Wednesday, September 27, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

Effect of transcutaneous spinal direct current stimulation on spasticity in upper motor neuron conditions: a systematic review and meta-analysis – Spinal Cord


  • Pandyan AD, Gregoric M, Barnes MP, Wood D, Van Wijck F, Burridge J, et al. Spasticity: clinical perceptions, neurological realities and meaningful measurement. Disabil Rehabil. 2005;27:2–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sheean G. The pathophysiology of spasticity. Eur J Neurol. 2002;9:3–9.

    Article 
    PubMed 

    Google Scholar
     

  • Ivanhoe CB, Reistetter TA. Spasticity: the misunderstood part of upper motor neuron syndrome. Am J Physl Med Rehabil. 2004;83:S3–9.

    Article 

    Google Scholar
     

  • Faist M, Mazevet D, Dietz V, Pierrot-Deseilligny E. A quantitative assessment of presynaptic inhibition of Ia afferents in spastics. Differences in hemiplegics and paraplegics. Brain. 1994;117:1449–55.

    Article 
    PubMed 

    Google Scholar
     

  • Crone C, Johnsen LL, Biering-Sørensen F, Nielsen JB. Appearance of reciprocal facilitation of ankle extensors from ankle flexors in patients with stroke or spinal cord injury. Brain. 2003;126:495–507.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boulenguez P, Liabeuf S, Bos R, Bras H, Jean-Xavier C, Brocard C, et al. Down-regulation of the potassium-chloride cotransporter KCC2 contributes to spasticity after spinal cord injury. Nat Med. 2010;16:302–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Holtz KA, Lipson R, Noonan VK, Kwon BK, Mills PB. Prevalence and effect of problematic spasticity after traumatic spinal cord injury. Arch Phys Med Rehabil. 2017;98:1132–8.

    Article 
    PubMed 

    Google Scholar
     

  • Pérez-Arredondo A, Cázares-Ramírez E, Carrillo-Mora P, Martinez-Vargas M, Cardenas-Rodriguez N, Coballase-Urrutia E, et al. Baclofen in the therapeutic of sequele of traumatic brain injury: spasticity. Clin Neuropharmacol. 2016;39:311–9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harb A, Kishner S. Modified ashworth scale. InStatPearls [Internet] 2022 May 8. StatPearls Publishing.

  • Ghai A, Garg N, Hooda S, Gupta T. Spasticity–Pathogenesis, prevention and treatment strategies. Saudi J Anaesth. 2013;7:453–60.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin A, Abogunrin S, Kurth H, Dinet J. Epidemiological, humanistic, and economic burden of illness of lower limb spasticity in adults: a systematic review. Neuropsychiatr Dis Treat. 2014;10:111–22.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lundström E, Smits A, Borg J, Terént A. Four-fold increase in direct costs of stroke survivors with spasticity compared with stroke survivors without spasticity: the first year after the event. Stroke. 2010;41:319–24.

    Article 
    PubMed 

    Google Scholar
     

  • Sandstedt P, Johansson S, Ytterberg C, Ingre C, Holmqvist LW, Kierkegaard M. Predictors of health related quality of life in people with amyotrophic lateral sclerosis. J Neurological Sci. 2016. https://doi.org/10.1016/j.jns.2016.09.034

  • Patel AT, Wein T, Bahroo LB, Wilczynski O, Rios CD, Murie-Fernandez M. Perspective of an International Online Patient and Caregiver Community on the Burden of spasticity and impact of botulinum neurotoxin therapy: survey study. JMIR Public Health Surveill. 2020;6:e17928.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kheder A, Nair KPS. Spasticity: pathophysiology, evaluation and management. Practical Neurol. 2012;12:289–98.

    Article 

    Google Scholar
     

  • Grunt S, Becher JG, Vermuelen RJ. Long-term outcome and adverse effects of selective dorsal rhizotomy in children with cerebral palsy: a systematic review. Dev Med Child Neurol. 2011;53:490–8.

    Article 
    PubMed 

    Google Scholar
     

  • Chang E, Gosh N, Yanni D, Lee S, Alexandru D, Mozaffar T. A review of spasticity treatments: pharmacological and interventional approaches. Crit Rev Phys Rehabil Med. 2013;25:11–22.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dietz V, Sinkjaer T. Spasticity. In: Verhaagen J, McDonald JW editors. Handbook of Clinical Neurology. 3rd ed. London: Elsevier; 2012. p. 197–211.

  • Rayegani SM, Babee M, Raeissadat SA. Rehabilitation medicine management of spasticity. In: Larrivee D, Rayegani SM editors. Neurostimulation and neuromodulation in contemporary therapeutic practice. London, United Kingdom: IntechOpen Limited; 2020. p. 87–109.

  • Eccles JC, Kostyuk PG, Schmidt RF. The effect of electric polarization of the spinal cord on central afferent fibres and on their excitatory synaptic action. J Physiol. 1962;162:138–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Winkler T, Hering P, Straube A. Spinal DC stimulation in humans modulates post-activation depression of the H-reflex depending on current polarity. Clin Neurophysiol. 2010;121:957–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cogiamanian F, Vergari M, Schiaffi E, Marceglia S, Ardolino G, Barbieri S, et al. Transcutaneous spinal cord direct current stimulation inhibits the lower limb nociceptive flexion reflex in human beings. Pain. 2011;152:370–5.

    Article 
    PubMed 

    Google Scholar
     

  • Priori A, Ciocca M, Parazzini M, Vergari M, Ferrucci R. Transcranial cerebellar direct current stimulation and transcutaneous spinal cord direct current stimulation as innovative tools for neuroscientists. J Physiol. 2014;592:3345–69.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahmed Z. Effects of cathodal trans-spinal direct current stimulation on mouse spinal network and complex multi joint movements. J Neurosci. 2013;33:14949–57.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahmed Z. Trans-spinal direct current stimulation alters muscle tone in mice with and without spinal cord injury with spasticity. J Neurosc.i. 2014;34:1701–9.

    Article 
    CAS 

    Google Scholar
     

  • Wieraszko A, Ahmed Z. Direct current-induced calcium trafficking in different neuronal preparations. Neural Plast. 2016. https://doi.org/10.1155/2016/2823735

  • Hofstoetter US, Mckay WB, Tansey KE, Mayr W, Kern H, Minassian K. Modification of spasticity by transcutaneous spinal cord stimulation in individuals with incomplete spinal cord injury. J Spinal Cord Med. 2014;37:201–11.

    Article 

    Google Scholar
     

  • Grecco LH, Li S, Michel S, Castillo-Saavedra L, Mourdoukoutas A, Bikson M, et al. Transcutaneous spinal stimulation as a therapeutic strategy for spinal cord injury: state of art. J Neurorestoratol. 2015;3:73–82.


    Google Scholar
     

  • Powell ES, Carrico C, Raithatha R, Salyers E, Ward A, Sawaki L. Transvertebral direct current stimulation paired with locomotor training in chronic spinal cord injury: a case study. NeuroRehabil. 2016;38:27–35.

    Article 

    Google Scholar
     

  • Gomez-Soriano J, Megia-Garcia A, Serrano-Munoz D, Osuagwu B, Taylor J. Non-invasive spinal direct current stimulation for spasticity therapy following spinal cord injury: mechanistic insights contributing to long-term treatment effects. J Physiol. 2019;597:2121–2.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paget-Blanc A, Chang JL, Saul M, Lin R, Ahmed Z, Volpe BT. Non-invasive treatment of patients with upper extremity spasticity following stroke using paired trans-spinal and peripheral direct current stimulation. Bioelectronic Med. 2019;5:1–10.

    Article 

    Google Scholar
     

  • Chenery B. Effect of transcutaneous spinal cord stimulation on spasticity, mobility, pain and sleep in community dwelling individuals post-stroke: a single case withdrawal design. Thesis for the degree of Master of Science in Movement Science. School of Health Sciences, 2019, University of Iceland.

  • Ardolino G, Bocci T, Nigro M, Vergari M, Di Fonzo A, Bonato S, et al. Spinal direct current stimulation (tsDCS) in hereditary spastic paraplegias (HSP): a sham-controlled crossover study. J Spinal Cord Med. 2018;44:46–53.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burke D. Spasticity as an adaptation to pyramidal tract injury. Adv Neurol. 1988;47:401–22.

    CAS 
    PubMed 

    Google Scholar
     

  • Savenkova AA, Sarana AM, Shcherbak SG, Gerasimenko YP, Moshonkina TR. Noninvasive spinal cord electrical stimulation in the complex rehabilitation of patients with spinal cord injury. Vopr Kurortol Fizioter Lech Fiz Kult. 2019;96:11–18.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Couban R. Covidence and Rayyan. JCHLA/ JABSC. 2016;37:124–6.


    Google Scholar
     

  • Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33:159–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Puzi AA, Sidek SN, Khairuddin IM, Yusof HM. Inter-rater and intra-rater reliability of quantitative upper limb spasticity evaluation based Modified Ashworth Scale tool. 2018 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES). (2018): 126–30.

  • Boyd R, Graham H. Objective measurement of clinical findings in the use of botulinum toxin type A for the management of children with cerebral palsy. Eur J Neurol. 1999;6:S23–35.

    Article 

    Google Scholar
     

  • Nordmark E, Anderson G. Wartenberg pendulum test: objective quantification of muscle tone in children with spastic diplegia undergoing selective dorsal rhizotomy. Dev Med Child Neurol. 2002;44:26–33.

    Article 
    PubMed 

    Google Scholar
     

  • Schieppati M. The Hoffmann reflex: a means of assessing spinal reflex excitability and its descending control in man. Prog Neurobiol. 1987;28:345–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Capaday C. Neurophysiological methods for studies of the motor system in freely moving human subjects. J Neurosci Methods. 1997;74:201–18.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Palmieri RM, Ingersoll CD, Hoffman MA. The Hoffmann Reflex: methodologic considerations and applications for use in sports medicine and athletic training research. J Athletic Training. 2004;39:268–77.


    Google Scholar
     

  • Verhagen AP, de Vet HCW, de Bie RA, Kessels AGH, Boers M, Bouter LM, et al. The Delphi list: a criteria list for quality assessment of randomized clinical trials for conducting systematic reviews developed by Delphi consensus. J Clin Epidemiol. 1998;51:1235–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sherrington C, Herbert RD, Maher CG, Moseley AM. PEDro. A database of randomized trials and systematic reviews in physiotherapy. Man Ther. 2000;5:223–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moseley AM, Herbert RD, Sherrington C, Maher CG. Evidence for physiotherapy practice: a survey of the Physiotherapy Evidence Database (PEDro). Aust J Physiother. 2002;48:43–9.

    Article 
    PubMed 

    Google Scholar
     

  • Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, et al. (eds). Cochrane Handbook for Systematic Review of Interventions. 2nd ed. Chichester (UK): John Wiley & Sons; 2019.

  • Dunlap WP, Cortina JM, Vaslow JB, Burke MJ. Meta-analysis of experiments with matched groups or repeated measures designs. Psycholog Methods. 1996;1:170–7.

    Article 

    Google Scholar
     

  • Picelli A, Chemello E, Castellazzi P, Roncari L, Waldner A, Saltuari L, et al. Combined effects of transcranial direct current stimulation (tDCS) and transcutaneous spinal direct current stimulation (tsDCS) on robot-assisted gait training in patients with chronic stroke: a pilot, double blind, randomized controlled trial. Restor Neurol Neurosci. 2015;33:357–68.

    PubMed 

    Google Scholar
     

  • Solopova IA, Sukhotinab IA, Zhvanskya DS, Ikoeva GA, Vissarionov SV, Baindurashvili AG, et al. Effects of spinal cord stimulation on motor functions in children with cerebral palsy. Neurosci Lett. 2017;639:192–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Inanici F, Brighton LN, Samejima S, Hofstetter CP, Moritz CT, et al. Transcutaneous spinal cord stimulation restores hand and arm function after spinal cord injury. IEEE Trans Neural Syst Rehabi Eng. 2021;29:310–9.

    Article 

    Google Scholar
     

  • Estes SP, Iddings JA, Field-Fote EC. Priming neural circuits to modulate spinal reflex excitability. Front Neurol. 2017;8:17.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Estes S, Zarkou A, Hope JM, Suri C, Field-Fote EC. Combined transcutaneous spinal stimulation and locomotor training to improve walking function and reduce spasticity in subacute spinal cord injury: a randomized study of clinical feasibility and efficacy. J Clin Med. 2021;10:1167.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berra E, Bergamaschi R, De Icco R, Dagna C, Perrotta A, Rovaris M, et al. The effects of transcutaneous spinal direct current stimulation on neuropathic pain in multiple sclerosis: clinical and neurophysiological assessment. Front Hum Neurosci. 2019;13:31.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Freyvert Y, Yong NA, Morikawa E, Zdunowsk S, Sarino ME, Gerasimenko Y, et al. Engaging cervical spinal circuitry with non-invasive spinal stimulation and buspirone to restore hand function in chronic motor complete patients. Sci Rep. 2018;8:15546.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ikoeva GA, Nikityuk IE, Kivoenko OI, Moshonkina TR, Solopova IA, Sukhotina IA, et al. Clinical, neurological, and neurophysiological evaluation of the efficiency of motor rehabilitation in children with cerebral palsy using robotic mechanotherapy and transcutaneous electrical stimulation of the spinal cord. Pediatr Traumatol Orthop Reconstr Surger. 2016;4:47–55.

    Article 

    Google Scholar
     

  • Shapkova EY, Pismennaya EV, Emelyannikov DV, Ivanenko Y. Exoskeleton walk training in paralyzed individuals benefits from transcutaneous lumbar cord tonic electrical stimulation. Fronti Neurosci. 2020;14:416.

    Article 

    Google Scholar
     

  • Hozo SP, Djulbegovic B, Hozo I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol. 2005;5:1–10.

    Article 

    Google Scholar
     

  • Altman DG, Martin BJ. “Standard deviations and standard errors”. BMJ. 2005;331:903.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lam M, Webb KA, Donnell. “Correlation between two variables in repeated measures,” in proceedings of the American Statistical Association Biometrics Section. Alexandria, VA, USA: 1999. p. 213–8.

  • Atkins D, Best D, Briss PA, Eccles M, Falck-Ytter Y, Flottorp S, et al. Education and debate: grading quality of evidence and strength of recommendations. BMJ. 2004;328:1490.

    Article 
    PubMed 

    Google Scholar
     

  • Garcia AM, Serrano-Muñoz D, Taylor J, Avendaño-Coy J, Gómez-Soriano J. Transcutaneous spinal cord stimulation and motor rehabilitation in spinal cord injury: a systematic review. Neurorehabil Neural Repair.2020;34:3–12.

    Article 

    Google Scholar
     

  • Grey MJ, Klinge K, Crone C, Lorentzen J, Biering-Sørensen F, Ravnborg M, et al. Post-activation depression of soleus stretch reflexes in healthy and spastic humans. Exp Brain Res. 2008;185:189–97.

    Article 
    PubMed 

    Google Scholar
     

  • Lim C-Y, Shin H-I. Noninvasive DC stimulation on neck changes MEP. Neuroreport. 2011;22:819–23.

    Article 
    PubMed 

    Google Scholar
     

  • Lamy J-C, Ho C, Badel A, Arrigo RT, Boakye M. Modulation of soleus H reflex by spinal DC stimulation in humans. J Neurophysiol. 2012;108:906–14.

    Article 
    PubMed 

    Google Scholar
     

  • Hubli M, Dietz V, Schrafl-Altermatt M, Bolliger M. Modulation of spinal neuronal excitability by spinal direct currents and locomotion after spinal cord injury. Clin Neurophysiol. 2013;124:1187–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bocci T, Vannini B, Torzini A, Mazzatenta A, Vergari M, Cogiamanian F, et al. Cathodal transcutaneous spinal direct current stimulation (tsDCS) improves motor unit recruitment in healthy subjects. Neurosci Lett. 2014;578:75–79.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dongés SC, D’Amico JM, Butler JE, Taylor JL. The effects of cervical transcutaneous spinal direct current stimulation on motor pathways supplying the upper limb in humans. PLoS One. 2017;12:e0172333.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmitt DE, Hill RH, Grillner S. The spinal GABAergic system is a strong modulator of burst frequency in the lamprey locomotor network. J Neurophysiol. 2004;92:2357–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ahmed Z, Wieraszko A. Trans-spinal direct current enhances corticospinal output and stimulation-evoked release of 2 glutamate analog, D-2, 33H-aspartic acid. J Appl Physiol. 2012;112:1576–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sunnerhagen KS. Stop using the Ashworth scale for the assessment of spasticity. J Neurol Neurosurg Psychiatry. 2010;81:2–2.

    Article 
    PubMed 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    Stay Connected

    9FansLike
    4FollowersFollow
    0SubscribersSubscribe
    - Advertisement -spot_img

    Latest Articles

    %d bloggers like this: