Friday, September 22, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

Fiber-specific micro- and macroscopic white matter alterations in progressive supranuclear palsy and corticobasal syndrome – npj Parkinson’s Disease


  • Boeve, B. F. Parkinson-related dementias. Neurol. Clin. 25, 761–781 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Litvan, I. et al. Validity and reliability of the preliminary NINDS neuropathologic criteria for progressive supranuclear palsy and related disorders. J. Neuropathol. Exp. Neurol. 55, 97–105 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Williams, D. R. & Lees, A. J. Progressive supranuclear palsy: clinicopathological concepts and diagnostic challenges. Lancet Neurol. 8, 270–279 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Dickson, D. W. Neuropathology of progressive supranuclear palsy. Handb. Clin. Neurol. 89, 487–491 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Litvan, I. et al. Clinical research criteria for the diagnosis of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome): report of the NINDS-SPSP international workshop. Neurology 47, 1–9 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chung, D.-E. C., Roemer, S., Petrucelli, L. & Dickson, D. W. Cellular and pathological heterogeneity of primary tauopathies. Mol. Neurodegener. 16, 57–57 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Williams, D. R. et al. Pathological tau burden and distribution distinguishes progressive supranuclear palsy-parkinsonism from Richardson’s syndrome. Brain 130, 1566–1576 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Wilson, D., Le Heron, C. & Anderson, T. Corticobasal syndrome: a practical guide. Pract. Neurol. 21, 276 (2021).

    Article 

    Google Scholar
     

  • Armstrong, M. J. et al. Criteria for the diagnosis of corticobasal degeneration. Neurology 80, 496–503 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Whitwell, J. L. et al. Imaging correlates of pathology in corticobasal syndrome. Neurology 75, 1879–1887 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cordato, N. J. et al. Corticobasal syndrome with tau pathology. Mov. Disord. 16, 656–667 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, E.-J. et al. Evidence of corticofugal tau spreading in patients with frontotemporal dementia. Acta Neuropathol. 139, 27–43 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Whiteside, D. J. et al. Altered network stability in progressive supranuclear palsy. Neurobiol. Aging 107, 109–117 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stamelou, M. et al. Evolving concepts in progressive supranuclear palsy and other 4-repeat tauopathies. Nat. Rev. Neurol. 17, 601–620 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Clavaguera, F. et al. “Prion-like” templated misfolding in tauopathies. Brain Pathol. 23, 342–349 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duquette, A., Pernègre, C., Veilleux Carpentier, A. & Leclerc, N. Similarities and differences in the pattern of tau hyperphosphorylation in physiological and pathological conditions: impacts on the elaboration of therapies to prevent tau pathology. Front. Neurol. 11, 607680 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Cagney, D. N. et al. The FDA NIH Biomarkers, EndpointS, and other Tools (BEST) resource in neuro-oncology. Neuro Oncol. 20, 1162–1172 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Raffelt, D. A. et al. Investigating white matter fibre density and morphology using fixel-based analysis. Neuroimage 144, 58–73 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Dutt, S. et al. Progression of brain atrophy in PSP and CBS over 6 months and 1 year. Neurology 87, 2016–2025 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nasreddine, Z. S. et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 53, 695–699 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Saito, Y. et al. Temporal progression patterns of brain atrophy in corticobasal syndrome and progressive supranuclear palsy revealed by Subtype and Stage Inference (SuStaIn). Front. Neurol. 13, 814768 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Whitwell, J. L. et al. Diffusion tensor imaging comparison of progressive supranuclear palsy and corticobasal syndromes. Parkinsonism Relat. Disord. 20, 493–498 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Jeurissen, B., Leemans, A., Tournier, J. D., Jones, D. K. & Sijbers, J. Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging. Hum. Brain Mapp. 34, 2747–2766 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Raffelt, D. A. et al. Connectivity-based fixel enhancement: whole-brain statistical analysis of diffusion MRI measures in the presence of crossing fibres. Neuroimage 117, 40–55 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Nguyen, T.-T. et al. Fixel-based analysis of white matter degeneration in patients with progressive supranuclear palsy or multiple system atrophy, as compared to Parkinson’s disease. Front. Aging Neurosci. 13, 625874 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sakamoto, S. et al. Dentatorubrothalamic tract reduction using fixel-based analysis in corticobasal syndrome. Neuroradiology 63, 529–538 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Ling, H. et al. Astrogliopathy predominates the earliest stage of corticobasal degeneration pathology. Brain 139, 3237–3252 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Kouri, N. et al. Neuropathological features of corticobasal degeneration presenting as corticobasal syndrome or Richardson syndrome. Brain 134, 3264–3275 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raffelt, D. et al. Apparent Fibre Density: a novel measure for the analysis of diffusion-weighted magnetic resonance images. Neuroimage 59, 3976–3994 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Tsuboi, Y. et al. Atrophy of superior cerebellar peduncle in progressive supranuclear palsy. Neurology 60, 1766–1769 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ouchi, H. et al. Pathology and sensitivity of current clinical criteria in corticobasal syndrome. Mov. Disord. 29, 238–244 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Lee, S. E. et al. Clinicopathological correlations in corticobasal degeneration. Ann. Neurol. 70, 327–340 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leuzy, A. et al. Tau PET imaging in neurodegenerative tauopathies—still a challenge. Mol. Psychiatry 24, 1112–1134 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kovacs, G. G. et al. Distribution patterns of tau pathology in progressive supranuclear palsy. Acta Neuropathol. 140, 99–119 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Forman, M. S. et al. Signature tau neuropathology in gray and white matter of corticobasal degeneration. Am. J. Pathol. 160, 2045–2053 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ling, H. et al. Characteristics of progressive supranuclear palsy presenting with corticobasal syndrome: a cortical variant. Neuropathol. Appl. Neurobiol. 40, 149–163 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mitchell, T. et al. Advanced diffusion imaging to track progression in Parkinson’s disease, multiple system atrophy, and progressive supranuclear palsy. Neuroimage Clin. 34, 103022 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seki, M. et al. Diagnostic potential of dentatorubrothalamic tract analysis in progressive supranuclear palsy. Parkinsonism Relat. Disord. 49, 81–87 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Meola, A., Comert, A., Yeh, F. C., Sivakanthan, S. & Fernandez-Miranda, J. C. The nondecussating pathway of the dentatorubrothalamic tract in humans: human connectome-based tractographic study and microdissection validation. J. Neurosurg. 124, 1406–1412 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Petersen, K. J. et al. Structural and functional connectivity of the nondecussating dentato-rubro-thalamic tract. Neuroimage 176, 364–371 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Ishizawa, K. et al. A qualitative and quantitative study of grumose degeneration in progressive supranuclear palsy. J. Neuropathol. Exp. Neurol. 59, 513–524 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Josephs, K. A. et al. Atypical progressive supranuclear palsy with corticospinal tract degeneration. J. Neuropathol. Exp. Neurol. 65, 396–405 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Whitwell, J. L. et al. Clinical correlates of white matter tract degeneration in progressive supranuclear palsy. Arch. Neurol. 68, 753–760 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Whitwell, J. L. et al. Imaging measures predict progression in progressive supranuclear palsy. Mov. Disord. 27, 1801–1804 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Sintini, I. et al. Neuroimaging correlates of gait abnormalities in progressive supranuclear palsy. Neuroimage Clin. 32, 102850 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alam, M., Schwabe, K. & Krauss, J. K. The pedunculopontine nucleus area: critical evaluation of interspecies differences relevant for its use as a target for deep brain stimulation. Brain 134, 11–23 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Murray, R. et al. Cognitive and motor assessment in autopsy-proven corticobasal degeneration. Neurology 68, 1274–1283 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Day, G. S. et al. Differentiating cognitive impairment due to corticobasal degeneration and Alzheimer disease. Neurology 88, 1273–1281 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y. et al. Progression of microstructural degeneration in progressive supranuclear palsy and corticobasal syndrome: a longitudinal diffusion tensor imaging study. PLoS ONE 11, e0157218 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ling, H. et al. Does corticobasal degeneration exist? A clinicopathological re-evaluation. Brain 133, 2045–2057 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Niccolini, F. et al. Disease-related patterns of in vivo pathology in Corticobasal syndrome. Eur. J. Nucl. Med. Mol. Imaging 45, 2413–2425 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Upadhyay, N. et al. MRI gray and white matter measures in progressive supranuclear palsy and corticobasal syndrome. J. Neurol. 263, 2022–2031 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Ossenkoppele, R. et al. Prevalence of amyloid PET positivity in dementia syndromes: a meta-analysis. JAMA 313, 1939–1949 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Palleis, C. et al. Cortical [(18) F]PI-2620 binding differentiates corticobasal syndrome subtypes. Mov. Disord. 36, 2104–2115 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Toledo, J. B. et al. CSF biomarkers cutoffs: the importance of coincident neuropathological diseases. Acta Neuropathol. 124, 23–35 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Constantinides, V. C. et al. MRI planimetry and magnetic resonance Parkinsonism Index in the differential diagnosis of patients with Parkinsonism. AJNR Am. J. Neuroradiol. 39, 1047–1051 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dhollander, T. & Connelly, A. A novel iterative approach to reap the benefits of multi-tissue CSD from just single-shell (+b = 0) diffusion MRI data. In Proc. 24th International Society of Magnetic Resonance in Medicine (2016).

  • Aerts, H., Dhollander, T. & Marinazzo, D. Evaluating the performance of 3-tissue constrained spherical deconvolution pipelines for within-tumor tractography. Preprint at bioRxiv https://doi.org/10.1101/629873 (2019).

  • Genc, S. et al. Impact of b-value on estimates of apparent fibre density. Hum. Brain Mapp. 41, 2583–2595 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andica, C. et al. Fiber-specific white matter alterations in early-stage tremor-dominant Parkinson’s disease. NPJ Parkinsons Dis. 7, 51 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boxer, A. L. et al. Davunetide in patients with progressive supranuclear palsy: a randomised, double-blind, placebo-controlled phase 2/3 trial. Lancet Neurol. 13, 676–685 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burn, D. J. Clinical assessment of progressive supranuclear palsy over time: new rating scale validated. Nat. Clin. Pr. Neurol. 3, 600–601 (2007).

    Article 

    Google Scholar
     

  • Folstein, M. F., Folstein, S. E. & McHugh, P. R. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 12, 189–198 (1975).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goetz, C. G. et al. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov. Disord. 23, 2129–2170 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Morris, J. C. The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology 43, 2412–2414 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schwab, J. F. & England, A. C. Projection technique for evaluating surgery in Parkinson’s disease. In Proc. Third Symposium on Parkinson’s Disease (eds Gillingham, F. J. & Donaldson, M. C.) (Churchill Livingstone, 1969).

  • Pfeffer, R. I., Kurosaki, T. T., Harrah, C. H. Jr, Chance, J. M. & Filos, S. Measurement of functional activities in older adults in the community. J. Gerontol. 37, 323–329 (1982).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Basser, P. J., Mattiello, J. & LeBihan, D. MR diffusion tensor spectroscopy and imaging. Biophys. J. 66, 259–267 (1994).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Veraart, J., Fieremans, E. & Novikov, D. S. Diffusion MRI noise mapping using random matrix theory. Magn. Reson. Med. 76, 1582–1593 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kellner, E., Dhital, B., Kiselev, V. G. & Reisert, M. Gibbs-ringing artifact removal based on local subvoxel-shifts. Magn. Reson. Med. 76, 1574–1581 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Andersson, J. L. R. & Sotiropoulos, S. N. An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. Neuroimage 125, 1063–1078 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Tustison, N. J. et al. N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging 29, 1310–1320 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tournier, J. D. et al. MRtrix3: a fast, flexible and open software framework for medical image processing and visualisation. Neuroimage 202, 116137 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Dhollander, T., Mito, M., Raffelt, D. & Connelly, A. Improved white matter response function estimation for 3-tissue constrained spherical deconvolution. In Proc. 27th International Society of Magnetic Resonance in Medicine, 555 (2019).

  • Raffelt, D. et al. Symmetric diffeomorphic registration of fibre orientation distributions. Neuroimage 56, 1171–1180 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Smith, R. E., Tournier, J. D., Calamante, F. & Connelly, A. SIFT: spherical-deconvolution informed filtering of tractograms. Neuroimage 67, 298–312 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Genc, S. et al. Development of white matter fibre density and morphology over childhood: a longitudinal fixel-based analysis. Neuroimage 183, 666–676 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Wasserthal, J., Neher, P. & Maier-Hein, K. H. TractSeg—fast and accurate white matter tract segmentation. Neuroimage 183, 239–253 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Dickson, D. W. Neuropathologic differentiation of progressive supranuclear palsy and corticobasal degeneration. J. Neurol. 246, II6–II15 (1999).

    Article 
    PubMed 

    Google Scholar
     

  • Ashburner, J. & Friston, K. J. Voxel-based morphometry—the methods. Neuroimage 11, 805–821 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Draganski, B. et al. Regional specificity of MRI contrast parameter changes in normal ageing revealed by voxel-based quantification (VBQ). Neuroimage 55, 1423–1434 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dale, A. M., Fischl, B. & Sereno, M. I. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9, 179–194 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B Methodol. 57, 289–300 (1995).


    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    Stay Connected

    9FansLike
    4FollowersFollow
    0SubscribersSubscribe
    - Advertisement -spot_img

    Latest Articles

    %d bloggers like this: