Friday, September 29, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

Exploiting the fibroblast growth factor receptor-1 vulnerability to therapeutically restrict the MYC-EZH2-CDKN1C axis-driven proliferation in Mantle cell lymphoma – Leukemia


  • A clinical evaluation of the International Lymphoma Study Group classification of non-Hodgkin’s lymphoma. The Non-Hodgkin’s Lymphoma Classification Project. Blood. 1997;89:3909–18.


    Google Scholar
     

  • Vose JM. Mantle cell lymphoma: 2013 Update on diagnosis, risk-stratification, and clinical management. Am J Hematol. 2013;88:1082–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Scott DW, Gascoyne RD. The tumour microenvironment in B cell lymphomas. Nat Rev Cancer. 2014;14:517–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tiemann M, Schrader C, Klapper W, Dreyling MH, Campo E, Norton A, et al. Histopathology, cell proliferation indices and clinical outcome in 304 patients with mantle cell lymphoma (MCL): a clinicopathological study from the European MCL Network. Br J Haematol. 2005;131:29–38.

    Article 
    PubMed 

    Google Scholar
     

  • Abrahamsson A, Albertsson-Lindblad A, Brown PN, Baumgartner-Wennerholm S, Pedersen LM, D’Amore F, et al. Real world data on primary treatment for mantle cell lymphoma: a Nordic Lymphoma Group observational study. Blood. 2014;124:1288–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou Y, Wang H, Fang W, Romaguer JE, Zhang Y, Delasalle KB, et al. Incidence trends of mantle cell lymphoma in the United States between 1992 and 2004. Cancer. 2008;113:791–8.

    Article 
    PubMed 

    Google Scholar
     

  • Kumar A, Sha F, Toure A, Dogan A, Ni A, Batlevi CL, et al. Patterns of survival in patients with recurrent mantle cell lymphoma in the modern era: progressive shortening in response duration and survival after each relapse. Blood Cancer J. 2019;9:50.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin P, Maddocks K, Leonard JP, Ruan J, Goy A, Wagner-Johnston N, et al. Postibrutinib outcomes in patients with mantle cell lymphoma. Blood. 2016;127:1559–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheah CY, Chihara D, Romaguera JE, Fowler NH, Seymour JF, Hagemeister FB, et al. Patients with mantle cell lymphoma failing ibrutinib are unlikely to respond to salvage chemotherapy and have poor outcomes. Ann Oncol. 2015;26:1175–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheah CY, Seymour JF, Wang ML. Mantle cell lymphoma. J Clin Oncol. 2016;34:1256–69.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Epperla N, Hamadani M, Cashen AF, Ahn KW, Oak E, Kanate AS, et al. Predictive factors and outcomes for ibrutinib therapy in relapsed/refractory mantle cell lymphoma-a “real world” study. Hematol Oncol. 2017;35:528–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sircar A, Chowdhury SM, Hart A, Bell WC, Singh S, Sehgal L, et al. Impact and intricacies of bone marrow microenvironment in B-cell lymphomas: from biology to therapy. Int J Mol Sci. 2020;21:904.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chiron D, Martin P, Di Liberto M, Huang X, Ely S, Lannutti BJ, et al. Induction of prolonged early G1 arrest by CDK4/CDK6 inhibition reprograms lymphoma cells for durable PI3Kδ inhibition through PIK3IP1. Cell Cycle. 2013;12:1892–1900.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Determann O, Hoster E, Ott G, Wolfram Bernd H, Loddenkemper C, Leo Hansmann M, et al. Ki-67 predicts outcome in advanced-stage mantle cell lymphoma patients treated with anti-CD20 immunochemotherapy: results from randomized trials of the European MCL Network and the German Low Grade Lymphoma Study Group. Blood. 2008;111:2385–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bodrug SE, Warner BJ, Bath ML, Lindeman GJ, Harris AW, Adams JM. Cyclin D1 transgene impedes lymphocyte maturation and collaborates in lymphomagenesis with the myc gene. EMBO J. 1994;13:2124–30.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Edwards DR, Kuo P-Y, Lagana A, Park S, Nedumaran P, Leshchenko V, et al. Aberrant cell cycle programming confers rapid lethality in the EuSOX11+ CCND1 MCL mouse model. Blood. 2020;136:6–7.

    Article 

    Google Scholar
     

  • Walter DM, Yates TJ, Ruiz-Torres M, Kim-Kiselak C, Gudiel AA, Deshpande C, et al. RB constrains lineage fidelity and multiple stages of tumour progression and metastasis. Nature. 2019;569:423–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wander SA, Cohen O, Gong X, Johnson GN, Buendia-Buendia JE, Lloyd MR, et al. The genomic landscape of intrinsic and acquired resistance to cyclin-dependent kinase 4/6 inhibitors in patients with hormone receptor-positive metastatic breast cancer. Cancer Discov. 2020;10:1174–93.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roskoski R Jr. Cyclin-dependent protein serine/threonine kinase inhibitors as anticancer drugs. Pharmacol Res. 2019;139:471–88.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martin P, Bartlett NL, Blum KA, Park S, Maddocks K, Ruan J, et al. A phase 1 trial of ibrutinib plus palbociclib in previously treated mantle cell lymphoma. Blood. 2019;133:1201–4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dvorak P, Dvorakova D, Hampl A. Fibroblast growth factor signaling in embryonic and cancer stem cells. FEBS Lett. 2006;580:2869–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grose R, Dickson C. Fibroblast growth factor signaling in tumorigenesis. Cytokine Growth Factor Rev. 2005;16:179–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Korc M, Friesel RE. The role of fibroblast growth factors in tumor growth. Current Cancer Drug Targets. 2009;9:639–51.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moroni E, Dell’Era P, Rusnati M, Presta M. Fibroblast growth factors and their receptors in hematopoiesis and hematological tumors. J Hematother Stem Cell Res. 2002;11:19–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ornitz DM, Itoh N. The fibroblast growth factor signaling pathway. Wiley Interdisc Rev Dev Biol. 2015;4:215–66.

    Article 
    CAS 

    Google Scholar
     

  • Pazgal I, Zimra Y, Tzabar C, Okon E, Rabizadeh E, Shaklai M, et al. Expression of basic fibroblast growth factor is associated with poor outcome in non-Hodgkin’s lymphoma. Br J Cancer. 2002;86:1770–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Turner N, Grose R. Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer. 2010;10:116–29.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xian W, Pappas L, Pandya D, Selfors LM, Derksen PW, de Bruin M, et al. Fibroblast growth factor receptor 1-transformed mammary epithelial cells are dependent on RSK activity for growth and survival. Cancer Res. 2009;69:2244–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang X, Ibrahimi OA, Olsen SK, Umemori H, Mohammadi M, Ornitz DM. Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family. J Biol Chem. 2006;281:15694–15700.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, Lin Y, Bowles C, Wang F. Direct cell cycle regulation by the fibroblast growth factor receptor (FGFR) kinase through phosphorylation-dependent release of Cks1 from FGFR substrate 2. J Biol Chem. 2004;279:55348–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Helsten T, Elkin S, Arthur E, Tomson BN, Carter J, Kurzrock R. The FGFR landscape in cancer: analysis of 4,853 tumors by next-generation sequencing. Clinical Cancer Research. 2016;22:259–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Agerstam H, Jaras M, Andersson A, Johnels P, Hansen N, Lassen C, et al. Modeling the human 8p11-myeloproliferative syndrome in immunodeficient mice. Blood. 2010;116:2103–11.

    Article 
    PubMed 

    Google Scholar
     

  • Peiris MN, Meyer AN, Nelson KN, Bisom-Rapp EW, Donoghue DJ. Oncogenic fusion protein BCR-FGFR1 requires the breakpoint cluster region-mediated oligomerization and chaperonin Hsp90 for activation. Haematologica. 2020;105:1262–73.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wakim JJ, Tirado CA, Chen W, Collins R. t(8;22)/BCR-FGFR1 myeloproliferative disorder presenting as B-acute lymphoblastic leukemia: report of a case treated with sorafenib and review of the literature. Leuk Res. 2011;35:e151–153.

    Article 
    PubMed 

    Google Scholar
     

  • Formisano L, Lu Y, Servetto A, Hanker AB, Jansen VM, Bauer JA, et al. Aberrant FGFR signaling mediates resistance to CDK4/6 inhibitors in ER+ breast cancer. Nature Communications. 2019;10:1373.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao X, Lwin T, Silva A, Shah B, Tao J, Fang B, et al. Unification of de novo and acquired ibrutinib resistance in mantle cell lymphoma. Nat Commun. 2017;8:14920.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rosenwald A, Wright G, Wiestner A, Chan WC, Connors JM, Campo E, et al. The proliferation gene expression signature is a quantitative integrator of oncogenic events that predicts survival in mantle cell lymphoma. Cancer Cell. 2003;3:185–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pararajalingam P, Coyle KM, Arthur SE, Thomas N, Alcaide M, Meissner B, et al. Coding and noncoding drivers of mantle cell lymphoma identified through exome and genome sequencing. Blood. 2020;136:572–84.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nadeu F, Martin-Garcia D, Clot G, Díaz-Navarro A, Duran-Ferrer M, Navarro A, et al. Genomic and epigenomic insights into the origin, pathogenesis, and clinical behavior of mantle cell lymphoma subtypes. Blood. 2020;136:1419–32.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perera TPS, Jovcheva E, Mevellec L, Vialard J, De Lange D, Verhulst T, et al. Discovery and pharmacological characterization of JNJ-42756493 (Erdafitinib), a functionally selective small-molecule FGFR family inhibitor. Mol Cancer Ther. 2017;16:1010–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Markham A. Erdafitinib: First Global Approval. Drugs. 2019;79:1017–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie Z, Bailey A, Kuleshov MV, Clarke DJB, Evangelista JE, Jenkins SL, et al. Gene set knowledge discovery with enrichr. Current Protocols. 2021;1:e90.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Queiros AC, Beekman R, Vilarrasa-Blasi R, Duran-Ferrer M, Clot G, Merkel A, et al. Decoding the DNA methylome of mantle cell lymphoma in the light of the entire B cell lineage. Cancer Cell. 2016;30:806–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lachmann A, Torre D, Keenan AB, Jagodnik KM, Lee HJ, Wang L, et al. Massive mining of publicly available RNA-seq data from human and mouse. Nature Communications. 2018;9:1366.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang X, Sehgal L, Jain N, Khashab T, Mathur R, Samaniego F. LncRNA MALAT1 promotes development of mantle cell lymphoma by associating with EZH2. J Transl Med. 2016;14:346.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matsuoka S, Edwards MC, Bai C, Parker S, Zhang P, Baldini A, et al. p57KIP2, a structurally distinct member of the p21CIP1 Cdk inhibitor family, is a candidate tumor suppressor gene. Genes Dev. 1995;9:650–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 1999;13:1501–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Samuelsson MKR, Pazirandeh A, Davani B, Okret S. p57Kip2, a Glucocorticoid-Induced Inhibitor of Cell Cycle Progression in HeLa Cells. Molecular Endocrinology. 1999;13:1811–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma Y, Chen L, Wright GM, Pillai SR, Chellappan SP, Cress WD. CDKN1C negatively regulates RNA polymerase II C-terminal domain phosphorylation in an E2F1-dependent manner. J Biol Chem. 2010;285:9813–22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qin XQ, Livingston DM, Ewen M, Sellers WR, Arany Z, Kaelin WG Jr. The transcription factor E2F-1 is a downstream target of RB action. Mol Cell Biol. 1995;15:742–55.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wells J, Graveel CR, Bartley SM, Madore SJ, Farnham PJ. The identification of E2F1-specific target genes. Proc Nat Acad Sci. 2002;99:3890–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Magri L, Swiss VA, Jablonska B, Lei L, Pedre X, Walsh M, et al. E2F1 coregulates cell cycle genes and chromatin components during the transition of oligodendrocyte progenitors from proliferation to differentiation. J Neurosci. 2014;34:1481–93.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Polager S, Kalma Y, Berkovich E, Ginsberg D. E2Fs up-regulate expression of genes involved in DNA replication, DNA repair and mitosis. Oncogene. 2002;21:437–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bracken AP, Ciro M, Cocito A, Helin K. E2F target genes: unraveling the biology. Trends Biochem Sci. 2004;29:409–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu X, Liu D, Tao D, Xiang W, Xiao X, Wang M, et al. BRD4 regulates EZH2 transcription through upregulation of C-MYC and represents a novel therapeutic target in bladder cancer. Mol Cancer Therap. 2016;15:1029–42.

    Article 
    CAS 

    Google Scholar
     

  • Tzatsos A, Paskaleva P, Lymperi S, Contino G, Stoykova S, Chen Z, et al. Lysine-specific Demethylase 2B (KDM2B)-let-7-Enhancer of Zester Homolog 2 (EZH2) pathway regulates cell cycle progression and senescence in primary cells. J Biolog Chem. 2011;286:33061–9.

    Article 
    CAS 

    Google Scholar
     

  • Sears R, Nuckolls F, Haura E, Taya Y, Tamai K, Nevins JR. Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev. 2000;14:2501–14.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yada M, Hatakeyama S, Kamura T, Nishiyama M, Tsunematsu R, Imaki H, et al. Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7. EMBO J. 2004;23:2116–25.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Welcker M, Orian A, Jin J, Grim JE, Harper JW, Eisenman RN, et al. The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proc Natl Acad Sci USA. 2004;101:9085–90.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee T, Yao G, Nevins J, You L. Sensing and integration of Erk and PI3K signals by Myc. PLoS Comput Biol. 2008;4:e1000013.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Acevedo VD, Gangula RD, Freeman KW, Li R, Zhang Y, Wang F, et al. Inducible FGFR-1 activation leads to irreversible prostate adenocarcinoma and an epithelial-to-mesenchymal transition. Cancer Cell. 2007;12:559–71.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nguyen PT, Tsunematsu T, Yanagisawa S, Kudo Y, Miyauchi M, Kamata N, et al. The FGFR1 inhibitor PD173074 induces mesenchymal-epithelial transition through the transcription factor AP-1. Br J Cancer. 2013;109:2248–58.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pacini L, Jenks AD, Lima NC, Huang PH. Targeting the fibroblast growth factor receptor (FGFR) family in lung cancer. Cells. 2021;10:1154.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Inhorn RC, Aster JC, Roach SA, Slapak CA, Soiffer R, Tantravahi R, et al. A syndrome of lymphoblastic lymphoma, eosinophilia, and myeloid hyperplasia/malignancy associated with t(8;13)(p11;q11): description of a distinctive clinicopathologic entity. Blood. 1995;85:1881–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sohal J, Chase A, Mould S, Corcoran M, Oscier D, Iqbal S, et al. Identification of four new translocations involving FGFR1 in myeloid disorders. Genes Chromosomes Cancer. 2001;32:155–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kommalapati A, Tella SH, Borad M, Javle M, Mahipal A. FGFR inhibitors in oncology: insight on the management of toxicities in clinical practice. Cancers. 2021;13:2968.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Katoh M. FGFR inhibitors: Effects on cancer cells, tumor microenvironment and whole-body homeostasis (Review). Int J Mol Med. 2016;38:3–15.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie Y, Su N, Yang J, Tan Q, Huang S, Jin M, et al. FGF/FGFR signaling in health and disease. Signal Transd Targ Ther. 2020;5:181.

    CAS 

    Google Scholar
     

  • Ware KE, Hinz TK, Kleczko E, Singleton KR, Marek LA, Helfrich BA, et al. A mechanism of resistance to gefitinib mediated by cellular reprogramming and the acquisition of an FGF2-FGFR1 autocrine growth loop. Oncogenesis. 2013;2:e39.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Traer E, Martinez J, Javidi-Sharifi N, Agarwal A, Dunlap J, English I, et al. FGF2 from marrow microenvironment promotes resistance to FLT3 inhibitors in acute myeloid leukemia. Cancer Res. 2016;76:6471–82.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li F, Huynh H, Li X, Ruddy DA, Wang Y, Ong R, et al. FGFR-mediated reactivation of MAPK signaling attenuates antitumor effects of imatinib in gastrointestinal stromal tumors. Cancer Discov. 2015;5:438–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ferguson HR, Smith MP, Francavilla C. Fibroblast growth factor receptors (FGFRs) and noncanonical partners in cancer signaling. Cells. 2021;10:1201.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krejci P, Faitova J, Laurell H, Hampl A, Dvorak P. FGF-2 expression and its action in human leukemia and lymphoma cell lines. Leukemia. 2003;17:818–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang L, Yao Y, Zhang S, Liu Y, Guo H, Ahmed M, et al. Metabolic reprogramming toward oxidative phosphorylation identifies a therapeutic target for mantle cell lymphoma. Sci Transl Med. 2019;11:eaau1167.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Subbiah V, Iannotti NO, Gutierrez M, Smith DC, Féliz L, Lihou CF, et al. FIGHT-101, a first-in-human study of potent and selective FGFR 1-3 inhibitor pemigatinib in pan-cancer patients with FGF/FGFR alterations and advanced malignancies. Ann Oncol. 2022;33:522–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang H, Wang L, Erdjument-Bromage H, Vidal M, Tempst P, Jones RS, et al. Role of histone H2A ubiquitination in Polycomb silencing. Nature. 2004;431:873–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao Z, Zhang J, Bonasio R, Strino F, Sawai A, Parisi F, et al. PCGF homologs, CBX proteins, and RYBP define functionally distinct PRC1 family complexes. Mol Cell. 2012;45:344–56.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kottakis F, Polytarchou C, Foltopoulou P, Sanidas I, Kampranis SC, Tsichlis PN. FGF-2 regulates cell proliferation, migration, and angiogenesis through an NDY1/KDM2B-miR-101-EZH2 pathway. Mol Cell. 2011;43:285–98.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kagiyama Y, Fujita S, Shima Y, Yamagata K, Katsumoto T, Nakagawa M, et al. CDKN1C-mediated growth inhibition by an EZH1/2 dual inhibitor overcomes resistance of mantle cell lymphoma to ibrutinib. Cancer Sci. 2021;112:2314–24.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bracken AP, Pasini D, Capra M, Prosperini E, Colli E, Helin K. EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. EMBO J. 2003;22:5323–35.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science. 2002;298:1039–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Min J, Zhang Y, Xu RM. Structural basis for specific binding of Polycomb chromodomain to histone H3 methylated at Lys 27. Genes Dev. 2003;17:1823–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Farcas AM, Blackledge NP, Sudbery I, Long HK, McGouran JF, Rose NR, et al. KDM2B links the Polycomb Repressive Complex 1 (PRC1) to recognition of CpG islands. Elife. 2012;1:e00205.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sashida G, Oshima M, Iwama A. Deregulated Polycomb functions in myeloproliferative neoplasms. Int J Hematol. 2019;110:170–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li W, Bi C, Han Y, Tian T, Wang X, Bao H, et al. Targeting EZH1/2 induces cell cycle arrest and inhibits cell proliferation through reactivation of p57(CDKN1C) and TP53INP1 in mantle cell lymphoma. Cancer Biol Med. 2019;16:530–41.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao X, Wang MY, Jiang H, Lwin T, Park PM, Gao J, et al. Transcriptional programming drives Ibrutinib-resistance evolution in mantle cell lymphoma. Cell Rep. 2021;34:108870.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hernandez L, Hernandez S, Bea S, Pinyol M, Ferrer A, Bosch F, et al. c-myc mRNA expression and genomic alterations in mantle cell lymphomas and other nodal non-Hodgkin’s lymphomas. Leukemia. 1999;13:2087–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao X, Lwin T, Zhang X, Huang A, Wang J, Marquez VE, et al. Disruption of the MYC-miRNA-EZH2 loop to suppress aggressive B-cell lymphoma survival and clonogenicity. Leukemia. 2013;27:2341–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adams JM, Harris AW, Pinkert CA, Corcoran LM, Alexander WS, Cory S, et al. The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature. 1985;318:533–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lovec H, Grzeschiczek A, Kowalski MB, Moroy T. Cyclin D1/bcl-1 cooperates with myc genes in the generation of B-cell lymphoma in transgenic mice. EMBO J. 1994;13:3487–95.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    Stay Connected

    9FansLike
    4FollowersFollow
    0SubscribersSubscribe
    - Advertisement -spot_img

    Latest Articles

    %d bloggers like this: