Popkin, B. M., Adair, L. S. & Ng, S. W. Global nutrition transition and the pandemic of obesity in developing countries. Nutr. Rev. 70, 3–21 (2012).
Ng, M. et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 384, 766–781 (2014).
NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in diabetes since 1980: A pooled analysis of 751 population-based studies with 4.4 million participants. Lancet 387, 1513–1530 (2016).
Roth, G. A. et al. Global burden of cardiovascular diseases and risk factors, 1990–2019: Update from the GBD 2019 Study. J. Am. Coll. Cardiol. 76, 2982–3021 (2020).
Gaziano, J. M. Fifth phase of the epidemiologic transition: The age of obesity and inactivity. JAMA 303, 275–276 (2010).
Ogden, C. L., Carroll, M. D., Kit, B. K. & Flegal, K. M. Prevalence of childhood and adult obesity in the United States, 2011–2012. JAMA 311, 806–814 (2014).
NCD Risk Factor Collaboration (NCD-RisC). Rising rural body-mass index is the main driver of the global obesity epidemic in adults. Nature 569, 260–264 (2019).
Weaver, C. M. et al. The National Osteoporosis Foundation’s position statement on peak bone mass development and lifestyle factors: A systematic review and implementation recommendations. Osteoporos. Int. 27, 1281–1286 (2016).
Piñar-Gutierrez, A., García-Fontana, C., García-Fontana, B. & Muñoz-Torres, M. Obesity and bone health: A complex relationship. Int. J. Mol. Sci. 23, 8303 (2022).
Goodship, A. E. & Cunningham, J. L. Pathophysiology of functional adaptation of bone in remodeling and repair in vivo. In Bone Mechanics Handbook, Vol. 26 (ed. Cowin, S.) 1–31 (CRC Press, 2001).
Ruff, C., Holt, B. & Trinkaus, E. Who’s afraid of the big bad Wolff?: “Wolff’s Law” and bone functional adaptation. Am. J. Phys. Anthropol. 129, 484–498 (2006).
Ozcivici, E. et al. Mechanical signals as anabolic agents in bone. Nat. Rev. Rheumatol. 6, 50–59 (2010).
Sievänen, H. Immobilization and bone structure in humans. Arch. Biochem. Biophys. 503, 146–152 (2010).
Ruff, C. B. Gracilization of the modern human skeleton. Am. Sci. 94, 508–514 (2006).
Sievänen, H. et al. Fragile external phenotype of modern human proximal femur in comparison with medieval bone. J. Bone Miner. Res. 22, 537–543 (2007).
Lieberman, D. E. The Story of the Human Body: Evolution, Health, and Disease (Pantheon, 2013).
Wallace, I. J., Rubin, C. T. & Lieberman, D. E. Osteoporosis. Evol. Med. Public Health 2015, 343 (2015).
Pagnotti, G. M. et al. Combating osteoporosis and obesity with exercise: Leveraging cell mechanosensitivity. Nat. Rev. Endocrinol. 15, 339–355 (2019).
Lee, W.-C., Guntur, A. R., Long, F. & Rosen, C. J. Energy metabolism of the osteoblast: Implications for osteoporosis. Endocr. Rev. 38, 255–266 (2017).
Riddle, R. C. & Clemens, T. L. Bone cell bioenergetics and skeletal energy homeostasis. Physiol. Rev. 97, 667–698 (2017).
Grinspoon, S. et al. Prevalence and predictive factors for regional osteopenia in women with anorexia nervosa. Ann. Intern. Med. 133, 790–794 (2000).
Kin, C. F. et al. Experience of famine and bone health in post-menopausal women. Int. J. Epidemiol. 36, 1143–1150 (2007).
Marcus, E.-L. & Menczel, J. Higher prevalence of osteoporosis among female Holocaust survivors. Osteoporos. Int. 18, 1501–1506 (2007).
Perkins, J. M., Subramanian, S. V., Davey Smith, G. & Özaltin, E. Adult height, nutrition, and population health. Nutr. Rev. 74, 149–165 (2016).
Lecka-Czernik, B., Stechschulte, L. A., Czernik, P. J. & Dowling, A. R. High bone mass in adult mice with diet-induced obesity results from a combination of initial increase in bone mass followed by attenuation in bone formation; implications for high bone mass and decreased bone quality in obesity. Mol. Cell. Endocrinol. 410, 35–41 (2015).
Devlin, M. J. et al. Differential effects of high fat diet and diet-induced obesity on skeletal acquisition in female C57BL/6J vs FVB/NJ mice. Bone Rep. 8, 204–214 (2018).
Silva, M. J. et al. Effects of high-fat diet and body mass on bone morphology and mechanical properties in 1100 advanced intercross mice. J. Bone Miner. Res. 34, 711–725 (2019).
Beck, T. J. et al. Does obesity really make the femur stronger? BMD, geometry, and fracture incidence in the Women’s Health Initiative-Observational Study. J. Bone Miner. Res. 24, 1369–1379 (2009).
Evans, A. L., Paggiosi, M. A., Eastell, R. & Walsh, J. S. Bone density, microstructure and strength in obese and normal weight men and women in younger and older adulthood. J. Bone Miner. Res. 30, 920–928 (2015).
Leonard, M. B. et al. Tibia and radius bone geometry and volumetric density in obese compared to non-obese adolescents. Bone 73, 69–76 (2015).
Maïmoun, L. et al. Modification of bone mineral density, bone geometry and volumetric BMD in young women with obesity. Bone 150, 116005 (2021).
Singhal, V. et al. Load-to-strength ratio at the radius is higher in adolescent and young adult females with obesity compared to normal-weight controls. Bone 164, 116515 (2022).
Compston, J. E. et al. Obesity is not protective against fracture in postmenopausal women: GLOW. Am. J. Med. 124, 1043–1050 (2011).
Rikkonen, T. et al. Obesity is associated with early hip fracture risk in postmenopausal women: A 25-year follow-up. Osteoporos. Int. 32, 769–777 (2021).
Gong, G. et al. Bone mineral density of recent African immigrants in the United States. J. Natl. Med. Assoc. 98, 746–752 (2006).
Wallace, I. J. et al. Worldwide variation in hip fracture incidence weakly aligns with genetic divergence between populations. Osteoporos. Int. 27, 2867–2872 (2016).
Kidder, A. V. An Introduction to the Study of Southwestern Archaeology with a Preliminary Account of the Excavations at Pecos (Yale University Press, 1924).
Kidder, A. V. Pecos, New Mexico: Archaeological Notes (Phillips Academy, 1958).
Kraft, T. S. et al. The energetics of uniquely human subsistence strategies. Science 374, 0130 (2021).
Connor, W. E. et al. The plasma lipids, lipoproteins, and diet of the Tarahumara Indians of Mexico. Am. J. Clin. Nutr. 31, 1131–1142 (1978).
Cerqueira, M. T., Fry, M. M. & Connor, W. E. The food and nutrient intakes of the Tarahumara Indians of Mexico. Am. J. Clin. Nutr. 32, 905–915 (1979).
Hrdlička, A. Physiological and Medical Observations Among the Indians of Southwestern United States and Northern Mexico (Smithsonian Institution, 1908).
Adams, C. M. et al. A study of the dietary background and nutriture of the Navajo Indian. J. Nutr. 60, 1–85 (1956).
Hooton, E. A. The Indians of Pecos Pueblo: A Study of Their Skeletal Remains (Yale University Press, 1930).
Morgan, M. E. Pecos Pueblo Revisited: The Biological and Social Context (Harvard University Press, 2010).
Ruff, C. B. & Hayes, W. C. Cross-sectional geometry of Pecos Pueblo femora and tibiae—A biomechanical investigation: I. Method and general patterns of variation. Am. J. Phys. Anthropol. 60, 359–381 (1983).
Ruff, C. B. & Hayes, W. C. Cross-sectional geometry of Pecos Pueblo femora and tibiae—A biomechanical investigation: II. Sex, age, side differences. Am. J. Phys. Anthropol. 60, 383–400 (1983).
Ruff, C. B., Walker, A. & Trinkaus, E. Postcranial robusticity in Homo, III: Ontogeny. Am. J. Phys. Anthropol. 93, 35–54 (1994).
Ruff, C. B. Structural analyses of postcranial skeletal remains. In Pecos Pueblo Revisited: The Biological and Social Context (ed. Morgan, M. E.) 93–108 (Harvard University Press, 2010).
Ruff, C. B. A reassessment of demographic estimates for Pecos Pueblo. Am. J. Phys. Anthropol. 54, 147–151 (1981).
Angel, A. & Cisneros, H. B. Modification of regression equations used to estimate stature in Mesoamerican skeletal remains. Am. J. Phys. Anthropol. 125, 264–265 (2004).
Tague, R. G. The obstetric pelvis of Pecos Pueblo. In Pecos Pueblo Revisited: The Biological and Social Context (ed. Morgan, M. E.) 109–1128 (Harvard University Press, 2010).
Ruff, C. B., Trinkaus, E. & Holliday, T. W. Body mass and encephalization in Pleistocene Homo. Nature 387, 173–176 (1997).
Ruff, C., Niskanen, M., Junno, J. A. & Jamison, P. Body mass prediction from stature and bi-iliac breadth in two high latitude populations, with application to earlier higher latitude humans. J. Hum. Evol. 48, 381–392 (2005).
Ruff, C. B. et al. Lower limb articular scaling and body mass estimation in Pliocene and Pleistocene hominins. J. Hum. Evol. 115, 85–111 (2018).
World Health Organization. Obesity: Preventing and Managing the Global Epidemic (World Health Organization, 2000).
Nuttall, F. Q. Body mass index: Obesity, BMI, and health. Nutr. Today 50, 117–128 (2015).
Gaesser, G. A. & Angadi, S. S. Obesity treatment: Weight loss versus increasing fitness and physical activity for reducing health risks. iScience 24, 102995 (2021).
Edgar, H. J. H. et al. New Mexico Decedent Image Database (University of New Mexico, 2020).
Deyaert, J. et al. Attaching metabolic expenditures to standard occupational classification systems: Perspectives from time-use research. BMC Public Health 17, 620 (2017).
Ruff, C. B. Biomechanical analyses of archaeological human skeletons. In Biological Anthropology of the Human Skeleton (eds. Katzenberg, M. A. & Grauer, A. L.) 189–224 (Wiley, 2019).
Macdonald, H. M., Cooper, D. M. & McKay, H. A. Anterior-posterior bending strength at the tibial shaft increases with physical activity in boys: Evidence for non-uniform geometric adaptation. Osteoporos. Int. 20, 61–70 (2009).
Shaw, C. N. & Stock, J. T. Intensity, repetitiveness, and directionality of habitual adolescent mobility patterns influence the tibial diaphysis morphology of athletes. Am. J. Phys. Anthropol. 140, 149–159 (2009).
Rantalainen, T. et al. Direction-specific diaphyseal geometry and mineral mass distribution of tibia and fibula: A pQCT study of female athletes representing different exercise loading types. Calcif. Tissue Int. 86, 447–454 (2010).
Bogin, B. & Varela-Silva, M. I. Leg length, body proportion, and health: A review with a note on beauty. Int. J. Environ. Res. Public Health 7, 1047–1075 (2010).
Carter, D. R. Anisotropic analysis of strain rosette information from cortical bone. J. Biomech. 11, 199–202 (1978).
Burr, D. B. et al. In vivo measurement of human tibial strains during vigorous activity. Bone 18, 405–410 (1996).
Yang, P. F. et al. Torsion and antero-posterior bending in the in vivo human tibia loading regimes during walking and running. PLoS ONE 9, e94525 (2014).
Sumner, D. R. et al. Computed tomographic measurement of cortical bone geometry. J. Biomech. 22, 649–653 (1989).
Doube, M. et al. BoneJ: Free and extensible bone image analysis in ImageJ. Bone 47, 1076–1079 (2010).
Coleman, M. N. & Colbert, M. W. CT thresholding protocols for taking measurements on three-dimensional models. Am. J. Phys. Anthropol. 133, 723–725 (2007).
Ruff, C. B. Body size, body shape, and long bone strength in modern humans. J. Hum. Evol. 38, 269–290 (2000).
Wallace, I. J. et al. Age-related variation in limb bone diaphyseal structure among Inuit foragers from Point Hope, northern Alaska. Arch. Osteoporos. 9, 202 (2014).
Ruff, C. B. Morphological adaptation to climate in modern and fossil hominids. Am. J. Phys. Anthropol. 37, 65–107 (1994).
Kanis, J. A. et al. A systematic review of hip fracture incidence and probability of fracture worldwide. Osteoporos. Int. 23, 2239–2256 (2012).
Shlisky, J. et al. Calcium deficiency worldwide: Prevalence of inadequate intakes and associated health outcomes. Ann. N. Y. Acad. Sci. 1512, 10–28 (2022).
Devlin, M. J. et al. Caloric restriction leads to high marrow adiposity and low bone mass in growing mice. J. Bone Miner. Res. 25, 2078–2088 (2010).
Warden, S. J. et al. Physical activity when young provides lifelong benefits to cortical bone size and strength in men. Proc. Natl. Acad. Sci. U.S.A. 111, 5337–5342 (2014).
Wallace, I. J. et al. Focal enhancement of the skeleton to exercise correlates with responsivity of bone marrow mesenchymal stem cells rather than peak external forces. J. Exp. Biol. 218, 3002–3009 (2015).
Lieberman, D. E. et al. Optimization of bone growth and remodeling in response to loading in tapered mammalian limbs. J. Exp. Biol. 206, 3125–3138 (2003).
Wallace, I. J. et al. Physical activity alters limb bone structure but not entheseal morphology. J. Hum. Evol. 107, 14–18 (2017).
Garn, S. M., Guzmán, M. A. & Wagner, B. Subperiosteal gain and endosteal loss in protein-calorie malnutrition. Am. J. Phys. Anthropol. 30, 153–155 (1969).
Garn, S. M. The Earlier Gain and the Later Loss of Cortical Bone in Nutritional Perspective (Charles C. Thomas, 1970).
DiVasta, A. D. et al. Bone cross-sectional geometry in adolescents and young women with anorexia nervosa: A hip structural analysis study. Osteoporos. Int. 18, 797–804 (2007).
Frølich, J. et al. The role of body weight on bone in anorexia nervosa: A HR-pQCT study. Calcif. Tissue Int. 101, 24–33 (2017).
Guthold, R., Stevens, G. A., Riley, L. M. & Bull, F. C. Worldwide trends in insufficient physical activity from 2001 to 2016: A pooled analysis of 358 population-based surveys with 1.9 million participants. Lancet Glob. Health 6, e1077–e1086 (2018).
Lucena, J. R. M., Coimbra, C. E. A., Passos de Silva, C. M. F. & Welch, J. R. Prevalence of physical inactivity and associated socioeconomic indicators in indigenous Xavante communities in Central Brazil. BMC Nutr. 2, 37 (2016).
Kraft, T. S. et al. Nutrition transition in 2 lowland Bolivian subsistence populations. Am. J. Clin. Nutr. 108, 1183–1195 (2018).
Wallace, I. J. et al. Knee osteoarthritis risk in non-industrial societies undergoing an energy balance transition: Evidence from the indigenous Tarahumara of Mexico. Ann. Rheum. Dis. 78, 1693–1698 (2019).