Saturday, September 23, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

Dynamic 3D genome reorganization during senescence: defining cell states through chromatin – Cell Death & Differentiation


  • Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res. 1961. https://doi.org/10.1016/0014-4827(61)90192-6.

  • Hernandez-Segura A, Nehme J, Demaria M. Hallmarks of cellular senescence. Trends Cell Biol. 2018. https://doi.org/10.1016/j.tcb.2018.02.001.

  • Coppé JP, Desprez PY, Krtolica A, Campisi J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol Mech Dis. 2010. https://doi.org/10.1146/annurev-pathol-121808-102144.

  • Childs BG, Baker DJ, Kirkland JL, Campisi J, van Deursen JM. Senescence and apoptosis: dueling or complementary cell fates? EMBO Rep. 2014;15:1139–53.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Campisi J, D’Adda Di Fagagna F. Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol. 2007. https://doi.org/10.1038/nrm2233.

  • Acosta JC, Banito A, Wuestefeld T, Georgilis A, Janich P, Morton JP, et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol. 2013. https://doi.org/10.1038/ncb2784.

  • Hayflick L. The limited in vitro lifetime of human diploid cell strains. Exp Cell Res. 1965. https://doi.org/10.1016/0014-4827(65)90211-9.

  • Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16(INK4a). Cell. 1997;88:593–602. https://doi.org/10.1016/S0092-8674(00)81902-9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fridlyanskaya I, Alekseenko L, Nikolsky N. Senescence as a general cellular response to stress: a mini-review. Exp Gerontol. 2015. https://doi.org/10.1016/j.exger.2015.09.021.

  • Fan DNY, Schmitt CA. Genotoxic stress-induced senescence. Methods Mol Biol. 2019. https://doi.org/10.1007/978-1-4939-8931-7_10.

  • Hao X, Wang C, Zhang R. Chromatin basis of the senescence-associated secretory phenotype. Trends Cell Biol. 2022. https://doi.org/10.1016/j.tcb.2021.12.003.

  • Rocha A, Dalgarno A, Neretti N. The functional impact of nuclear reorganization in cellular senescence. Brief Funct Genom. 2021. https://doi.org/10.1093/bfgp/elab012.

  • Evans SA, Horrell J, Neretti N. The three-dimensional organization of the genome in cellular senescence and age-associated diseases. Semin Cell Dev Biol. 2019. https://doi.org/10.1016/j.semcdb.2018.07.022.

  • Funkhouser CM, Sknepnek R, Shimi T, Goldman AE, Goldman RD, De La Cruz MO. Mechanical model of blebbing in nuclear lamin meshworks. Proc Natl Acad Sci USA. 2013;110:3248–53.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dou Z, Ghosh K, Vizioli MG, Zhu J, Sen P, Wangensteen KJ, et al. Cytoplasmic chromatin triggers inflammation in senescence and cancer. Nature. 2017;550:402–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Glück S, Guey B, Gulen MF, Wolter K, Kang T-W, Schmacke NA, et al. Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nat Cell Biol. 2017;19:1061–70.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meharena HS, Marco A, Dileep V, Lockshin ER, Akatsu GY, Mullahoo J, et al. Down-syndrome-induced senescence disrupts the nuclear architecture of neural progenitors. Cell Stem Cell. 2022;29:116–130.e7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Briand N, Collas P. Lamina-associated domains: peripheral matters and internal affairs. Genome Biol. 2020. https://doi.org/10.1186/s13059-020-02003-5.

  • Zheng X, Hu J, Yue S, Kristiani L, Kim M, Sauria M, et al. Lamins organize the global three-dimensional genome from the nuclear periphery. Mol Cell. 2018. https://doi.org/10.1016/j.molcel.2018.05.017.

  • Brueckner L, Zhao PA, van Schaik T, Leemans C, Sima J, Peric‐Hupkes D, et al. Local rewiring of genome–nuclear lamina interactions by transcription. EMBO J. 2020. https://doi.org/10.15252/embj.2019103159.

  • Guerreiro I, Kind J. Spatial chromatin organization and gene regulation at the nuclear lamina. Curr Opin Genet Dev. 2019. https://doi.org/10.1016/j.gde.2019.04.008.

  • Chandra T, Ewels PA, Schoenfelder S, Furlan-Magaril M, Wingett SW, Kirschner K, et al. Global reorganization of the nuclear landscape in senescent cells. Cell Rep. 2015. https://doi.org/10.1016/j.celrep.2014.12.055.

  • Lenain C, De Graaf CA, Pagie L, Visser NL, De Haas M, De Vries SS, et al. Massive reshaping of genome-nuclear lamina interactions during oncogene-induced senescence. Genome Res. 2017. https://doi.org/10.1101/gr.225763.117.

  • Narita M, Nũnez S, Heard E, Narita M, Lin AW, Hearn SA, et al. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell. 2003. https://doi.org/10.1016/S0092-8674(03)00401-X.

  • Zhang R, Chen W, Adams PD. Molecular dissection of formation of senescence-associated heterochromatin foci. Mol Cell Biol. 2007. https://doi.org/10.1128/mcb.02019-06.

  • Zampetidis CP, Galanos P, Angelopoulou A, Zhu Y, Polyzou A, Karamitros T, et al. A recurrent chromosomal inversion suffices for driving escape from oncogene-induced senescence via subTAD reorganization. Mol Cell. 2021. https://doi.org/10.1016/j.molcel.2021.10.017.

  • Sadaie M, Salama R, Carroll T, Tomimatsu K, Chandra T, Young ARJ, et al. Redistribution of the lamin B1 genomic binding profile affects rearrangement of heterochromatic domains and SAHF formation during senescence. Genes Dev. 2013. https://doi.org/10.1101/gad.217281.113.

  • Shimi T, Butin-Israeli V, Adam SA, Hamanaka RB, Goldman AE, Lucas CA, et al. The role of nuclear lamin B1 in cell proliferation and senescence. Genes Dev. 2011. https://doi.org/10.1101/gad.179515.111.

  • Ukekawa R, Miki K, Fujii M, Hirano H, Ayusawa D. Accumulation of multiple forms of lamin A with down-regulation of FACE-1 suppresses growth in senescent human cells. Genes Cells. 2007. https://doi.org/10.1111/j.1365-2443.2007.01057.x.

  • Boumendil C, Hari P, Olsen KCF, Acosta JC, Bickmore WA. Nuclear pore density controls heterochromatin reorganization during senescence. Genes Dev. 2019. https://doi.org/10.1101/gad.321117.118.

  • Chandra T, Kirschner K. Chromosome organisation during ageing and senescence. Curr Opin Cell Biol. 2016. https://doi.org/10.1016/j.ceb.2016.03.020.

  • Chandra T, Kirschner K, Thuret JY, Pope BD, Ryba T, Newman S, et al. Independence of repressive histone marks and chromatin compaction during senescent heterochromatic layer formation. Mol Cell. 2012. https://doi.org/10.1016/j.molcel.2012.06.010.

  • Miron E, Oldenkamp R, Brown JM, Pinto DMS, Xu CS, Faria AR, et al. Chromatin arranges in chains of mesoscale domains with nanoscale functional topography independent of cohesin. Sci Adv. 2020. https://doi.org/10.1126/sciadv.aba8811.

  • Zirkel A, Nikolic M, Sofiadis K, Mallm JP, Brackley CA, Gothe H, et al. HMGB2 Loss upon senescence entry disrupts genomic organization and induces CTCF clustering across cell types. Mol Cell. 2018. https://doi.org/10.1016/j.molcel.2018.03.030.

  • Sofiadis K, Josipovic N, Nikolic M, Kargapolova Y, Varamogianni-mamatsi V, Zirkel A, et al. HMGB 1 coordinates SASP-related chromatin folding and RNA homeostasis on the path to senescence. Mol Syst Biol. 2021;17:e9760.

  • Dekker J, Rippe K, Dekker M, Kleckner N. Capturing chromosome conformation. Science. 2002;295:1306–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fortin JP, Hansen KD. Reconstructing A/B compartments as revealed by Hi-C using long-range correlations in epigenetic data. Genome Biol. 2015. https://doi.org/10.1186/s13059-015-0741-y.

  • Criscione SW, Cecco M De, Siranosian B, Zhang Y, Kreiling JA, Sedivy JM, et al. Biomolecules: reorganization of chromosome architecture in replicative cellular senescence. Sci Adv. 2016. https://doi.org/10.1126/sciadv.1500882.

  • Sati S, Bonev B, Szabo Q, Jost D, Bensadoun P, Serra F, et al. 4D genome rewiring during oncogene-induced and replicative senescence. Mol Cell. 2020. https://doi.org/10.1016/j.molcel.2020.03.007.

  • Iwasaki O, Tanizawa H, Kim KD, Kossenkov A, Nacarelli T, Tashiro S, et al. Involvement of condensin in cellular senescence through gene regulation and compartmental reorganization. Nat Commun. 2019. https://doi.org/10.1038/s41467-019-13604-5.

  • Criscione SW, Teo YV, Neretti N. The Chromatin landscape of cellular senescence. Trends Genet. 2016. https://doi.org/10.1016/j.tig.2016.09.005.

  • Tomimatsu K, Bihary D, Olan I, Parry AJ, Schoenfelder S, Chan ASL, et al. Locus-specific induction of gene expression from heterochromatin loci during cellular senescence. Nat Aging. 2021. https://doi.org/10.1038/s43587-021-00147-y.

  • Zhang H, Pan KH, Cohen, SN. Senescence-specific gene expression fingerprints reveal cell-type-dependent physical clustering of up-regulated chromosomal loci. Proc Natl Acad Sci USA. 2003. https://doi.org/10.1073/pnas.2627983100.

  • Saul D, Kosinsky RL, Atkinson EJ, Doolittle ML, Zhang X, LeBrasseur NK, et al. A new gene set identifies senescent cells and predicts senescence-associated pathways across tissues. Nat Commun. 2022. https://doi.org/10.1038/s41467-022-32552-1.

  • Casella G, Munk R, Kim KM, Piao Y, De S, Abdelmohsen K, et al. Transcriptome signature of cellular senescence. Nucleic Acids Res. 2019. https://doi.org/10.1093/nar/gkz555.

  • Wiley CD, Flynn JM, Morrissey C, Lebofsky R, Shuga J, Dong X, et al. Analysis of individual cells identifies cell-to-cell variability following induction of cellular senescence. Aging Cell. 2017. https://doi.org/10.1111/acel.12632.

  • Hernandez-Segura A, de Jong TV, Melov S, Guryev V, Campisi J, Demaria M. Unmasking transcriptional heterogeneity in senescent cells. Curr Biol. 2017. https://doi.org/10.1016/j.cub.2017.07.033.

  • Kim YM, Byun HO, Jee BA, Cho H, Seo YH, Kim YS, et al. Implications of time-series gene expression profiles of replicative senescence. Aging Cell. 2013. https://doi.org/10.1111/acel.12087.

  • Coppé JP, Patil CK, Rodier F, Sun Y, Muñoz DP, Goldstein J, et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 2008. https://doi.org/10.1371/journal.pbio.0060301.

  • Rodier F, Coppé JP, Patil CK, Hoeijmakers WAM, Muñoz DP, Raza SR, et al. Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat Cell Biol. 2009. https://doi.org/10.1038/ncb1909.

  • Martínez-Zamudio RI, Roux PF, de Freitas JANLF, Robinson L, Doré G, Sun B, et al. AP-1 imprints a reversible transcriptional programme of senescent cells. Nat Cell Biol. 2020. https://doi.org/10.1038/s41556-020-0529-5.

  • Soufi A, Garcia MF, Jaroszewicz A, Osman N, Pellegrini M, Zaret KS. Pioneer transcription factors target partial DNA motifs on nucleosomes to initiate reprogramming. Cell. 2015. https://doi.org/10.1016/j.cell.2015.03.017.

  • Hettich J, Gebhardt JCM. Transcription factor target site search and gene regulation in a background of unspecific binding sites. J Theor Biol. 2018. https://doi.org/10.1016/j.jtbi.2018.05.037.

  • Cagnetta F, Michieletto D, Marenduzzo D. Nonequilibrium strategy for fast target search on the genome. Phys Rev Lett. 2020. https://doi.org/10.1103/PhysRevLett.124.198101.

  • Xin B, Rohs R. Relationship between histone modifications and transcription factor binding is protein family specific. Genome Res. 2018. https://doi.org/10.1101/gr.220079.116.

  • Zaret KS, Carroll JS. Pioneer transcription factors: establishing competence for gene expression. Genes Dev. 2011. https://doi.org/10.1101/gad.176826.111.

  • Iwafuchi-Doi M, Zaret KS. Cell fate control by pioneer transcription factors. Development. 2016. https://doi.org/10.1242/dev.133900.

  • Furlong EEM, Levine M. Developmental enhancers and chromosome topology. Science. 2018. https://doi.org/10.1126/science.aau0320.

  • Kim S, Shendure J. Mechanisms of interplay between transcription factors and the 3D genome. Mol Cell. 2019. https://doi.org/10.1016/j.molcel.2019.08.010.

  • Shaban HA, Suter DM. Individual activator and repressor transcription factors induce global changes in chromatin mobility. bioRxiv. 2022. https://doi.org/10.1101/2022.04.12.488001.

  • Narita M, Narita M, Krizhanovsky V, Nuñez S, Chicas A, Hearn SA, et al. A Novel role for high-mobility group A proteins in cellular senescence and heterochromatin formation. Cell. 2006;126:503–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chandra T. Senescence associated heterochromatic foci: SAHF. In: Bazett-Jones, D., Dellaire, G. (eds) The functional nucleus. Cham: Springer; 2016. https://doi.org/10.1007/978-3-319-38882-3_9.

  • Van Deursen JM. The role of senescent cells in ageing. Nature. 2014. https://doi.org/10.1038/nature13193.

  • Erdel F, Rippe K. Formation of chromatin subcompartments by phase separation. Biophys J. 2018;114:2262–70.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Michieletto D, Marenda M. Rheology and viscoelasticity of proteins and nucleic acids condensates. JACS Au. 2022. https://doi.org/10.1021/jacsau.2c00055.

  • Chiang M, Michieletto D, Brackley CA, Rattanavirotkul N, Mohammed H, Marenduzzo D, et al. Polymer modeling predicts chromosome reorganization in senescence. Cell Rep. 2019. https://doi.org/10.1016/j.celrep.2019.08.045.

  • Olan I, Parry AJ, Schoenfelder S, Narita M, Ito Y, Chan ASL, et al. Transcription-dependent cohesin repositioning rewires chromatin loops in cellular senescence. Nat Commun. 2020. https://doi.org/10.1038/s41467-020-19878-4.

  • Busslinger GA, Stocsits RR, Van Der Lelij P, Axelsson E, Tedeschi A, Galjart N, et al. Cohesin is positioned in mammalian genomes by transcription, CTCF and Wapl. Nature. 2017. https://doi.org/10.1038/nature22063.

  • Ocampo A, Reddy P, Martinez-Redondo P, Platero-Luengo A, Hatanaka F, Hishida T, et al. In vivo amelioration of age-associated hallmarks by partial reprogramming. Cell. 2016. https://doi.org/10.1016/j.cell.2016.11.052.

  • Puvvula PK, Desetty RD, Pineau P, Marchio A, Moon A, Dejean A, et al. Long noncoding RNA PANDA and scaffold-attachment-factor SAFA control senescence entry and exit. Nat Commun. 2014. https://doi.org/10.1038/ncomms6323.

  • An S, Cho SY, Kang J, Lee S, Kim HS, Min DJ, et al. Inhibition of 3-phosphoinositide-dependent protein kinase 1 (PDK1) can revert cellular senescence in human dermal fibroblasts. Proc Natl Acad Sci USA. 2020. https://doi.org/10.1073/pnas.1920338117.

  • Beauséjour CM, Krtolica A, Galimi F, Narita M, Lowe SW, Yaswen P, et al. Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J 2003. https://doi.org/10.1093/emboj/cdg417.

  • Dirac AMG, Bernards R. Reversal of senescence in mouse fibroblasts through lentiviral suppression of p53. J Biol Chem. 2003;278:11731–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Milanovic M, Fan DNY, Belenki D, Däbritz JHM, Zhao Z, Yu Y, et al. Senescence-associated reprogramming promotes cancer stemness. Nature. 2018. https://doi.org/10.1038/nature25167.

  • Hughes BK, Wallis R, Bishop CL. Yearning for machine learning: applications for the classification and characterisation of senescence. Cell Tissue Res. 2023. https://doi.org/10.1007/s00441-023-03768-4.

  • Teo YV, Rattanavirotkul N, Olova N, Salzano A, Quintanilla A, Tarrats N, et al. Notch signaling mediates secondary senescence. Cell Rep. 2019. https://doi.org/10.1016/j.celrep.2019.03.104.

  • Heckenbach I, Mkrtchyan GV, Ezra MB, Bakula D, Madsen JS, Nielsen, MH et al. Nuclear morphology is a deep learning biomarker of cellular senescence. Nat Aging. 2022. https://doi.org/10.1038/s43587-022-00263-3.

  • Shaban HA, Barth R, Bystricky K. Formation of correlated chromatin domains at nanoscale dynamic resolution during transcription. Nucleic Acids Res. 2018;46:e77–e77.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shaban HA, Barth R, Recoules L, Bystricky K. Hi-D: nanoscale mapping of nuclear dynamics in single living cells. Genome Biol. 2020;21:95.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barth R, Bystricky K, Shaban HA. Coupling chromatin structure and dynamics by live super-resolution imaging. Sci Adv. 2020;6. https://doi.org/10.1126/sciadv.aaz2196.

  • Shaban HA, Seeber A. Monitoring the spatio-temporal organization and dynamics of the genome. Nucleic Acids Res. 2020. https://doi.org/10.1093/nar/gkaa135.

  • Hsieh THS, Cattoglio C, Slobodyanyuk E, Hansen AS, Rando OJ, Tjian R, et al. Resolving the 3D landscape of transcription-linked mammalian chromatin folding. Mol Cell. 2020;78:539–553.e8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim S, Wysocka J. Deciphering the multi-scale, quantitative cis-regulatory code. Mol Cell. 2023;83:373–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stadhouders R, Vidal E, Serra F, Di Stefano B, Le Dily F, Quilez J, et al. Transcription factors orchestrate dynamic interplay between genome topology and gene regulation during cell reprogramming. Nat Genet. 2018. https://doi.org/10.1038/s41588-017-0030-7.

  • Mateo LJ, Murphy SE, Hafner A, Cinquini IS, Walker CA, Boettiger AN. Visualizing DNA folding and RNA in embryos at single-cell resolution. Nature. 2019. https://doi.org/10.1038/s41586-019-1035-4.

  • Chen KH, Boettiger AN, Moffitt JR, Wang S, Zhuang X. Spatially resolved, highly multiplexed RNA profiling in single cells. Science. 2015;348. https://doi.org/10.1126/science.aaa6090.

  • Xia C, Fan J, Emanuel G, Hao J, Zhuang X. Spatial transcriptome profiling by MERFISH reveals subcellular RNA compartmentalization and cell cycle-dependent gene expression. Proc Natl Acad Sci USA. 2019. https://doi.org/10.1073/pnas.1912459116.

  • Agbleke AA, Amitai A, Buenrostro JD, Chakrabarti A, Chu L, Hansen AS, et al. Advances in chromatin and chromosome research: perspectives from multiple fields. Mol Cell. 2020. https://doi.org/10.1016/j.molcel.2020.07.003.

  • Barth R, Fourel G, Shaban HA. Dynamics as a cause for the nanoscale organization of the genome. Nucleus. 2020;11:83–98.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    Stay Connected

    9FansLike
    4FollowersFollow
    0SubscribersSubscribe
    - Advertisement -spot_img

    Latest Articles

    %d bloggers like this: