Tuesday, September 26, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

Estimation of genomic and mitochondrial DNA integrity in the renal tissue of mice administered with acrylamide and titanium dioxide nanoparticles – Scientific Reports


  • Mathiesen, L., Buerki-Thurnherr, T., Pastuschek, J., Aengenheister, L. & Knudsen, L. E. Fetal exposure to environmental chemicals; insights from placental perfusionstudies. Placenta 106, 58–66 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Z., Walker, G. W., Muir, D. C. G. & Nagatani-Yoshida, K. Toward a global understanding of chemical pollution: A first comprehensive analysis of national and regional chemical inventories. Environ. Sci. Technol. 54(5), 2575–2584 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • World Health Organization. Guidance document for WHO monographers and reviewers evaluating contaminants in food and feed (2016)

  • Stadler, R. H., & Lineback, D. R. Process-Induced Food Toxicants: Occurrence, Formation, Mitigation, and Health Risks (Hoboken, NJ, 2009) https://doi.org/10.5860/choice.46-6765

  • European Food Safety Authority (EFSA), Benford, D., Bignami, M., Chipman, J. K. & Ramos Bordajandi, L. Assessment of the genotoxicity of acrylamide. EFSA J. 20(5), e07293 (2022).

    Article 

    Google Scholar
     

  • Pennisi, M. et al. Neurotoxicity of acrylamide in exposed workers. Int. J. Environ. Res. Public Health 10(9), 3843–3854 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Uthra, C. et al. Therapeutic potential of quercetin against acrylamide induced toxicity in rats. Biomed. Pharmacother. 86, 705–714 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kacar, S. & Sahinturk, V. A multiple organ toxicant: Acrylamide. Osmangazi J. Med. 40(1), 94–100 (2018).


    Google Scholar
     

  • Kumar, J., Das, S. & Teoh, S. L. Dietary acrylamide and the risks of developing cancer: Facts to ponder. Front. Nutr. 5, 14–26 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kacar, S. & Sahinturk, V. The protective agents used against acrylamide toxicity: An in vitro cell culture study-based review. Cell J. 23(4), 367–381 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nixon, B. J., Stanger, S. J., Nixon, B. & Roman, S. D. Chronic exposure to acrylamide induces DNA damage in male germ cells of mice. Toxicol. Sci. 129(1), 135–145 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pelucchi, C. et al. Dietary acrylamide and the risk of pancreatic cancer in the International Pancreatic Cancer Case-Control Consortium (PanC4). Ann. Oncol. 28(2), 408–414 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Safwat, G., Mohamed, A. A. & Mohamed, H. R. H. Estimation of genotoxicity, apoptosis and oxidative stress induction by TiO2 nanoparticles and acrylamide subacute oral coadministration in mice. Sci. Rep. 12(1), 18648 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alzahrani, H. A. Protective effect of l-carnitine against acrylamide-induced DNA damage in somatic and germ cells of mice. Saudi J. Biol. Sci. 18(1), 29–36 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Waghmode, M. S. et al. Studies on the titanium dioxide nanoparticles: Biosynthesis, applications and remediation. SN Appl. Sci. 1, 310–319 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Theron, J., Walker, J. A. & Cloete, T. E. Nanotechnology and water treatment: Applications and emerging opportunities. Crit. Rev. Microbiol. 34(1), 43–69 (2010).

    Article 

    Google Scholar
     

  • Ijadpanah-Saravy, H., Dehestaniathar Khodadadi, A. & Safari, M. Optimization of photocatalytic degradation of β-naphthol using nano TiO2-activated carbon composite. Desalin. Water Treat. 57, 4708–4719 (2016).


    Google Scholar
     

  • Vevers, W. & Jha, A. N. Genotoxic and cytotoxic potential of titanium dioxide (TiO2) nanoparticles on fish cells in vitro. Ecotoxicology 17, 410–420 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • El-Ghor, A. A., Noshy, M. M., Galal, A. & Mohamed, H. R. Normalization of nano-sized TiO2-induced clastogenicity, genotoxicity and mutagenicity by chlorophyllin administration in mice brain, liver, and bone marrow cells. Toxicol. Sci. 142(1), 21–32 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mohamed, H. R. Estimation of TiO2 nanoparticle-induced genotoxicity persistence and possible chronic gastritis-induction in mice. Food Chem. Toxicol. 83, 76–83 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Song, B., Liu, J., Feng, X., Wei, L. & Shao, L. A review on potential neurotoxicity of titanium dioxide nanoparticles. Nanoscale Res. Lett. 10(1), 1042. https://doi.org/10.1186/s11671-015-1042-9 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mohamed, H. R. H. et al. Accumulative persistence of the genotoxic and mutagenic effects induced by low doses of TiO2 nanoparticles increases the incidence of hepatocellular carcinoma in mice. Recent Res. Genet. Genom. 1(1), 29–47 (2019).

    Article 

    Google Scholar
     

  • Mohamed, H., & Hussien, N. Genotoxicity studies of titanium dioxide nanoparticles (TiO2NPs) in the brain of mice. Scientifica 6710840 (2016).

  • Shabbir, S., Kulyar, M. F. & Bhutta, Z. A. Toxicological consequences of titanium dioxide nanoparticles (TiO2NPs) and their jeopardy to human population. BioNanoSci. 11, 621–632 (2021).

    Article 

    Google Scholar
     

  • Ling, C. et al. Genotoxicity evaluation of titanium dioxide nanoparticles in vitro: a systematic review of the literature and meta-analysis. Biol. Trace Elem. Res. 199, 2057–2076 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weir, A. A. TiO2 Nanomaterials: Human exposure and environmental release. M.Sc. thesis. Arizona State University (2011).

  • Shahare, B., Yashpal, M. & Gajendra,. Toxic effects of repeated oral exposure of silver nanoparticles on small intestine mucosa of mice. Toxicol. Mech. Methods 23(3), 161–167 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sriram, M. I., Kanth, S. B. M., Kalishwaralal, K. & Gurunathan, S. Antitumor activity of silver nanoparticles in Dalton’s lymphoma ascites tumor model. Int. J. Nanomed. 5, 753–762 (2010).

    CAS 

    Google Scholar
     

  • Tice, R. R. et al. Single cell gel/comet assay: Guidelines for in vitro and in vivo genetic toxicology testing. Environ. Mol. Mutagen. 35(3), 206–221 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y. et al. Possible involvement of oxidative stress in potassium bromate-induced genotoxicity in human HepG2 cells. Chem. Biol. Int. 189, 186–191 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Chen, R. et al. Potential toxicity of quercetin: The repression of mitochondrial copy number via decreased POLG expression and excessive TFAM expression in irradiated murine bone marrow. Toxicol. Rep. 1, 450–458 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gutierrez, M. I. et al. Infrequent p53 mutation in mouse tumors with deregulated myc. Cancer Res. 52, 1032–1035 (1992).

    CAS 
    PubMed 

    Google Scholar
     

  • Takahashi, M., Nakatsugi, S., Sugimura, T. & Wakabayashi, K. Frequent mutations of the β-catenin gene in mouse colon tumors induced by azoxymethane. Carcinogenesis 21(6), 1117–1120 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Siddiqui, M. A. et al. Protective potential of trans-resveratrol against 4-hydroxynonenal induced damage in PC12 cells. Toxicol. In Vitro 24(6), 1592–1598 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, J. H. & Chou, C. C. Acrylamide inhibits cellular differentiation of human neuroblastoma and glioblastoma cells. Food Chem. Toxicol. 82, 27–35 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yilmaz, B. O., Yildizbayrak, N., Aydin, Y. & Erkan, M. Evidence of acrylamide- and glycidamide-induced oxidative stress and apoptosis in Leydig and Sertoli cells. Hum. Exp. Toxicol. 36(12), 1225–1235 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, M., Chen, T. & Wang, Y. Insights into TiO2 polymorphs: Highly selective synthesis, phase transition, and their polymorph-dependent properties. RSC Adv. 7, 52755–52761 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ansar, S., Siddiqi, N. J., Zargar, S., Ganaie, M. A. & Abudawood, M. Hepatoprotective effect of Quercetin supplementation against Acrylamide-induced DNA damage in wistar rats. BMC Compl. Altern. Med. 16(1), 327 (2016).

    Article 

    Google Scholar
     

  • Shimamura, Y., Iio, M., Urahira, T. & Masuda, S. Inhibitory effects of Japanese horseradish (Wasabia japonica) on the formation and genotoxicity of a potent carcinogen, acrylamide. J. Sci. Food Agric. 97, 2419–2425 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hagio, S. et al. Effect of sampling time on somatic and germ cell mutations induced by acrylamide in gpt delta mice. Genes Environ. 43(4), 1–12 (2021).


    Google Scholar
     

  • Dizdaroglu, M. Substrate specificities and excision kinetics of DNA glycosylases involved in base-excision repair of oxidative DNA damage. Mutat. Res. 531, 109–126. https://doi.org/10.3233/JAD-2010-100465 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Birben, E., Sahiner, U. M., Sackesen, C., Erzurum, S. & Kalayci, O. Oxidative stress and antioxidant defense. World Allergy Org. J. 5(1), 9–19 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Mohamed, H. R. H. Alleviation of cadmium chloride-induced acute genotoxicity, mitochondrial DNA disruption, and ROS generation by chocolate coadministration in mice liver and kidney tissues. Biol. Trace Elem. Res. 200(8), 3750–3761 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, M. et al. The chemoprotection of a blueberry anthocyanin extract against the acrylamide-induced oxidative stress in mitochondria: Unequivocal evidence in mice liver. Food Funct. 6(9), 3006–3012 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Semla, M., Goc, Z., Martiniaková, M., Omelka, R., & Formicki, G. Acrylamide: A common food toxin related to physiological functions and health. Physiological Research (Czech Academy of Sciences, 2017)

  • Rothfuss, O., Gasser, T. & Patenge, N. Analysis of differential DNA damage in the mitochondrial genome employing a semi-long run real-time PCR approach. Nucleic Acids Res. 38, e24 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Cui, H., Kong, Y. & Zhang, H. Oxidative stress, mitochondrial dysfunction, and aging. J. Signal Trans. 2012, 646354 (2012).


    Google Scholar
     

  • Muftuoglu M., Mori M. P., & Souza-Pinto N. C. Formation and repair of oxidative damage in the mitochondrial DNA. Mitochondrion (2014)

  • Mohamed, H. R. H. Estimation of genomic instability and mitochondrial DNA damage induction by acute oral administration of calcium hydroxide normal- and nano- particles in mice. Toxicol Lett 304, 1–12 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Elmore, S. Apoptosis: A review of programmed cell death. Toxicol Pathol 35(4), 495–516 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaina, B. DNA damage-triggered apoptosis: critical role of DNA repair, double-strand breaks, cell proliferation and signaling. Biochem Pharmacol 66(8), 1547–1554 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sadot, E., Geiger, B., Oren, M. & Ben-Ze’ev, A. Down-regulation of beta catenin by activated p53. Mol Cell Biol 21, 6768–6781 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salem, N. S., Mohamed, H. R. H. & Abd-El Razek, A. M. Measurement of DNA damage, oxidative stress, and gene expression of β-Catenin and P53 genes in liver and brain of male mice receiving monosodium L-glutamate monohydrate. Asian J. Pharm. Clin. Res. 13(7), 127–132 (2020).

    Article 
    CAS 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    Stay Connected

    9FansLike
    4FollowersFollow
    0SubscribersSubscribe
    - Advertisement -spot_img

    Latest Articles

    %d bloggers like this: