Sunday, December 3, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

Electroconvulsive therapy is associated with increased immunoreactivity of neuroplasticity markers in the hippocampus of depressed patients – Translational Psychiatry


  • Husain MM, Rush AJ, Fink M, Knapp R, Petrides G, Rummans T, et al. Speed of response and remission in major depressive disorder with acute electroconvulsive therapy (ECT): a Consortium for Research in ECT (CORE) report. J Clin psychiatry. 2004;65:485–91.

    Article 
    PubMed 

    Google Scholar
     

  • Dierckx B, Heijnen WT, van den Broek WW, Birkenhäger TK. Efficacy of electroconvulsive therapy in bipolar versus unipolar major depression: a meta-analysis. Bipolar Disord. 2012;14:146–50.

    Article 
    PubMed 

    Google Scholar
     

  • Jessberger S, Zhao C, Toni N, Clemenson GD Jr., Li Y, Gage FH. Seizure-associated, aberrant neurogenesis in adult rats characterized with retrovirus-mediated cell labeling. J Neurosci. 2007;27:9400–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bouckaert F, Sienaert P, Obbels J, Dols A, Vandenbulcke M, Stek M, et al. ECT: its brain enabling effects: a review of electroconvulsive therapy-induced structural brain plasticity. J ECT. 2014;30:143–51.

    Article 
    PubMed 

    Google Scholar
     

  • Anderson D, Wollmann R, Dinwiddie SH. Neuropathological evaluation of an 84-year-old man after 422 ECT treatments. J ECT. 2014;30:248–50.

    Article 
    PubMed 

    Google Scholar
     

  • Lippman S, Manshadi M, Wehry M, Byrd R, Past W, Keller W, et al. 1,250 electroconvulsive treatments without evidence of brain injury. Br J psychiatry : J Ment Sci. 1985;147:203–4.

    Article 
    CAS 

    Google Scholar
     

  • Scalia J, Lisanby SH, Dwork AJ, Johnson JE, Bernhardt ER, Arango V, et al. Neuropathologic examination after 91 ECT treatments in a 92-year-old woman with late-onset depression. J ECT. 2007;23:96–8.

    Article 
    PubMed 

    Google Scholar
     

  • Laroy M, Bouckaert F, Vansteelandt K, Obbels J, Dols A, Emsell L, et al. Association between hippocampal volume change and change in memory following electroconvulsive therapy in late-life depression. Acta Psychiatr Scandinavica. 2019;140:435–45.

    Article 
    CAS 

    Google Scholar
     

  • Carlier A, Rhebergen D, Veerhuis R, Schouws S, Oudega ML, Eikelenboom P, et al. Inflammation and Cognitive Functioning in Depressed Older Adults Treated With Electroconvulsive Therapy: A Prospective Cohort Study. J Clin psychiatry. 2021;82:20m13631.

    Article 
    PubMed 

    Google Scholar
     

  • Wagenmakers MJ, Vansteelandt K, van Exel E, Postma R, Schouws S, Obbels J, et al. Transient Cognitive Impairment and White Matter Hyperintensities in Severely Depressed Older Patients Treated With Electroconvulsive Therapy. Am J Geriatr Psychiatry. 2021;29:1117–28.

    Article 
    PubMed 

    Google Scholar
     

  • Hill AS, Sahay A, Hen R. Increasing Adult Hippocampal Neurogenesis is Sufficient to Reduce Anxiety and Depression-Like Behaviors. Neuropsychopharmacol. 2015;40:2368–78.

    Article 
    CAS 

    Google Scholar
     

  • Schmaal L, Veltman DJ, van Erp TG, Sämann PG, Frodl T, Jahanshad N, et al. Subcortical brain alterations in major depressive disorder: findings from the ENIGMA Major Depressive Disorder working group. Mol psychiatry. 2016;21:806–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Malberg JE, Hen R, Madsen TM. Adult Neurogenesis and Antidepressant Treatment: The Surprise Finding by Ron Duman and the Field 20 Years Later. Biol psychiatry. 2021;90:96–101.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Malberg JE, Schechter LE. Increasing hippocampal neurogenesis: a novel mechanism for antidepressant drugs. Curr Pharm Des. 2005;11:145–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Serafini G. Neuroplasticity and major depression, the role of modern antidepressant drugs. World J Psychiatry. 2012;2:49–57.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van Bokhoven P, Oomen CA, Hoogendijk WJ, Smit AB, Lucassen PJ, Spijker S. Reduction in hippocampal neurogenesis after social defeat is long-lasting and responsive to late antidepressant treatment. Eur J Neurosci. 2011;33:1833–40.

    Article 
    PubMed 

    Google Scholar
     

  • Tartt AN, Mariani MB, Hen R, Mann JJ, Boldrini M. Dysregulation of adult hippocampal neuroplasticity in major depression: pathogenesis and therapeutic implications. Mol psychiatry. 2022;27:2689–99.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • David DJ, Samuels BA, Rainer Q, Wang JW, Marsteller D, Mendez I, et al. Neurogenesis-dependent and -independent effects of fluoxetine in an animal model of anxiety/depression. Neuron. 2009;62:479–93.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sorrells SF, Paredes MF, Cebrian-Silla A, Sandoval K, Qi D, Kelley KW, et al. Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature. 2018;555:377–81.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sorrells SF, Paredes MF, Zhang Z, Kang G, Pastor-Alonso O, Biagiotti S, et al. Positive Controls in Adults and Children Support That Very Few, If Any, New Neurons Are Born in the Adult Human Hippocampus. J Neurosci. 2021;41:2554–65.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paredes MF, Sorrells SF, Cebrian-Silla A, Sandoval K, Qi D, Kelley KW, et al. Does Adult Neurogenesis Persist in the Human Hippocampus? Cell Stem Cell. 2018;23:780–1.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kempermann G, Gage FH, Aigner L, Song H, Curtis MA, Thuret S, et al. Human Adult Neurogenesis: Evidence and Remaining Questions. Cell Stem Cell. 2018;23:25–30.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moreno-Jiménez EP, Flor-García M, Terreros-Roncal J, Rábano A, Cafini F, Pallas-Bazarra N, et al. Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease. Nat Med. 2019;25:554–60.

    Article 
    PubMed 

    Google Scholar
     

  • Boldrini M, Fulmore CA, Tartt AN, Simeon LR, Pavlova I, Poposka V, et al. Human Hippocampal Neurogenesis Persists throughout Aging. Cell Stem Cell. 2018;22:589–99.e5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eriksson PS, Perfilieva E, Björk-Eriksson T, Alborn AM, Nordborg C, Peterson DA, et al. Neurogenesis in the adult human hippocampus. Nat Med. 1998;4:1313–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gonçalves JT, Schafer ST, Gage FH. Adult Neurogenesis in the Hippocampus: From Stem Cells to Behavior. Cell. 2016;167:897–914.

    Article 
    PubMed 

    Google Scholar
     

  • Tobin MK, Musaraca K, Disouky A, Shetti A, Bheri A, Honer WG, et al. Human Hippocampal Neurogenesis Persists in Aged Adults and Alzheimer’s Disease Patients. Cell Stem Cell. 2019;24:974–82.e3.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moreno-Jiménez EP, Terreros-Roncal J, Flor-García M, Rábano A, Llorens-Martín M. Evidences for Adult Hippocampal Neurogenesis in Humans. J Neurosci : Off J Soc Neurosci. 2021;41:2541–53.

    Article 

    Google Scholar
     

  • Spalding KL, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner HB, et al. Dynamics of hippocampal neurogenesis in adult humans. Cell. 2013;153:1219–27.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Manganas LN, Zhang X, Li Y, Hazel RD, Smith SD, Wagshul ME, et al. Magnetic resonance spectroscopy identifies neural progenitor cells in the live human brain. Science. 2007;318:980–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tosoni G, Ayyildiz D, Bryois J, Macnair W, Fitzsimons CP, Lucassen PJ, et al. Mapping human adult hippocampal neurogenesis with single-cell transcriptomics: Reconciling controversy or fueling the debate? Neuron. 2023;111:1714–31.e3.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lucassen PJ, Fitzsimons CP, Salta E, Maletic-Savatic M. Adult neurogenesis, human after all (again): Classic, optimized, and future approaches. Behav Brain Res. 2020;381:112458.

    Article 
    PubMed 

    Google Scholar
     

  • Oltedal L, Narr KL, Abbott C, Anand A, Argyelan M, Bartsch H, et al. Volume of the Human Hippocampus and Clinical Response Following Electroconvulsive Therapy. Biol psychiatry. 2018;84:574–81.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ousdal OT, Argyelan M, Narr KL, Abbott C, Wade B, Vandenbulcke M, et al. Brain Changes Induced by Electroconvulsive Therapy Are Broadly Distributed. Biol psychiatry. 2020;87:451–61.

    Article 
    PubMed 

    Google Scholar
     

  • Bouckaert F, Dols A, Emsell L, De Winter FL, Vansteelandt K, Claes L, et al. Relationship Between Hippocampal Volume, Serum BDNF, and Depression Severity Following Electroconvulsive Therapy in Late-Life Depression. Neuropsychopharmacol. 2016;41:2741–8.

    Article 
    CAS 

    Google Scholar
     

  • Nuninga JO, Mandl RCW, Boks MP, Bakker S, Somers M, Heringa SM, et al. Volume increase in the dentate gyrus after electroconvulsive therapy in depressed patients as measured with 7T. Mol psychiatry. 2020;25:1559–68.

    Article 
    PubMed 

    Google Scholar
     

  • Vaidya VA, Siuciak JA, Du F, Duman RS. Hippocampal mossy fiber sprouting induced by chronic electroconvulsive seizures. Neuroscience. 1999;89:157–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Madsen TM, Treschow A, Bengzon J, Bolwig TG, Lindvall O, Tingström A. Increased neurogenesis in a model of electroconvulsive therapy. Biol psychiatry. 2000;47:1043–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Francis F, Koulakoff A, Boucher D, Chafey P, Schaar B, Vinet MC, et al. Doublecortin is a developmentally regulated, microtubule-associated protein expressed in migrating and differentiating neurons. Neuron. 1999;23:247–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gleeson JG, Lin PT, Flanagan LA, Walsh CA. Doublecortin is a microtubule-associated protein and is expressed widely by migrating neurons. Neuron. 1999;23:257–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arisi GM, Garcia-Cairasco N. Doublecortin-positive newly born granule cells of hippocampus have abnormal apical dendritic morphology in the pilocarpine model of temporal lobe epilepsy. Brain Res. 2007;1165:126–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Botterill JJ, Brymer KJ, Caruncho HJ, Kalynchuk LE. Aberrant hippocampal neurogenesis after limbic kindling: Relationship to BDNF and hippocampal-dependent memory. Epilepsy Behav. 2015;47:83–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiruska P, Shtaya AB, Bodansky DM, Chang WC, Gray WP, Jefferys JG. Dentate gyrus progenitor cell proliferation after the onset of spontaneous seizures in the tetanus toxin model of temporal lobe epilepsy. Neurobiol Dis. 2013;54:492–8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jessberger S, Parent JM. Epilepsy and Adult Neurogenesis. Cold Spring Harb Perspect Biol. 2015;7:a020677.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jessberger S, Römer B, Babu H, Kempermann G. Seizures induce proliferation and dispersion of doublecortin-positive hippocampal progenitor cells. Exp Neurol. 2005;196:342–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brown JP, Couillard-Després S, Cooper-Kuhn CM, Winkler J, Aigner L, Kuhn HG. Transient expression of doublecortin during adult neurogenesis. J Comp Neurol. 2003;467:1–10.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rao MS, Shetty AK. Efficacy of doublecortin as a marker to analyse the absolute number and dendritic growth of newly generated neurons in the adult dentate gyrus. Eur J Neurosci. 2004;19:234–46.

    Article 
    PubMed 

    Google Scholar
     

  • Couillard-Despres S, Winner B, Schaubeck S, Aigner R, Vroemen M, Weidner N, et al. Doublecortin expression levels in adult brain reflect neurogenesis. Eur J Neurosci. 2005;21:1–14.

    Article 
    PubMed 

    Google Scholar
     

  • Liu YW, Curtis MA, Gibbons HM, Mee EW, Bergin PS, Teoh HH, et al. Doublecortin expression in the normal and epileptic adult human brain. Eur J Neurosci. 2008;28:2254–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ammothumkandy A, Ravina K, Wolseley V, Tartt AN, Yu PN, Corona L, et al. Altered adult neurogenesis and gliogenesis in patients with mesial temporal lobe epilepsy. Nat Neurosci. 2022;25:493–503.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jansson L, Wennström M, Johanson A, Tingström A. Glial cell activation in response to electroconvulsive seizures. Prog Neuro-Psychopharmacol Biol Psychiatry. 2009;33:1119–28.

    Article 

    Google Scholar
     

  • Kohler SJ, Williams NI, Stanton GB, Cameron JL, Greenough WT. Maturation time of new granule cells in the dentate gyrus of adult macaque monkeys exceeds six months. Proc Natl Acad Sci USA. 2011;108:10326–31.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yrondi A, Sporer M, Péran P, Schmitt L, Arbus C, Sauvaget A. Electroconvulsive therapy, depression, the immune system and inflammation: A systematic review. Brain Stimulation. 2018;11:29–51.

    Article 
    PubMed 

    Google Scholar
     

  • Klioueva N, Bovenberg J, Huitinga I. Banking brain tissue for research. Handb Clin Neurol. 2017;145:9–12.

    Article 
    PubMed 

    Google Scholar
     

  • van de Nes JA, Konermann S, Nafe R, Swaab DF. Beta-protein/A4 deposits are not associated with hyperphosphorylated tau in somatostatin neurons in the hypothalamus of Alzheimer’s disease patients. Acta Neuropathol. 2006;111:126–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boekhoorn K, van Dis V, Goedknegt E, Sobel A, Lucassen PJ, Hoogenraad CC. The microtubule destabilizing protein stathmin controls the transition from dividing neuronal precursors to postmitotic neurons during adult hippocampal neurogenesis. Dev Neurobiol. 2014;74:1226–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lucassen PJ, Toni N, Kempermann G, Frisen J, Gage FH, Swaab DF. Limits to human neurogenesis-really? Mol Psychiatry. 2020;25:2207–9.

    Article 
    PubMed 

    Google Scholar
     

  • Boekhoorn K, Joels M, Lucassen PJ. Increased proliferation reflects glial and vascular-associated changes, but not neurogenesis in the presenile Alzheimer hippocampus. Neurobiol Dis. 2006;24:1–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Terreros-Roncal J, Flor-García M, Moreno-Jiménez EP, Rodríguez-Moreno CB, Márquez-Valadez B, Gallardo-Caballero M, et al. Methods to study adult hippocampal neurogenesis in humans and across the phylogeny. Hippocampus. 2023;33:271–306.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rubin CI, Atweh GF. The role of stathmin in the regulation of the cell cycle. J Cell Biochem. 2004;93:242–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chauvin S, Sobel A. Neuronal stathmins: a family of phosphoproteins cooperating for neuronal development, plasticity and regeneration. Prog Neurobiol. 2015;126:1–18.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duchrow M, Schmidt MHH, Zingler M, Anemüller S, Bruch HP, Broll R. Suppression of cell division by pKi-67 antisense-RNA and recombinant protein. Cell Physiol Biochem. 2001;11:331–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boldrini M, Hen R, Underwood MD, Rosoklija GB, Dwork AJ, Mann JJ, et al. Hippocampal angiogenesis and progenitor cell proliferation are increased with antidepressant use in major depression. Biol psychiatry. 2012;72:562–71.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Endl E, Gerdes J. The Ki-67 protein: fascinating forms and an unknown function. Exp Cell Res. 2000;257:231–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kee N, Sivalingam S, Boonstra R, Wojtowicz JM. The utility of Ki-67 and BrdU as proliferative markers of adult neurogenesis. J Neurosci Methods. 2002;115:97–105.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bankhead P, Loughrey MB, Fernández JA, Dombrowski Y, McArt DG, Dunne PD, et al. QuPath: Open source software for digital pathology image analysis. Sci Rep. 2017;7:16878.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Imoto Y, Segi-Nishida E, Suzuki H, Kobayashi K. Rapid and stable changes in maturation-related phenotypes of the adult hippocampal neurons by electroconvulsive treatment. Mol Brain. 2017;10:8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martí-Mengual U, Varea E, Crespo C, Blasco-Ibáñez JM, Nacher J. Cells expressing markers of immature neurons in the amygdala of adult humans. Eur J Neurosci. 2013;37:10–22.

    Article 
    PubMed 

    Google Scholar
     

  • Allen KM, Fung SJ, Weickert CS. Cell proliferation is reduced in the hippocampus in schizophrenia. Aust N. Z J Psychiatry. 2016;50:473–80.

    Article 
    PubMed 

    Google Scholar
     

  • Mathews KJ, Allen KM, Boerrigter D, Ball H, Shannon Weickert C, Double KL. Evidence for reduced neurogenesis in the aging human hippocampus despite stable stem cell markers. Aging Cell. 2017;16:1195–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • von Bohlen und Halbach O. Immunohistological markers for proliferative events, gliogenesis, and neurogenesis within the adult hippocampus. Cell Tissue Res. 2011;345:1–19.

    Article 

    Google Scholar
     

  • Seki T, Hori T, Miyata H, Maehara M, Namba T. Analysis of proliferating neuronal progenitors and immature neurons in the human hippocampus surgically removed from control and epileptic patients. Sci Rep. 2019;9:18194.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scholzen T, Gerdes J. The Ki-67 protein: from the known and the unknown. J Cell Physiol. 2000;182:311–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nuninga JO, Mandl RCW, Froeling M, Siero JCW, Somers M, Boks MP, et al. Vasogenic edema versus neuroplasticity as neural correlates of hippocampal volume increase following electroconvulsive therapy. Brain Stimulation. 2020;13:1080–6.

    Article 
    PubMed 

    Google Scholar
     

  • Anacker C, Zunszain PA, Cattaneo A, Carvalho LA, Garabedian MJ, Thuret S, et al. Antidepressants increase human hippocampal neurogenesis by activating the glucocorticoid receptor. Mol Psychiatry. 2011;16:738–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Plümpe T, Ehninger D, Steiner B, Klempin F, Jessberger S, Brandt M, et al. Variability of doublecortin-associated dendrite maturation in adult hippocampal neurogenesis is independent of the regulation of precursor cell proliferation. BMC Neurosci. 2006;7:77.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Terstege DJ, Addo-Osafo K, Campbell Teskey G, Epp JR. New neurons in old brains: implications of age in the analysis of neurogenesis in post-mortem tissue. Mol Brain. 2022;15:38.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu JYW, Matarin M, Reeves C, McEvoy AW, Miserocchi A, Thompson P, et al. Doublecortin-expressing cell types in temporal lobe epilepsy. Acta Neuropathologica Commun. 2018;6:60.

    Article 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    Stay Connected

    10FansLike
    4FollowersFollow
    0SubscribersSubscribe
    - Advertisement -spot_img

    Latest Articles

    %d bloggers like this: