Highsmith, M. J. et al. Gait training interventions for lower extremity amputees: A systematic literature review. Technol. Innov. 18, 99–113 (2016).
Bland, D. C., Zampieri, C. & Damiano, D. L. Effectiveness of physical therapy for improving gait and balance in individuals with traumatic brain injury: a systematic review. Brain Inj. 25, 664–679 (2011).
Cadore, E. L., Rodríguez-Mañas, L., Sinclair, A. & Izquierdo, M. Effects of different exercise interventions on risk of falls, gait ability, and balance in physically frail older adults: A systematic review. Rejuvenation Res. 16, 105–114 (2013).
Abbruzzese, G., Marchese, R., Avanzino, L. & Pelosin, E. Rehabilitation for Parkinson’s disease: Current outlook and future challenges. Parkinson. Relat. Disord. 22(Suppl 1), S60-64 (2016).
Langhorne, P., Bernhardt, J. & Kwakkel, G. Stroke rehabilitation. Lancet 377, 1693–1702 (2011).
Awad, L. N., Palmer, J. A., Pohlig, R. T., Binder-Macleod, S. A. & Reisman, D. S. Walking speed and step length asymmetry modify the energy cost of walking after stroke. Neurorehabil. Neural. Repair 29, 416–423 (2015).
Peterson, D. S., Mancini, M., Fino, P. C., Horak, F. & Smulders, K. Speeding up gait in Parkinson’s disease. J. Parkinsons. Dis. 10, 245–253 (2020).
Bower, K. et al. Dynamic balance and instrumented gait variables are independent predictors of falls following stroke. J. Neuroeng. Rehabil. 16, 3 (2019).
Thaut, M. H., Rice, R. R., Braun Janzen, T., Hurt-Thaut, C. P. & McIntosh, G. C. Rhythmic auditory stimulation for reduction of falls in Parkinson’s disease: A randomized controlled study. Clin. Rehabil. 33, 34–43 (2019).
Marques, N. R. et al. Association between energy cost of walking, muscle activation, and biomechanical parameters in older female fallers and non-fallers. Clin. Biomech. (Bristol, Avon) 28, 330–336 (2013).
Hogue, R. E. & McCandless, S. Genu recurvatum: Auditory biofeedback treatment for adult patients with stroke or head injuries. Arch. Phys. Med. Rehabil. 64, 368–370 (1983).
Morris, M. E., Matyas, T. A., Bach, T. M. & Goldie, P. A. Electrogoniometric feedback: Its effect on genu recurvatum in stroke. Arch. Phys. Med. Rehabil. 73, 1147–1154 (1992).
Finley, J. M. & Bastian, A. J. Associations between foot placement asymmetries and metabolic cost of transport in hemiparetic gait. Neurorehabil. Neural. Repair 31, 168–177 (2017).
Ballaz, L., Plamondon, S. & Lemay, M. Ankle range of motion is key to gait efficiency in adolescents with cerebral palsy. Clin. Biomech. (Bristol, Avon) 25, 944–948 (2010).
van Gelder, L. M. A., Barnes, A., Wheat, J. S. & Heller, B. W. The use of biofeedback for gait retraining: A mapping review. Clin. Biomech. (Bristol, Avon) 59, 159–166 (2018).
Hsu, C.-J., Kim, J. & Wu, M. Combined visual feedback with pelvic assistance force improves step length during treadmill walking in individuals with post-stroke hemiparesis. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2018, 2333–2336 (2018).
Padmanabhan, P. et al. Persons post-stroke improve step length symmetry by walking asymmetrically. J. Neuroeng. Rehabil. 17, 105 (2020).
Park, S. et al. Using biofeedback to reduce step length asymmetry impairs dynamic balance in people poststroke. Neurorehabil. Neural. Repair 35, 738–749 (2021).
Sánchez, N. & Finley, J. M. Individual differences in locomotor function predict the capacity to reduce asymmetry and modify the energetic cost of walking poststroke. Neurorehabil. Neural. Repair 32, 701–713 (2018).
Genthe, K. et al. Effects of real-time gait biofeedback on paretic propulsion and gait biomechanics in individuals post-stroke. Top Stroke Rehabil. 25, 186–193 (2018).
Liu, J., Santucci, V., Eicholtz, S. & Kesar, T. M. Comparison of the effects of real-time propulsive force versus limb angle gait biofeedback on gait biomechanics. Gait Posture 83, 107–113 (2021).
Franz, J. R., Maletis, M. & Kram, R. Real-time feedback enhances forward propulsion during walking in old adults. Clin. Biomech. (Bristol, Avon) 29, 68–74 (2014).
Browne, M. G. & Franz, J. R. More push from your push-off: Joint-level modifications to modulate propulsive forces in old age. PLoS ONE 13, e0201407 (2018).
Jellish, J. et al. A system for real-time feedback to improve gait and posture in Parkinson’s disease. IEEE J. Biomed. Health Inform. 19, 1809–1819 (2015).
Werner, W. G. & Gentile, A. M. Improving gait and promoting retention in individuals with Parkinson’s disease: A pilot study. J. Neurol. 257, 1841–1847 (2010).
Spencer, J., Wolf, S. L. & Kesar, T. M. Biofeedback for post-stroke gait retraining: A review of current evidence and future research directions in the context of emerging technologies. Front. Neurol. 12, 637199 (2021).
Nguyen, T. M. et al. Self-selected step length asymmetry is not explained by energy cost minimization in individuals with chronic stroke. J. NeuroEng. Rehabil. 17, 119 (2020).
Leech, K. A. & Roemmich, R. T. Independent voluntary correction and savings in locomotor learning. J. Exp. Biol. 221, jeb181826 (2018).
Roemmich, R. T., Leech, K. A., Gonzalez, A. J. & Bastian, A. J. Trading symmetry for energy cost during walking in healthy adults and persons poststroke. Neurorehabil. Neural. Repair. 33, 602–613 (2019).
Schenck, C. & Kesar, T. M. Effects of unilateral real-time biofeedback on propulsive forces during gait. J. Neuroeng. Rehabil. 14, 52 (2017).
Chao, E. Y., Laughman, R. K., Schneider, E. & Stauffer, R. N. Normative data of knee joint motion and ground reaction forces in adult level walking. J. Biomech. 16, 219–233 (1983).
Oberg, T., Karsznia, A. & Oberg, K. Basic gait parameters: Reference data for normal subjects, 10–79 years of age. J. Rehabil. Res. Dev. 30, 210–223 (1993).
Fukuchi, C. A., Fukuchi, R. K. & Duarte, M. Effects of walking speed on gait biomechanics in healthy participants: A systematic review and meta-analysis. Syst. Rev. 8, 153 (2019).
Hof, A. L. Scaling gait data to body size. Gait Posture 4, 222–223 (1996).
JudgeRoy, J. O., Davis, B. & Ounpuu, S. Step length reductions in advanced age: The role of ankle and hip kinetics. J. Gerontol. A Biol. Sci. Med. Sci. 51A, M303–M312 (1996).
Winter, D. A., Patla, A. E., Frank, J. S. & Walt, S. E. Biomechanical walking pattern changes in the fit and healthy elderly. Phys. Ther. 70, 340–347 (1990).
McGibbon, C. A. Toward a better understanding of gait changes with age and disablement: Neuromuscular adaptation. Exerc. Sport Sci. Rev. 31, 102–108 (2003).
Franz, J. R. The age-associated reduction in propulsive power generation in walking. Exerc. Sport Sci. Rev. 44, 129–136 (2016).
Fukuchi, C. A. & Duarte, M. A prediction method of speed-dependent walking patterns for healthy individuals. Gait Posture 68, 280–284 (2019).
Lelas, J. L., Merriman, G. J., Riley, P. O. & Kerrigan, D. C. Predicting peak kinematic and kinetic parameters from gait speed. Gait Posture 17, 106–112 (2003).
Hanlon, M. & Anderson, R. Prediction methods to account for the effect of gait speed on lower limb angular kinematics. Gait Posture 24, 280–287 (2006).
Fukuchi, C. A., Fukuchi, R. K. & Duarte, M. Test of two prediction methods for minimum and maximum values of gait kinematics and kinetics data over a range of speeds. Gait Posture 73, 269–272 (2019).
Park, J.-W., Baek, S.-H., Sung, J. H. & Kim, B.-J. Predictors of Step Length from Surface Electromyography and Body Impedance Analysis Parameters. Sensors (Basel) 22, 5686 (2022).
Dingwell, J. B., Davis, B. L. & Frazder, D. M. Use of an instrumented treadmill for real-time gait symmetry evaluation and feedback in normal and trans-tibial amputee subjects. Prosthet. Orthot. Int. 20, 101–110 (1996).
Lee, S. J. & Hidler, J. Biomechanics of overground vs. treadmill walking in healthy individuals. J. Appl. Physiol. 104, 747–755 (2008).
Fukuchi, C. A., Fukuchi, R. K. & Duarte, M. A public dataset of overground and treadmill walking kinematics and kinetics in healthy individuals. PeerJ 6, e4640 (2018).
Liu, C., McNitt-Gray, J. L. & Finley, J. M. Impairments in the mechanical effectiveness of reactive balance control strategies during walking in people post-stroke. https://doi.org/10.1101/2022.07.28.499225 (2022).
Winter, D. A. Biomechanics and Motor Control of Human Movement. (John Wiley & Sons, Inc., 2009). https://doi.org/10.1002/9780470549148.
An introduction to statistical learning: with applications in R. (Springer, 2013).
Skrondal, A. & Rabe-Hesketh, S. Prediction in multilevel generalized linear models. J. R. Stat. Soc. A. Stat. Soc. 172, 659–687 (2009).