Saturday, September 30, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

Effects of the energy balance transition on bone mass and strength – Scientific Reports


  • Popkin, B. M., Adair, L. S. & Ng, S. W. Global nutrition transition and the pandemic of obesity in developing countries. Nutr. Rev. 70, 3–21 (2012).

    PubMed 

    Google Scholar
     

  • Ng, M. et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 384, 766–781 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in diabetes since 1980: A pooled analysis of 751 population-based studies with 4.4 million participants. Lancet 387, 1513–1530 (2016).


    Google Scholar
     

  • Roth, G. A. et al. Global burden of cardiovascular diseases and risk factors, 1990–2019: Update from the GBD 2019 Study. J. Am. Coll. Cardiol. 76, 2982–3021 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gaziano, J. M. Fifth phase of the epidemiologic transition: The age of obesity and inactivity. JAMA 303, 275–276 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Ogden, C. L., Carroll, M. D., Kit, B. K. & Flegal, K. M. Prevalence of childhood and adult obesity in the United States, 2011–2012. JAMA 311, 806–814 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • NCD Risk Factor Collaboration (NCD-RisC). Rising rural body-mass index is the main driver of the global obesity epidemic in adults. Nature 569, 260–264 (2019).

    ADS 

    Google Scholar
     

  • Weaver, C. M. et al. The National Osteoporosis Foundation’s position statement on peak bone mass development and lifestyle factors: A systematic review and implementation recommendations. Osteoporos. Int. 27, 1281–1286 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Piñar-Gutierrez, A., García-Fontana, C., García-Fontana, B. & Muñoz-Torres, M. Obesity and bone health: A complex relationship. Int. J. Mol. Sci. 23, 8303 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goodship, A. E. & Cunningham, J. L. Pathophysiology of functional adaptation of bone in remodeling and repair in vivo. In Bone Mechanics Handbook, Vol. 26 (ed. Cowin, S.) 1–31 (CRC Press, 2001).

  • Ruff, C., Holt, B. & Trinkaus, E. Who’s afraid of the big bad Wolff?: “Wolff’s Law” and bone functional adaptation. Am. J. Phys. Anthropol. 129, 484–498 (2006).

    PubMed 

    Google Scholar
     

  • Ozcivici, E. et al. Mechanical signals as anabolic agents in bone. Nat. Rev. Rheumatol. 6, 50–59 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sievänen, H. Immobilization and bone structure in humans. Arch. Biochem. Biophys. 503, 146–152 (2010).

    PubMed 

    Google Scholar
     

  • Ruff, C. B. Gracilization of the modern human skeleton. Am. Sci. 94, 508–514 (2006).


    Google Scholar
     

  • Sievänen, H. et al. Fragile external phenotype of modern human proximal femur in comparison with medieval bone. J. Bone Miner. Res. 22, 537–543 (2007).

    PubMed 

    Google Scholar
     

  • Lieberman, D. E. The Story of the Human Body: Evolution, Health, and Disease (Pantheon, 2013).


    Google Scholar
     

  • Wallace, I. J., Rubin, C. T. & Lieberman, D. E. Osteoporosis. Evol. Med. Public Health 2015, 343 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pagnotti, G. M. et al. Combating osteoporosis and obesity with exercise: Leveraging cell mechanosensitivity. Nat. Rev. Endocrinol. 15, 339–355 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, W.-C., Guntur, A. R., Long, F. & Rosen, C. J. Energy metabolism of the osteoblast: Implications for osteoporosis. Endocr. Rev. 38, 255–266 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Riddle, R. C. & Clemens, T. L. Bone cell bioenergetics and skeletal energy homeostasis. Physiol. Rev. 97, 667–698 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grinspoon, S. et al. Prevalence and predictive factors for regional osteopenia in women with anorexia nervosa. Ann. Intern. Med. 133, 790–794 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kin, C. F. et al. Experience of famine and bone health in post-menopausal women. Int. J. Epidemiol. 36, 1143–1150 (2007).

    PubMed 

    Google Scholar
     

  • Marcus, E.-L. & Menczel, J. Higher prevalence of osteoporosis among female Holocaust survivors. Osteoporos. Int. 18, 1501–1506 (2007).

    PubMed 

    Google Scholar
     

  • Perkins, J. M., Subramanian, S. V., Davey Smith, G. & Özaltin, E. Adult height, nutrition, and population health. Nutr. Rev. 74, 149–165 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lecka-Czernik, B., Stechschulte, L. A., Czernik, P. J. & Dowling, A. R. High bone mass in adult mice with diet-induced obesity results from a combination of initial increase in bone mass followed by attenuation in bone formation; implications for high bone mass and decreased bone quality in obesity. Mol. Cell. Endocrinol. 410, 35–41 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Devlin, M. J. et al. Differential effects of high fat diet and diet-induced obesity on skeletal acquisition in female C57BL/6J vs FVB/NJ mice. Bone Rep. 8, 204–214 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Silva, M. J. et al. Effects of high-fat diet and body mass on bone morphology and mechanical properties in 1100 advanced intercross mice. J. Bone Miner. Res. 34, 711–725 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Beck, T. J. et al. Does obesity really make the femur stronger? BMD, geometry, and fracture incidence in the Women’s Health Initiative-Observational Study. J. Bone Miner. Res. 24, 1369–1379 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Evans, A. L., Paggiosi, M. A., Eastell, R. & Walsh, J. S. Bone density, microstructure and strength in obese and normal weight men and women in younger and older adulthood. J. Bone Miner. Res. 30, 920–928 (2015).

    PubMed 

    Google Scholar
     

  • Leonard, M. B. et al. Tibia and radius bone geometry and volumetric density in obese compared to non-obese adolescents. Bone 73, 69–76 (2015).

    PubMed 

    Google Scholar
     

  • Maïmoun, L. et al. Modification of bone mineral density, bone geometry and volumetric BMD in young women with obesity. Bone 150, 116005 (2021).

    PubMed 

    Google Scholar
     

  • Singhal, V. et al. Load-to-strength ratio at the radius is higher in adolescent and young adult females with obesity compared to normal-weight controls. Bone 164, 116515 (2022).

    PubMed 

    Google Scholar
     

  • Compston, J. E. et al. Obesity is not protective against fracture in postmenopausal women: GLOW. Am. J. Med. 124, 1043–1050 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rikkonen, T. et al. Obesity is associated with early hip fracture risk in postmenopausal women: A 25-year follow-up. Osteoporos. Int. 32, 769–777 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Gong, G. et al. Bone mineral density of recent African immigrants in the United States. J. Natl. Med. Assoc. 98, 746–752 (2006).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wallace, I. J. et al. Worldwide variation in hip fracture incidence weakly aligns with genetic divergence between populations. Osteoporos. Int. 27, 2867–2872 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Kidder, A. V. An Introduction to the Study of Southwestern Archaeology with a Preliminary Account of the Excavations at Pecos (Yale University Press, 1924).


    Google Scholar
     

  • Kidder, A. V. Pecos, New Mexico: Archaeological Notes (Phillips Academy, 1958).


    Google Scholar
     

  • Kraft, T. S. et al. The energetics of uniquely human subsistence strategies. Science 374, 0130 (2021).


    Google Scholar
     

  • Connor, W. E. et al. The plasma lipids, lipoproteins, and diet of the Tarahumara Indians of Mexico. Am. J. Clin. Nutr. 31, 1131–1142 (1978).

    CAS 
    PubMed 

    Google Scholar
     

  • Cerqueira, M. T., Fry, M. M. & Connor, W. E. The food and nutrient intakes of the Tarahumara Indians of Mexico. Am. J. Clin. Nutr. 32, 905–915 (1979).

    CAS 
    PubMed 

    Google Scholar
     

  • Hrdlička, A. Physiological and Medical Observations Among the Indians of Southwestern United States and Northern Mexico (Smithsonian Institution, 1908).


    Google Scholar
     

  • Adams, C. M. et al. A study of the dietary background and nutriture of the Navajo Indian. J. Nutr. 60, 1–85 (1956).

    CAS 
    PubMed 

    Google Scholar
     

  • Hooton, E. A. The Indians of Pecos Pueblo: A Study of Their Skeletal Remains (Yale University Press, 1930).


    Google Scholar
     

  • Morgan, M. E. Pecos Pueblo Revisited: The Biological and Social Context (Harvard University Press, 2010).


    Google Scholar
     

  • Ruff, C. B. & Hayes, W. C. Cross-sectional geometry of Pecos Pueblo femora and tibiae—A biomechanical investigation: I. Method and general patterns of variation. Am. J. Phys. Anthropol. 60, 359–381 (1983).

    CAS 
    PubMed 

    Google Scholar
     

  • Ruff, C. B. & Hayes, W. C. Cross-sectional geometry of Pecos Pueblo femora and tibiae—A biomechanical investigation: II. Sex, age, side differences. Am. J. Phys. Anthropol. 60, 383–400 (1983).

    CAS 
    PubMed 

    Google Scholar
     

  • Ruff, C. B., Walker, A. & Trinkaus, E. Postcranial robusticity in Homo, III: Ontogeny. Am. J. Phys. Anthropol. 93, 35–54 (1994).

    CAS 
    PubMed 

    Google Scholar
     

  • Ruff, C. B. Structural analyses of postcranial skeletal remains. In Pecos Pueblo Revisited: The Biological and Social Context (ed. Morgan, M. E.) 93–108 (Harvard University Press, 2010).


    Google Scholar
     

  • Ruff, C. B. A reassessment of demographic estimates for Pecos Pueblo. Am. J. Phys. Anthropol. 54, 147–151 (1981).


    Google Scholar
     

  • Angel, A. & Cisneros, H. B. Modification of regression equations used to estimate stature in Mesoamerican skeletal remains. Am. J. Phys. Anthropol. 125, 264–265 (2004).

    PubMed 

    Google Scholar
     

  • Tague, R. G. The obstetric pelvis of Pecos Pueblo. In Pecos Pueblo Revisited: The Biological and Social Context (ed. Morgan, M. E.) 109–1128 (Harvard University Press, 2010).


    Google Scholar
     

  • Ruff, C. B., Trinkaus, E. & Holliday, T. W. Body mass and encephalization in Pleistocene Homo. Nature 387, 173–176 (1997).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ruff, C., Niskanen, M., Junno, J. A. & Jamison, P. Body mass prediction from stature and bi-iliac breadth in two high latitude populations, with application to earlier higher latitude humans. J. Hum. Evol. 48, 381–392 (2005).

    PubMed 

    Google Scholar
     

  • Ruff, C. B. et al. Lower limb articular scaling and body mass estimation in Pliocene and Pleistocene hominins. J. Hum. Evol. 115, 85–111 (2018).

    PubMed 

    Google Scholar
     

  • World Health Organization. Obesity: Preventing and Managing the Global Epidemic (World Health Organization, 2000).


    Google Scholar
     

  • Nuttall, F. Q. Body mass index: Obesity, BMI, and health. Nutr. Today 50, 117–128 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gaesser, G. A. & Angadi, S. S. Obesity treatment: Weight loss versus increasing fitness and physical activity for reducing health risks. iScience 24, 102995 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Edgar, H. J. H. et al. New Mexico Decedent Image Database (University of New Mexico, 2020).


    Google Scholar
     

  • Deyaert, J. et al. Attaching metabolic expenditures to standard occupational classification systems: Perspectives from time-use research. BMC Public Health 17, 620 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruff, C. B. Biomechanical analyses of archaeological human skeletons. In Biological Anthropology of the Human Skeleton (eds. Katzenberg, M. A. & Grauer, A. L.) 189–224 (Wiley, 2019).


    Google Scholar
     

  • Macdonald, H. M., Cooper, D. M. & McKay, H. A. Anterior-posterior bending strength at the tibial shaft increases with physical activity in boys: Evidence for non-uniform geometric adaptation. Osteoporos. Int. 20, 61–70 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Shaw, C. N. & Stock, J. T. Intensity, repetitiveness, and directionality of habitual adolescent mobility patterns influence the tibial diaphysis morphology of athletes. Am. J. Phys. Anthropol. 140, 149–159 (2009).

    PubMed 

    Google Scholar
     

  • Rantalainen, T. et al. Direction-specific diaphyseal geometry and mineral mass distribution of tibia and fibula: A pQCT study of female athletes representing different exercise loading types. Calcif. Tissue Int. 86, 447–454 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Bogin, B. & Varela-Silva, M. I. Leg length, body proportion, and health: A review with a note on beauty. Int. J. Environ. Res. Public Health 7, 1047–1075 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carter, D. R. Anisotropic analysis of strain rosette information from cortical bone. J. Biomech. 11, 199–202 (1978).

    CAS 
    PubMed 

    Google Scholar
     

  • Burr, D. B. et al. In vivo measurement of human tibial strains during vigorous activity. Bone 18, 405–410 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • Yang, P. F. et al. Torsion and antero-posterior bending in the in vivo human tibia loading regimes during walking and running. PLoS ONE 9, e94525 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sumner, D. R. et al. Computed tomographic measurement of cortical bone geometry. J. Biomech. 22, 649–653 (1989).

    CAS 
    PubMed 

    Google Scholar
     

  • Doube, M. et al. BoneJ: Free and extensible bone image analysis in ImageJ. Bone 47, 1076–1079 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coleman, M. N. & Colbert, M. W. CT thresholding protocols for taking measurements on three-dimensional models. Am. J. Phys. Anthropol. 133, 723–725 (2007).

    PubMed 

    Google Scholar
     

  • Ruff, C. B. Body size, body shape, and long bone strength in modern humans. J. Hum. Evol. 38, 269–290 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Wallace, I. J. et al. Age-related variation in limb bone diaphyseal structure among Inuit foragers from Point Hope, northern Alaska. Arch. Osteoporos. 9, 202 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Ruff, C. B. Morphological adaptation to climate in modern and fossil hominids. Am. J. Phys. Anthropol. 37, 65–107 (1994).


    Google Scholar
     

  • Kanis, J. A. et al. A systematic review of hip fracture incidence and probability of fracture worldwide. Osteoporos. Int. 23, 2239–2256 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shlisky, J. et al. Calcium deficiency worldwide: Prevalence of inadequate intakes and associated health outcomes. Ann. N. Y. Acad. Sci. 1512, 10–28 (2022).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Devlin, M. J. et al. Caloric restriction leads to high marrow adiposity and low bone mass in growing mice. J. Bone Miner. Res. 25, 2078–2088 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Warden, S. J. et al. Physical activity when young provides lifelong benefits to cortical bone size and strength in men. Proc. Natl. Acad. Sci. U.S.A. 111, 5337–5342 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wallace, I. J. et al. Focal enhancement of the skeleton to exercise correlates with responsivity of bone marrow mesenchymal stem cells rather than peak external forces. J. Exp. Biol. 218, 3002–3009 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lieberman, D. E. et al. Optimization of bone growth and remodeling in response to loading in tapered mammalian limbs. J. Exp. Biol. 206, 3125–3138 (2003).

    PubMed 

    Google Scholar
     

  • Wallace, I. J. et al. Physical activity alters limb bone structure but not entheseal morphology. J. Hum. Evol. 107, 14–18 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garn, S. M., Guzmán, M. A. & Wagner, B. Subperiosteal gain and endosteal loss in protein-calorie malnutrition. Am. J. Phys. Anthropol. 30, 153–155 (1969).

    CAS 
    PubMed 

    Google Scholar
     

  • Garn, S. M. The Earlier Gain and the Later Loss of Cortical Bone in Nutritional Perspective (Charles C. Thomas, 1970).


    Google Scholar
     

  • DiVasta, A. D. et al. Bone cross-sectional geometry in adolescents and young women with anorexia nervosa: A hip structural analysis study. Osteoporos. Int. 18, 797–804 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frølich, J. et al. The role of body weight on bone in anorexia nervosa: A HR-pQCT study. Calcif. Tissue Int. 101, 24–33 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guthold, R., Stevens, G. A., Riley, L. M. & Bull, F. C. Worldwide trends in insufficient physical activity from 2001 to 2016: A pooled analysis of 358 population-based surveys with 1.9 million participants. Lancet Glob. Health 6, e1077–e1086 (2018).

    PubMed 

    Google Scholar
     

  • Lucena, J. R. M., Coimbra, C. E. A., Passos de Silva, C. M. F. & Welch, J. R. Prevalence of physical inactivity and associated socioeconomic indicators in indigenous Xavante communities in Central Brazil. BMC Nutr. 2, 37 (2016).


    Google Scholar
     

  • Kraft, T. S. et al. Nutrition transition in 2 lowland Bolivian subsistence populations. Am. J. Clin. Nutr. 108, 1183–1195 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wallace, I. J. et al. Knee osteoarthritis risk in non-industrial societies undergoing an energy balance transition: Evidence from the indigenous Tarahumara of Mexico. Ann. Rheum. Dis. 78, 1693–1698 (2019).

    PubMed 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    Stay Connected

    9FansLike
    4FollowersFollow
    0SubscribersSubscribe
    - Advertisement -spot_img

    Latest Articles

    %d bloggers like this: