Saturday, June 10, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

Estimated dietary intake of polyphenols from cereal foods and associated lifestyle and demographic factors in the Melbourne Collaborative Cohort Study – Scientific Reports


  • Crozier, A., Jaganath, I. B. & Clifford, M. N. Dietary phenolics: chemistry, bioavailability and effects on health. Nat. Prod. Rep. 26, 1001–1043. https://doi.org/10.1039/b802662a (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • do Valle, I. F. et al. Network medicine framework shows that proximity of polyphenol targets and disease proteins predicts therapeutic effects of polyphenols. Nat. Food 2, 143–155. https://doi.org/10.1038/s43016-021-00243-7 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Australian Bureau of Statistics. 4364.0.55.007: Australian Health Survey: Nutrition First Results: Food and Nutrients, 2011–2012. (Australian Bureau of Statistics, 2014).

  • Davis, C., Bryan, J., Hodgson, J. & Murphy, K. Definition of the Mediterranean diet; a literature review. Nutrients 7, 9139–9153. https://doi.org/10.3390/nu7115459 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Australian Bureau of Statistics. Grain (Cereals). (Australian Bureau of Statistics, 2016).

  • Phenol-Explorer Version 3.6. Reports: Cereals. http://phenol-explorer.eu/reports/41.

  • Neveu, V. et al. Phenol-Explorer: An online comprehensive database on polyphenol contents in foods. Database https://doi.org/10.1093/database/bap024 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kozubek, A. & Tyman, J. H. P. Resorcinolic lipids, the natural non-isoprenoid phenolic amphiphiles and their biological activity. Chem. Rev. 99, 1–26. https://doi.org/10.1021/cr970464o (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schendel, R. R. in Sprouted Grains (eds H. Feng, B. Nemzer, & J. W. DeVries) 247–315 (AACC International Press, 2019).

  • Ciccoritti, R., Carbone, K., Bellato, S., Pogna, N. & Sgrulletta, D. Content and relative composition of some phytochemicals in diploid, tetraploid and hexaploid Triticum species with potential nutraceutical properties. J. Cereal Sci. 57, 200–206. https://doi.org/10.1016/j.jcs.2012.07.009 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Ross, A. B. et al. Alkylresorcinols in cereals and cereal products. J. Agric. Food Chem. 51, 4111–4118. https://doi.org/10.1021/jf0340456 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, L., Shewry, P. R. & Ward, J. L. Phenolic acids in wheat varieties in the HEALTHGRAIN diversity screen. J. Agric. Food Chem. 56, 9732–9739. https://doi.org/10.1021/jf801069s (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khan, J. et al. Overview of the composition of whole grains’ phenolic acids and dietary fibre and their effect on chronic non-communicable diseases. Int. J. Environ. Res. Public Health https://doi.org/10.3390/ijerph19053042 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mattila, P., Pihlava, J.-M. & Hellström, J. Contents of phenolic acids, alkyl- and alkenylresorcinols, and avenanthramides in commercial grain products. J. Agric. Food Chem. 53, 8290–8295. https://doi.org/10.1021/jf051437z (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bumrungpert, A., Lilitchan, S., Tuntipopipat, S., Tirawanchai, N. & Komindr, S. Ferulic acid supplementation improves lipid profiles, oxidative stress, and inflammatory status in hyperlipidemic subjects: A randomized, double-blind, placebo-controlled clinical trial. Nutrients 10, 713. https://doi.org/10.3390/nu10060713 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Turner, A. L., Michaelson, L. V., Shewry, P. R., Lovegrove, A. & Spencer, J. P. E. Increased bioavailability of phenolic acids and enhanced vascular function following intake of feruloyl esterase-processed high fibre bread: A randomized, controlled, single blind, crossover human intervention trial. Clin. Nutr. https://doi.org/10.1016/j.clnu.2020.07.026 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Rosa, L. S. et al. Pharmacokinetic, antiproliferative and apoptotic effects of phenolic acids in human colon adenocarcinoma cells using in vitro and in silico approaches. Molecules https://doi.org/10.3390/molecules23102569 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Janicke, B. et al. The antiproliferative effect of dietary fiber phenolic compounds ferulic acid and p-coumaric acid on the cell cycle of Caco-2 cells. Nutr. Cancer 63, 611–622. https://doi.org/10.1080/01635581.2011.538486 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chowdhury, S., Ghosh, S., Das, A. K. & Sil, P. C. Ferulic acid protects hyperglycemia-induced kidney damage by regulating oxidative insult, inflammation and autophagy. Front. Pharmacol. https://doi.org/10.3389/fphar.2019.00027 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, W., Tang, Y., Yang, J., Idehen, E. & Sang, S. Avenanthramide aglycones and glucosides in oat bran: Chemical profile, levels in commercial oat products, and cytotoxicity to human colon cancer cells. J. Agric. Food Chem. 66, 8005–8014. https://doi.org/10.1021/acs.jafc.8b02767 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kruk, J., Aboul-Enein, B., Bernstein, J. & Marchlewicz, M. Dietary alkylresorcinols and cancer prevention: A systematic review. Eur. Food Res. Technol. 243, 1693–1710. https://doi.org/10.1007/s00217-017-2890-6 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Chen, C. Y. O., Milbury, P. E., Collins, F. W. & Blumberg, J. B. Avenanthramides are bioavailable and have antioxidant activity in humans after acute consumption of an enriched mixture from oats. J. Nutr. 137, 1375–1382. https://doi.org/10.1093/jn/137.6.1375 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Elder, A. S., Coupland, J. N. & Elias, R. J. Effect of alkyl chain length on the antioxidant activity of alkylresorcinol homologues in bulk oils and oil-in-water emulsions. Food Chem. 346, 128885. https://doi.org/10.1016/j.foodchem.2020.128885 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y. et al. Consumption of avenanthramides extracted from oats reduces weight gain, oxidative stress, inflammation and regulates intestinal microflora in high fat diet-induced mice. J. Funct. Foods 65, 103774. https://doi.org/10.1016/j.jff.2019.103774 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhouyao, H. et al. The inhibition of intestinal glucose absorption by oat-derived avenanthramides. J. Food Biochem. 46, e14324. https://doi.org/10.1111/jfbc.14324 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oishi, K. et al. Wheat alkylresorcinols suppress high-fat, high-sucrose diet-induced obesity and glucose intolerance by increasing insulin sensitivity and cholesterol excretion in male mice 1, 2, 3. J. Nutr. 145, 199–206. https://doi.org/10.3945/jn.114.202754 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, T. et al. Plasma alkylresorcinol metabolite, a biomarker of whole-grain wheat and rye intake, and risk of type 2 diabetes and impaired glucose regulation in a Chinese population. Diabetes Care 41, 440–445. https://doi.org/10.2337/dc17-1570 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Smeds, A. I. et al. Quantification of a broad spectrum of lignans in cereals, oilseeds, and nuts. J. Agric. Food Chem. 55, 1337–1346. https://doi.org/10.1021/jf0629134 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Landete, J. M. Plant and mammalian lignans: A review of source, intake, metabolism, intestinal bacteria and health. Food Res. Int. 46, 410–424. https://doi.org/10.1016/j.foodres.2011.12.023 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Schakel, S. F., Buzzard, I. M. & Gebhardt, S. E. Procedures for estimating nutrient values for food composition databases. J. Food Compos. Anal. 10, 102–114 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Ispirova, G., Eftimov, T., Korošec, P. & Seljak, B. K. MIGHT: Statistical methodology for missing-data imputation in food composition databases. Appl. Sci. 9, 4111–4111. https://doi.org/10.3390/app9194111 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Probst, Y. C., Guan, V. X. & Kent, K. Dietary phytochemical intake from foods and health outcomes: A systematic review protocol and preliminary scoping. BMJ Open 7, e013337. https://doi.org/10.1136/bmjopen-2016-013337 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grosso, G., Stepaniak, U., Topor-Madry, R., Szafraniec, K. & Pajak, A. Estimated dietary intake and major food sources of polyphenols in the Polish arm of the HAPIEE study. Nutrition 30, 1398–1403. https://doi.org/10.1016/j.nut.2014.04.012 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Godos, J., Marventano, S., Mistretta, A., Galvano, F. & Grosso, G. Dietary sources of polyphenols in the Mediterranean healthy eating, aging and lifestyle (MEAL) study cohort. Int. J. Food Sci. Nutr. 68, 750–756. https://doi.org/10.1080/09637486.2017.1285870 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Perez-Jimenez, J. et al. Dietary intake of 337 polyphenols in French adults. Am. J. Clin. Nutr. 93, 1220–1228. https://doi.org/10.3945/ajcn.110.007096 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zujko, M. E., Witkowska, A. M., Waskiewicz, A. & Sygnowska, E. Estimation of dietary intake and patterns of polyphenol consumption in Polish adult population. Adv. Med. Sci. 57, 375–384. https://doi.org/10.2478/v10039-012-0026-6 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zamora-Ros, R. et al. Dietary polyphenol intake in Europe: The European prospective investigation into cancer and nutrition (EPIC) study. Eur. J. Nutr. 55, 1359–1375. https://doi.org/10.1007/s00394-015-0950-x (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pounis, G. et al. Flavonoid and lignan intake in a Mediterranean population: Proposal for a holistic approach in polyphenol dietary analysis, the Moli-sani Study. Eur. J. Clin. Nutr. 70, 338–345. https://doi.org/10.1038/ejcn.2015.178 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Phenol-Explorer Version 3.6. Methods Used to Create Phenol-Explorer, phenol-explorer.eu/methods_used (2020).

  • Rothwell, J. A. et al. Phenol-Explorer 3.0: A major update of the Phenol-Explorer database to incorporate data on the effects of food processing on polyphenol content. Database 2013, 070. https://doi.org/10.1093/database/bat070 (2013).

    Article 

    Google Scholar
     

  • Haytowitz, D. B., Wu, X. & Bhagwat, S. (ed Agricultural Research Service U.S. Department of Agriculture, Nutrient Data Laboratory) (2018).

  • Bhagwat, S. & Haytowitz, D. B. (Nutrient Data Laboratory, Beltsville Human Nutrition Research Center, ARS, USDA, 2015).

  • Lanuza, F. et al. Comparison of flavonoid intake assessment methods using USDA and Phenol explorer databases: subcohort diet, cancer and health-next generations: MAX study. Front. Nutr. https://doi.org/10.3389/fnut.2022.873774 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Milne, R. L. et al. Cohort profile: The Melbourne collaborative cohort study (health 2020). Int. J. Epidemiol. 46, 1757–1757i. https://doi.org/10.1093/ije/dyx085 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ireland, P. et al. Development of the Melbourne FFQ: A food frequency questionnaire for use in an Australian prospective study involving an ethnically diverse cohort. Asia Pac. J. Clin. Nutr. 3, 19–31 (1994).

    CAS 
    PubMed 

    Google Scholar
     

  • Hodge, A. M. et al. Evaluation of an FFQ for assessment of antioxidant intake using plasma biomarkers in an ethnically diverse population. Public Health Nutr. 12, 2438–2447. https://doi.org/10.1017/S1368980009005539 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Hodge, A. M. et al. Plasma phospholipid fatty acid composition as a biomarker of habitual dietary fat intake in an ethnically diverse cohort. Nutr. Metab. Cardiovasc. Dis. 17, 415–426. https://doi.org/10.1016/j.numecd.2006.04.005 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bassett, J. K. et al. Validity and calibration of the FFQ used in the Melbourne Collaborative Cohort Study. Public Health Nutr 19, 2357–2368. https://doi.org/10.1017/s1368980016000690 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Hodge, A. M. Diet related predictors of type 2 diabetes in the Melbourne Collaborative Cohort Study. Doctor of Philosophy thesis, University of Melbourne, (2006).

  • Knaze, V. et al. A new food-composition database for 437 polyphenols in 19,899 raw and prepared foods used to estimate polyphenol intakes in adults from 10 European countries. Am. J. Clin. Nutr. 108, 517–524. https://doi.org/10.1093/ajcn/nqy098 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Zamora-Ros, R. et al. Dietary intake of total polyphenol and polyphenol classes and the risk of colorectal cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. Eur. J. Epidemiol. 33, 1063–1075. https://doi.org/10.1007/s10654-018-0408-6 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shewry, P. R. et al. Natural variation in grain composition of wheat and related cereals. J. Agric. Food Chem. 61, 8295–8303. https://doi.org/10.1021/jf3054092 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hedelin, M., Lof, M., Sandin, S., Adami, H. O. & Weiderpass, E. Prospective study of dietary phytoestrogen intake and the risk of colorectal cancer. Nutr. Cancer 68, 388–395. https://doi.org/10.1080/01635581.2016.1152380 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Phenol-Explorer Version 3.6. Phenol-Explorer website. http://phenol-explorer.eu/search (2016).

  • Milder, I. E. J., Arts, I. C. W., Putte, B. V. D., Venema, D. P. & Hollman, P. C. H. Lignan contents of Dutch plant foods: A database including lariciresinol, pinoresinol, secoisolariciresinol and matairesinol. Br. J. Nutr. 93, 393–402. https://doi.org/10.1079/BJN20051371 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kuhnle, G. G. C. et al. Phytoestrogen content of cereals and cereal-based foods consumed in the UK. Nutr. Cancer 61, 302–309. https://doi.org/10.1080/01635580802567141 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thompson, L. U., Boucher, B. A., Liu, Z., Cotterchio, M. & Kreiger, N. Phytoestrogen content of foods consumed in Canada, including isoflavones, lignans, and coumestan. Nutr. Cancer 54, 184–201 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Landberg, R., Kamal-Eldin, A., Andersson, A., Vessby, B. & Åman, P. Alkylresorcinols as biomarkers of whole-grain wheat and rye intake: Plasma concentration and intake estimated from dietary records. Am. J. Clin. Nutr. 87, 832–838. https://doi.org/10.1093/ajcn/87.4.832 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mazur, W. et al. Isotope dilution gas chromatographic–mass spectrometric method for the determination of isoflavonoids, coumestrol, and lignans in food samples. Anal. Biochem. 233, 169–180. https://doi.org/10.1006/abio.1996.0025 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Y., Ross, A. B., Aman, P. & Kamal-Eldin, A. Alkylresorcinols as markers of whole grain wheat and rye in cereal products. J. Agric. Food Chem. 52, 8242–8246. https://doi.org/10.1021/jf049726v (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Soycan, G. et al. Composition and content of phenolic acids and avenanthramides in commercial oat products: Are oats an important polyphenol source for consumers?. Food Chem. X 3, 100047. https://doi.org/10.1016/j.fochx.2019.100047 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pridal, A. A., Böttger, W. & Ross, A. B. Analysis of avenanthramides in oat products and estimation of avenanthramide intake in humans. Food Chem. 253, 93–100. https://doi.org/10.1016/j.foodchem.2018.01.138 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shewry, P. R. et al. Phytochemical and fiber components in oat varieties in the HEALTHGRAIN diversity screen. J. Agric. Food Chem. 56, 9777–9784. https://doi.org/10.1021/jf801880d (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zamora-Ros, R. et al. Dietary intakes and food sources of phytoestrogens in the European prospective investigation into cancer and nutrition (EPIC) 24-hour dietary recall cohort. Eur. J. Clin. Nutr. 66, 932–941. https://doi.org/10.1038/ejcn.2012.36 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tetens, I. et al. Dietary intake and main sources of plant lignans in five European countries. Food Nutr. Res. 57, 1 (2013).

    Article 

    Google Scholar
     

  • Ward, H. A. et al. Breast, colorectal, and prostate cancer risk in the European Prospective Investigation into Cancer and Nutrition-Norfolk in relation to phytoestrogen intake derived from an improved database. Am. J. Clin. Nutr. 91, 440–448. https://doi.org/10.3945/ajcn.2009.28282 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • United States Department of Agriculture (USDA). (U.S. Department of Agriculture, Agricultural Research Service, USDA Nutrient Data Laboratory, 2005).

  • Cotterchio, M., Boucher, B. A., Kreiger, N., Mills, C. A. & Thompson, L. U. Dietary phytoestrogen intake-lignans and isoflavones-and breast cancer risk (Canada). Cancer Causes Control 19, 259–272. https://doi.org/10.1007/s10552-007-9089-2 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Slimani, N. et al. The EPIC nutrient database project (ENDB): A first attempt to standardize nutrient databases across the 10 European countries participating in the EPIC study. Eur. J. Clin. Nutr. 61, 1037–1056. https://doi.org/10.1038/sj.ejcn.1602679 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ziauddeen, N. et al. Dietary intake of (poly)phenols in children and adults: cross-sectional analysis of UK National Diet and nutrition survey rolling programme (2008–2014). Eur. J. Nutr. 58, 3183–3198. https://doi.org/10.1007/s00394-018-1862-3 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Food Standards Australia & New Zealand (FSANZ). Australian Food Composition Database – Release 1 (AFCD-1), 2019).

  • Pollard, C. M. et al. Consumer attitudes and misperceptions associated with trends in self-reported cereal foods consumption: Cross-sectional study of Western Australian adults, 1995 to 2012. BMC Public Health 17, 597–597. https://doi.org/10.1186/s12889-017-4511-5 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mann, K. D., Pearce, M. S., McKevith, B., Thielecke, F. & Seal, C. J. Low whole grain intake in the UK: Results from the National Diet and Nutrition Survey rolling programme 2008–11. Br. J. Nutr. 113, 1643–1651. https://doi.org/10.1017/S0007114515000422 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miranda, A. M., Steluti, J., Fisberg, R. M. & Marchioni, D. M. Dietary intake and food contributors of polyphenols in adults and elderly adults of Sao Paulo: A population-based study. Br. J. Nutr. 115, 1061–1070. https://doi.org/10.1017/S0007114515005061 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Australian Bureau of Statistics. (Commonwealth of Australia, 2008).

  • Vandenbroucke, J. P. et al. Strengthening the reporting of observational studies in epidemiology (STROBE): Explanation and elaboration. Int. J. Surg. 12, 1500–1524. https://doi.org/10.1016/j.ijsu.2014.07.014 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Stata MP 16.1 v. Stata MP 16.1 (2020).

  • Lachat, C. et al. Strengthening the reporting of observational studies in epidemiology-nutritional epidemiology (STROBE-nut): An extension of the STROBE statement. PLoS Med. 13, e1002036. https://doi.org/10.1371/journal.pmed.1002036 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saura-Calixto, F., Serrano, J. & Goñi, I. Intake and bioaccessibility of total polyphenols in a whole diet. Food Chem. 101, 492–501. https://doi.org/10.1016/j.foodchem.2006.02.006 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Australian Bureau of Statistics. National Nutrition Survey Nutrient Intakes and Physical Measurements Australia 1995. Report No. ABS Catalogue No. 4805.0 (1998).

  • Micha, R. et al. Global, regional and national consumption of major food groups in 1990 and 2010: A systematic analysis including 266 country-specific nutrition surveys worldwide. BMJ Open 5, e008705. https://doi.org/10.1136/bmjopen-2015-008705 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Galea, L. M., Beck, E. J., Probst, Y. C. & Cashman, C. J. Whole grain intake of Australians estimated from a cross-sectional analysis of dietary intake data from the 2011–13 Australian Health Survey. Public Health Nutr 20, 2166–2172. https://doi.org/10.1017/S1368980017001082 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Perez-Jimenez, J., Neveu, V., Vos, F. & Scalbert, A. Identification of the 100 richest dietary sources of polyphenols: An application of the Phenol-Explorer database. Eur. J. Clin. Nutr. 64, S112–S120. https://doi.org/10.1038/ejcn.2010.221 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiong, Y., Zhang, P., Warner, R. D. & Fang, Z. Sorghum grain: from genotype, nutrition, and phenolic profile to its health benefits and food applications. Comp. Rev. Food Sci. Food Saf. 18, 2025–2046. https://doi.org/10.1111/1541-4337.12506 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Donkor, O. N., Stojanovska, L., Ginn, P., Ashton, J. & Vasiljevic, T. Germinated grains-sources of bioactive compounds. Food Chem 135, 950–959. https://doi.org/10.1016/j.foodchem.2012.05.058 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lahmann, P. H. et al. Estimated intake of dietary phyto-oestrogens in Australian women and evaluation of correlates of phyto-oestrogen intake. J. Nutr. Sci. 1, e11–e11. https://doi.org/10.1017/jns.2012.11 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hanna, K. L., O’Neill, S. & Lyons-Wall, P. M. Intake of isoflavone and lignan phytoestrogens and associated demographic and lifestyle factors in older Australian women. Asia Pac. J. Clin. Nutr. 19, 540–549 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Nohr, E. A. & Liew, Z. How to investigate and adjust for selection bias in cohort studies. Acta Obstet. Gynecol. Scand. 97, 407–416. https://doi.org/10.1111/aogs.13319 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Young, L. M., Gauci, S., Scholey, A., White, D. J. & Pipingas, A. Self-selection bias: An essential design consideration for nutrition trials in healthy populations. Front. Nutr. 7, 587983–587983. https://doi.org/10.3389/fnut.2020.587983 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shim, J.-S., Oh, K. & Kim, H. C. Dietary assessment methods in epidemiologic studies. Epidemiol. Health 36, e2014009–e2014009. https://doi.org/10.4178/epih/e2014009 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hebert, J. R. et al. Gender differences in social desirability and social approval bias in dietary self-report. Am. J. Epidemiol. 146, 1046–1055. https://doi.org/10.1093/oxfordjournals.aje.a009233 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miller, T. M., Abdel-Maksoud, M. F., Crane, L. A., Marcus, A. C. & Byers, T. E. Effects of social approval bias on self-reported fruit and vegetable consumption: A randomized controlled trial. Nutr. J. 7, 18. https://doi.org/10.1186/1475-2891-7-18 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eysteinsdottir, T. et al. Validity of retrospective diet history: Assessing recall of midlife diet using food frequency questionnaire in later life. J. Nutr. Health Aging 15, 809–814. https://doi.org/10.1007/s12603-011-0067-8 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bassett, J. K. et al. Dietary intake of B vitamins and methionine and colorectal cancer risk. Nutr. Cancer 65, 659–667. https://doi.org/10.1080/01635581.2013.789114 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hodge, A. M. et al. Dietary and biomarker estimates of fatty acids and risk of colorectal cancer. Int. J. Cancer 137, 1224–1234. https://doi.org/10.1002/ijc.29479 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • English, D. R. et al. Red meat, chicken, and fish consumption and risk of colorectal cancer. Cancer Epidemiol. Biomark. Prev. 13, 1509–1514 (2004).

    Article 

    Google Scholar
     

  • Cancer Council Victoria, University of Melbourne & PEDIGREE. Health 2020: The Melbourne Collaborative Cohort Study. http://www.pedigree.org.au/pedigree-studies/health2020.aspx (2017).



  • Source link

    Related Articles

    Leave a Reply

    Stay Connected

    9FansLike
    4FollowersFollow
    0SubscribersSubscribe
    - Advertisement -spot_img

    Latest Articles

    %d bloggers like this: