Sunday, October 1, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

Ex vivo drug sensitivity screening predicts response to temozolomide in glioblastoma patients and identifies candidate biomarkers – British Journal of Cancer


  • Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM, et al. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell. 2006;9:391–403.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stieber D, Golebiewska A, Evers L, Lenkiewicz E, Brons NH, Nicot N, et al. Glioblastomas are composed of genetically divergent clones with distinct tumourigenic potential and variable stem cell-associated phenotypes. Acta Neuropathol. 2014;127:203–19.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ceccarelli M, Barthel FP, Malta TM, Sabedot TS, Salama SR, Murray BA, et al. Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell. 2016;164:550–63.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jacob F, Salinas RD, Zhang DY, Nguyen PTT, Schnoll JG, Wong SZH, et al. A patient-derived glioblastoma organoid model and biobank recapitulates inter- and intra-tumoral heterogeneity. Cell. 2020;180:188–204.e22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wakimoto H, Mohapatra G, Kanai R, Curry WT Jr., Yip S, Nitta M, et al. Maintenance of primary tumor phenotype and genotype in glioblastoma stem cells. Neuro Oncol. 2012;14:132–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hubert CG, Rivera M, Spangler LC, Wu Q, Mack SC, Prager BC, et al. A three-dimensional organoid culture system derived from human glioblastomas recapitulates the hypoxic gradients and cancer stem cell heterogeneity of tumors found in vivo. Cancer Res. 2016;76:2465–77.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Davis B, Shen Y, Poon CC, Luchman HA, Stechishin OD, Pontifex CS, et al. Comparative genomic and genetic analysis of glioblastoma-derived brain tumor-initiating cells and their parent tumors. Neuro Oncol. 2016;18:350–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rennert RC, Achrol AS, Januszyk M, Kahn SA, Liu TT, Liu Y, et al. Multiple subsets of brain tumor initiating cells coexist in glioblastoma. Stem Cells. 2016;34:1702–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ye LF, Reznik E, Korn JM, Lin F, Yang G, Malesky K, et al. Patient-derived glioblastoma cultures as a tool for small-molecule drug discovery. Oncotarget. 2020;11:443–51.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Golebiewska A, Hau A-C, Oudin A, Stieber D, Yabo YA, Baus V, et al. Patient-derived organoids and orthotopic xenografts of primary and recurrent gliomas represent relevant patient avatars for precision oncology. Acta Neuropathologica. 2020;140:919–49.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pollard SM, Yoshikawa K, Clarke ID, Danovi D, Stricker S, Russell R, et al. Glioma stem cell lines expanded in adherent culture have tumor-specific phenotypes and are suitable for chemical and genetic screens. Cell Stem Cell. 2009;4:568–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang Y, Schubert MC, Kuner T, Wick W, Winkler F, Venkataramani V. Brain tumor networks in diffuse glioma. Neurotherapeutics. 2022;19:1832–43.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Faisal SM, Comba A, Varela ML, Argento AE, Brumley E, Abel C, et al. The complex interactions between the cellular and non-cellular components of the brain tumor microenvironmental landscape and their therapeutic implications. Front Oncol. 2022;12:1005069.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Silver A, Feier D, Ghosh T, Rahman M, Huang J, Sarkisian MR, et al. Heterogeneity of glioblastoma stem cells in the context of the immune microenvironment and geospatial organization. Front Oncol. 2022;12:1022716.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl J Med. 2005;352:987–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N. Engl J Med. 2005;352:997–1003.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Balvers RK, Kleijn A, Kloezeman JJ, French PJ, Kremer A, van den Bent MJ, et al. Serum-free culture success of glial tumors is related to specific molecular profiles and expression of extracellular matrix-associated gene modules. Neuro Oncol. 2013;15:1684–95.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Verheul C, Ntafoulis I, Kers TV, Hoogstrate Y, Mastroberardino PG, Barnhoorn S, et al. Generation, characterization, and drug sensitivities of 12 patient-derived IDH1-mutant glioma cell cultures. Neurooncol Adv. 2021;3:vdab103.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baskaran S, Mayrhofer M, Kultima HG, Bergström T, Elfineh L, Cavelier L, et al. Primary glioblastoma cells for precision medicine: a quantitative portrait of genomic (in) stability during the first 30 passages. Neuro-Oncol. 2018;20:1080–91.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Esteller M, Garcia-Foncillas J, Andion E, Goodman SN, Hidalgo OF, Vanaclocha V, et al. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med. 2000;343:1350–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Möllemann M, Wolter M, Felsberg J, Collins VP, Reifenberger G. Frequent promoter hypermethylation and low expression of the MGMT gene in oligodendroglial tumors. Int J Cancer. 2005;113:379–85.

    Article 
    PubMed 

    Google Scholar
     

  • White K, Connor K, Meylan M, Bougoüin A, Salvucci M, Bielle F, et al. Identification, validation and biological characterization of novel Glioblastoma Tumour Microenvironment subtypes: Implications for precision immunotherapy. Ann Oncol. 2023;34:300–14.

  • Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010;26:589–95.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scheinin I, Sie D, Bengtsson H, van de Wiel MA, Olshen AB, van Thuijl HF, et al. DNA copy number analysis of fresh and formalin-fixed specimens by shallow whole-genome sequencing with identification and exclusion of problematic regions in the genome assembly. Genome Res. 2014;24:2022–32.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van Loo P, Nilsen G, Nordgard SH, Vollan HK, Børresen-Dale AL, Kristensen VN, et al. Analyzing cancer samples with SNP arrays. Methods Mol Biol. 2012;802:57–72.

    Article 
    PubMed 

    Google Scholar
     

  • Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fang Z, Liu X, Peltz G. GSEApy: a comprehensive package for performing gene set enrichment analysis in Python. Bioinformatics, 2023;39:btac757.

  • Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinforma. 2013;14:128.

    Article 

    Google Scholar
     

  • Xie Z, Bailey A, Kuleshov MV, Clarke DJB, Evangelista JE, Jenkins SL, et al. Gene set knowledge discovery with Enrichr. Curr Protoc. 2021;1:e90.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016;44:W90–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Waskom ML. Seaborn: statistical data visualization. J Open Source Softw. 2021;3021:6.


    Google Scholar
     

  • Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods. 2020;17:261–72.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dodge, Y, Spearman Rank Correlation Coefficient, in The Concise Encyclopedia of Statistics. 2008, Springer New York: New York, NY. p. 502–5.

  • Therneau, TM, A Package for Survival Analysis in R. 2022.

  • Harrell, FE, Cox Proportional Hazards Regression Model, in Regression Modeling Strategies: With Applications to Linear Models, Logistic Regression, and Survival Analysis, FE Harrell, Editor. 2001, Springer New York: New York, NY. p. 465-507.

  • Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci. 2005;102:15545.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jacquemont C, Taniguchi T. The Fanconi anemia pathway and ubiquitin. BMC Biochem. 2007;8:S10.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ostermann S, Csajka C, Buclin T, Leyvraz S, Lejeune F, Decosterd LA, et al. Plasma and cerebrospinal fluid population pharmacokinetics of temozolomide in malignant glioma patients. Clin Cancer Res. 2004;10:3728–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kleijn A, Kloezeman JJ, Balvers RK, v.d. Kaaij M, Dirven CMF, Leenstra S, et al. A systematic comparison identifies an ATP-based viability assay as most suitable read-out for drug screening in glioma stem-like cells. Stem Cells Int. 2016;2016:5623235.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fouse SD, Nakamura JL, James CD, Chang S, Costello JF. Response of primary glioblastoma cells to therapy is patient specific and independent of cancer stem cell phenotype. Neuro Oncol. 2014;16:361–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McFaline-Figueroa JL, Braun CJ, Stanciu M, Nagel ZD, Mazzucato P, Sangaraju D, et al. Minor changes in expression of the mismatch repair protein MSH2 exert a major impact on glioblastoma response to temozolomide. Cancer Res. 2015;75:3127–38.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Agnihotri S, Gajadhar AS, Ternamian C, Gorlia T, Diefes KL, Mischel PS, et al. Alkylpurine-DNA-N-glycosylase confers resistance to temozolomide in xenograft models of glioblastoma multiforme and is associated with poor survival in patients. J Clin Invest. 2012;122:253–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Murat A, Migliavacca E, Gorlia T, Lambiv WL, Shay T, Hamou MF, et al. Stem cell-related “self-renewal” signature and high epidermal growth factor receptor expression associated with resistance to concomitant chemoradiotherapy in glioblastoma. J Clin Oncol. 2008;26:3015–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu D, Yang T, Ma W, Wang Y. Clinical strategies to manage adult glioblastoma patients without MGMT hypermethylation. J Cancer. 2022;13:354–63.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim M, Mun H, Sung CO, Cho EJ, Jeon H-J, Chun S-M, et al. Patient-derived lung cancer organoids as in vitro cancer models for therapeutic screening. Nat Commun. 2019;10:3991.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tiriac H, Belleau P, Engle DD, Plenker D, Deschênes A, Somerville TDD, et al. Organoid profiling identifies common responders to chemotherapy in pancreatic cancer. Cancer Discov. 2018;8:1112–29.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yin S, Xi R, Wu A, Wang S, Li Y, Wang C, et al. Patient-derived tumor-like cell clusters for drug testing in cancer therapy. Sci Transl Med. 2020;12:eaaz1723.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shuford S, Lipinski L, Abad A, Smith AM, Rayner M, O’Donnell L, et al. Prospective prediction of clinical drug response in high-grade gliomas using an ex vivo 3D cell culture assay. Neuro-Oncol Adv. 2021;3:vdab065.

    Article 

    Google Scholar
     

  • Howard CM, Valluri J, Alberico A, Julien T, Mazagri R, Marsh R, et al. Analysis of chemopredictive assay for targeting cancer stem cells in glioblastoma patients. Transl Oncol. 2017;10:241–54.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stockslager MA, Malinowski S, Touat M, Yoon JC, Geduldig J, Mirza M, et al. Functional drug susceptibility testing using single-cell mass predicts treatment outcome in patient-derived cancer neurosphere models. Cell Rep. 2021;37:109788.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • O’Connell MJ, Walworth NC, Carr AM. The G2-phase DNA-damage checkpoint. Trends Cell Biol. 2000;10:296–303.

    Article 
    PubMed 

    Google Scholar
     

  • Lan Y, Lou J, Hu J, Yu Z, Lyu W, Zhang B. Downregulation of SNRPG induces cell cycle arrest and sensitizes human glioblastoma cells to temozolomide by targeting Myc through a p53-dependent signaling pathway. Cancer Biol Med. 2020;17:112–31.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang H, Chen Z, Sun L. Inhibition of cyclin E1 overcomes temozolomide resistance in glioblastoma by Mcl-1 degradation. Mol Carcinog. 2019;58:1502–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang J, Yang T, Xu G, Liu H, Ren C, Xie W, et al. Cyclin-dependent kinase 2 promotes tumor proliferation and induces radio resistance in glioblastoma. Transl Oncol. 2016;9:548–56.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang H, Zhang S, Li Y, Liu Z, Mi L, Cai Y, et al. Suppression of mitochondrial ROS by prohibitin drives glioblastoma progression and therapeutic resistance. Nature. Communications. 2021;12:3720.

    CAS 

    Google Scholar
     

  • Xiang Z, Yuan W, Luo N, Wang Y, Tan K, Deng Y, et al. A novel human zinc finger protein ZNF540 interacts with MVP and inhibits transcriptional activities of the ERK signal pathway. Biochem Biophys Res Commun. 2006;347:288–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao M, Cai J, Yuan Y, Shi Y, Wu H, Liu Q, et al. A four-gene signature-derived risk score for glioblastoma: prospects for prognostic and response predictive analyses. Cancer Biol Med. 2019;16:595–605.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Le Rhun E, Preusser M, Roth P, Reardon DA, van den Bent M, Wen P, et al. Molecular targeted therapy of glioblastoma. Cancer Treat Rev. 2019;80:101896.

    Article 
    PubMed 

    Google Scholar
     

  • Yabo YA, Niclou SP, Golebiewska, A. Cancer cell heterogeneity and plasticity: a paradigm shift in glioblastoma. Neuro-Oncology, 2022;24:669–82.



  • Source link

    Related Articles

    Leave a Reply

    Stay Connected

    9FansLike
    4FollowersFollow
    0SubscribersSubscribe
    - Advertisement -spot_img

    Latest Articles

    %d bloggers like this: