical NMDA receptor expression disrupts limbic structure-prefrontal cortex interaction. Eur J Neurosci. 2011;34:426–36.

    Article 
    PubMed 

    Google Scholar
     

  • Fachim HA, Loureiro CM, Corsi-Zuelli F, Shuhama R, Louzada-Junior P, Menezes PR, et al. GRIN2B promoter methylation deficits in early-onset schizophrenia and its association with cognitive function. Epigenomics. 2019;11:401–10.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Loureiro CM, Fachim HA, Corsi-Zuelli F, Shuhama R, Menezes PR, Dalton CF, et al. The relationship of childhood trauma and DNA methylation of NMDA receptor genes in first-episode schizophrenia. Epigenomics. 2021;13:927–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Loureiro CM, Fachim HA, Corsi-Zuelli F, Shuhama R, Joca S, Menezes PR, et al. Epigenetic-mediated N-methyl-D-aspartate receptor changes in the brain of isolated reared rats. Epigenomics. 2020;12:1983–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Loureiro CM, Fachim HA, Harte MK, Dalton CF, Reynolds GP, Subchronic PCP. effects on DNA methylation and protein expression of NMDA receptor subunit genes in the prefrontal cortex and hippocampus of female rats. J Psychopharmacol. 2022;36:238–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gulchina Y, Xu SJ, Snyder MA, Elefant F, Gao WJ. Epigenetic mechanisms underlying NMDA receptor hypofunction in the prefrontal cortex of juvenile animals in the MAM model for schizophrenia. J Neurochemistry. 2017;143:320–33.

    Article 
    CAS 

    Google Scholar
     

  • Latusz J, Maćkowiak M. Early-life blockade of NMDA receptors induces epigenetic abnormalities in the adult medial prefrontal cortex: possible involvement in memory impairment in trace fear conditioning. Psychopharmacology. 2020;237:231–48.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bharadwaj R, Peter Cyril J, Jiang Y, Roussos P, Vogel-Ciernia A, Shen EY, et al. Conserved higher-order chromatin regulates NMDA receptor gene expression and cognition. Neuron. 2014;84:997–1008.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang Y, Jakovcevski M, Bharadwaj R, Connor C, Schroeder FA, Lin CL, et al. Setdb1 histone methyltransferase regulates mood-related behaviors and expression of the NMDA receptor subunit NR2B. J Neurosci. 2010;30:7152–67.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weder N, Zhang H, Jensen K, Yang BZ, Simen A, Jackowski A, et al. Child abuse, depression, and methylation in genes involved with stress, neural plasticity, and brain circuitry. J Am Acad Child Adolesc Psychiatry. 2014;53:417–424 e415.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Montalvo-Ortiz JL, Bordner KA, Carlyle BC, Gelernter J, Simen AA, Kaufman J. The role of genes involved in stress, neural plasticity, and brain circuitry in depressive phenotypes: Convergent findings in a mouse model of neglect. Behav Brain Res. 2016;315:71–74.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaut O, Schmitt I, Hofmann A, Hoffmann P, Schlaepfer TE, Wullner U, et al. Aberrant NMDA receptor DNA methylation detected by epigenome-wide analysis of hippocampus and prefrontal cortex in major depression. Eur Arch Psychiatry Clin Neurosci. 2015;265:331–41.

    Article 
    PubMed 

    Google Scholar
     

  • Reiff CM, Richman EE, Nemeroff CB, Carpenter LL, Widge AS, Rodriguez CI, et al. Psychedelics and psychedelic-assisted psychotherapy. Am J Psychiatry. 2020;177:391–410.

    Article 
    PubMed 

    Google Scholar
     

  • Inserra A, De Gregorio D, Gobbi G. Psychedelics in psychiatry: neuroplastic, immunomodulatory, and neurotransmitter mechanisms. Pharmacol Rev. 2021;73:202–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shao LX, Liao C, Gregg I, Davoudian PA, Savalia NK, Delagarza K, et al. Psilocybin induces rapid and persistent growth of dendritic spines in frontal cortex in vivo. Neuron. 2021;109:2535–2544.e2534.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jefferson SJ, Gregg I, Dibbs M, Liao C, Wu H, Davoudian PA, et al. 5-MeO-DMT modifies innate behaviors and promotes structural neural plasticity in mice. Neuropsychopharmacology. 2023;48:1257–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ly C, Greb AC, Cameron LP, Wong JM, Barragan EV, Wilson PC, et al. Psychedelics promote structural and functional neural plasticity. Cell Rep. 2018;23:3170–82.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Doss MK, Považan M, Rosenberg MD, Sepeda ND, Davis AK, Finan PH, et al. Psilocybin therapy increases cognitive and neural flexibility in patients with major depressive disorder. Transl Psychiatry. 2021;11:574.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Skosnik PD, Sloshower J, Safi-Aghdam H, Pathania S, Syed S, Pittman B, et al. Sub-acute effects of psilocybin on EEG correlates of neural plasticity in major depression: relationship to symptoms. J Psychopharmacol. 2023;37:687–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moliner R, Girych M, Brunello CA, Kovaleva V, Biojone C, Enkavi G, et al. Psychedelics promote plasticity by directly binding to BDNF receptor TrkB. Nat Neurosci. 2023;26:1032–41.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hesselgrave N, Troppoli TA, Wulff AB, Cole AB, Thompson SM. Harnessing psilocybin: antidepressant-like behavioral and synaptic actions of psilocybin are independent of 5-HT2R activation in mice. Proc Natl Acad Sci USA. 2021;118:e2022489118.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nardou R, Sawyer E, Song YJ, Wilkinson M, Padovan-Hernandez Y, de Deus JL, et al. Psychedelics reopen the social reward learning critical period. Nature. 2023;618:790–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nardou R, Lewis EM, Rothhaas R, Xu R, Yang A, Boyden E, et al. Oxytocin-dependent reopening of a social reward learning critical period with MDMA. Nature. 2019;569:116–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gerra MC, Jayanthi S, Manfredini M, Walther D, Schroeder J, Phillips KA, et al. Gene variants and educational attainment in cannabis use: mediating role of DNA methylation. Transl Psychiatry. 2018;8:23.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clark SL, Chan R, Zhao M, Xie LY, Copeland WE, Aberg KA, et al. Methylomic investigation of problematic adolescent cannabis use and its negative mental health consequences. J Am Acad Child Adolesc Psychiatry. 2021;60:1524–32.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Markunas CA, Hancock DB, Xu Z, Quach BC, Fang F, Sandler DP, et al. Epigenome-wide analysis uncovers a blood-based DNA methylation biomarker of lifetime cannabis use. Am J Med Genet B Neuropsychiatr Genet. 2021;186:173–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Murphy SK, Itchon-Ramos N, Visco Z, Huang Z, Grenier C, Schrott R, et al. Cannabinoid exposure and altered DNA methylation in rat and human sperm. Epigenetics. 2018;13:1208–21.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schrott R, Rajavel M, Acharya K, Huang Z, Acharya C, Hawkey A, et al. Sperm DNA methylation altered by THC and nicotine: vulnerability of neurodevelopmental genes with bivalent chromatin. Sci Rep. 2020;10:16022.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wanner NM, Colwell M, Drown C, Faulk C. Subacute cannabidiol alters genome-wide DNA methylation in adult mouse hippocampus. Environ Mol Mutagen. 2020;61:890–900.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wanner NM, Colwell M, Drown C, Faulk C. Developmental cannabidiol exposure increases anxiety and modifies genome-wide brain DNA methylation in adult female mice. Clin Epigenetics. 2021;13:4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Watson CT, Szutorisz H, Garg P, Martin Q, Landry JA, Sharp AJ, et al. Genome-wide DNA methylation profiling reveals epigenetic changes in the rat nucleus accumbens associated with cross-generational effects of adolescent THC exposure. Neuropsychopharmacology. 2015;40:2993–3005.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng MC, Hsu SH, Chen CH. Chronic methamphetamine treatment reduces the expression of synaptic plasticity genes and changes their DNA methylation status in the mouse brain. Brain Res. 2015;1629:126–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Inserra A, Campanale A, Cheishvili D, Dymov S, Wong A, Marcal N, et al. Modulation of DNA methylation and protein expression in the prefrontal cortex by repeated administration of D-lysergic acid diethylamide (LSD): Impact on neurotropic, neurotrophic, and neuroplasticity signaling. Prog Neuropsychopharmacol Biol Psychiatry. 2022;119:110594.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun L, Verkaik-Schakel RN, Biber K, Plösch T, Serchov T. Antidepressant treatment is associated with epigenetic alterations of Homer1 promoter in a mouse model of chronic depression. J Affect Disord. 2021;279:501–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ju LS, Yang JJ, Lei L, Xia JY, Luo D, Ji MH, et al. The combination of long-term ketamine and extinction training contributes to fear erasure by bdnf methylation. Front Cell Neurosci. 2017;11:100.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de la Fuente Revenga M, Zhu B, Guevara CA, Naler LB, Saunders JM, Zhou Z, et al. Prolonged epigenomic and synaptic plasticity alterations following single exposure to a psychedelic in mice. Cell Rep. 2021;37:109836.

    Article 
    PubMed 

    Google Scholar
     

  • Cameron LP, Tombari RJ, Lu J, Pell AJ, Hurley ZQ, Ehinger Y, et al. A non-hallucinogenic psychedelic analogue with therapeutic potential. Nature. 2021;589:474–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Belforte JE, Zsiros V, Sklar ER, Jiang Z, Yu G, Li Y, et al. Postnatal NMDA receptor ablation in corticolimbic interneurons confers schizophrenia-like phenotypes. Nat Neurosci. 2010;13:76–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nakao K, Jeevakumar V, Jiang SZ, Fujita Y, Diaz NB, Pretell Annan CA, et al. Schizophrenia-like dopamine release abnormalities in a mouse model of NMDA receptor hypofunction. Schizophr Bull. 2019;45:138–47.

    Article 
    PubMed 

    Google Scholar
     

  • Nakao K, Singh M, Sapkota K, Hagler BC, Hunter RN, Raman C, et al. GSK3beta inhibition restores cortical gamma oscillation and cognitive behavior in a mouse model of NMDA receptor hypofunction relevant to schizophrenia. Neuropsychopharmacology. 2020;45:2207–18.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gunasekaran S, Jacob RS, Omkumar RV. Differential expression of miR-148b, miR-129-2 and miR-296 in animal models of schizophrenia-Relevance to NMDA receptor hypofunction. Neuropharmacology. 2022;210:109024.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rodriguez-Munoz M, Sanchez-Blazquez P, Callado LF, Meana JJ, Garzon-Nino J. Schizophrenia and depression, two poles of endocannabinoid system deregulation. Transl Psychiatry. 2017;7:1291.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karolewicz B, Szebeni K, Gilmore T, Maciag D, Stockmeier CA, Ordway GA. Elevated levels of NR2A and PSD-95 in the lateral amygdala in depression. Int J Neuropsychopharmacol. 2009;12:143–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Karolewicz B, Stockmeier CA, Ordway GA. Elevated levels of the NR2C subunit of the NMDA receptor in the locus coeruleus in depression. Neuropsychopharmacology. 2005;30:1557–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chandley MJ, Szebeni A, Szebeni K, Crawford JD, Stockmeier CA, Turecki G, et al. Elevated gene expression of glutamate receptors in noradrenergic neurons from the locus coeruleus in major depression. Int J Neuropsychopharmacol. 2014;17:1569–78.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gray AL, Hyde TM, Deep-Soboslay A, Kleinman JE, Sodhi MS. Sex differences in glutamate receptor gene expression in major depression and suicide. Mol Psychiatry. 2015;20:1057–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Feyissa AM, Chandran A, Stockmeier CA, Karolewicz B. Reduced levels of NR2A and NR2B subunits of NMDA receptor and PSD-95 in the prefrontal cortex in major depression. Prog Neuropsychopharmacol Biol psychiatry. 2009;33:70–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Beneyto M, Kristiansen LV, Oni-Orisan A, McCullumsmith RE, Meador-Woodruff JH. Abnormal glutamate receptor expression in the medial temporal lobe in schizophrenia and mood disorders. Neuropsychopharmacology. 2007;32:1888–902.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Beneyto M, Meador-Woodruff JH. Lamina-specific abnormalities of NMDA receptor-associated postsynaptic protein transcripts in the prefrontal cortex in schizophrenia and bipolar disorder. Neuropsychopharmacology. 2008;33:2175–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    Stay Connected

    9FansLike
    4FollowersFollow
    0SubscribersSubscribe
    - Advertisement -spot_img

    Latest Articles

    %d bloggers like this: