Thursday, June 1, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

Gait speed and individual characteristics are related to specific gait metrics in neurotypical adults – Scientific Reports


  • Highsmith, M. J. et al. Gait training interventions for lower extremity amputees: A systematic literature review. Technol. Innov. 18, 99–113 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bland, D. C., Zampieri, C. & Damiano, D. L. Effectiveness of physical therapy for improving gait and balance in individuals with traumatic brain injury: a systematic review. Brain Inj. 25, 664–679 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cadore, E. L., Rodríguez-Mañas, L., Sinclair, A. & Izquierdo, M. Effects of different exercise interventions on risk of falls, gait ability, and balance in physically frail older adults: A systematic review. Rejuvenation Res. 16, 105–114 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abbruzzese, G., Marchese, R., Avanzino, L. & Pelosin, E. Rehabilitation for Parkinson’s disease: Current outlook and future challenges. Parkinson. Relat. Disord. 22(Suppl 1), S60-64 (2016).

    Article 

    Google Scholar
     

  • Langhorne, P., Bernhardt, J. & Kwakkel, G. Stroke rehabilitation. Lancet 377, 1693–1702 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Awad, L. N., Palmer, J. A., Pohlig, R. T., Binder-Macleod, S. A. & Reisman, D. S. Walking speed and step length asymmetry modify the energy cost of walking after stroke. Neurorehabil. Neural. Repair 29, 416–423 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Peterson, D. S., Mancini, M., Fino, P. C., Horak, F. & Smulders, K. Speeding up gait in Parkinson’s disease. J. Parkinsons. Dis. 10, 245–253 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bower, K. et al. Dynamic balance and instrumented gait variables are independent predictors of falls following stroke. J. Neuroeng. Rehabil. 16, 3 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thaut, M. H., Rice, R. R., Braun Janzen, T., Hurt-Thaut, C. P. & McIntosh, G. C. Rhythmic auditory stimulation for reduction of falls in Parkinson’s disease: A randomized controlled study. Clin. Rehabil. 33, 34–43 (2019).

  • Marques, N. R. et al. Association between energy cost of walking, muscle activation, and biomechanical parameters in older female fallers and non-fallers. Clin. Biomech. (Bristol, Avon) 28, 330–336 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Hogue, R. E. & McCandless, S. Genu recurvatum: Auditory biofeedback treatment for adult patients with stroke or head injuries. Arch. Phys. Med. Rehabil. 64, 368–370 (1983).

    CAS 
    PubMed 

    Google Scholar
     

  • Morris, M. E., Matyas, T. A., Bach, T. M. & Goldie, P. A. Electrogoniometric feedback: Its effect on genu recurvatum in stroke. Arch. Phys. Med. Rehabil. 73, 1147–1154 (1992).

    CAS 
    PubMed 

    Google Scholar
     

  • Finley, J. M. & Bastian, A. J. Associations between foot placement asymmetries and metabolic cost of transport in hemiparetic gait. Neurorehabil. Neural. Repair 31, 168–177 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Ballaz, L., Plamondon, S. & Lemay, M. Ankle range of motion is key to gait efficiency in adolescents with cerebral palsy. Clin. Biomech. (Bristol, Avon) 25, 944–948 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • van Gelder, L. M. A., Barnes, A., Wheat, J. S. & Heller, B. W. The use of biofeedback for gait retraining: A mapping review. Clin. Biomech. (Bristol, Avon) 59, 159–166 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Hsu, C.-J., Kim, J. & Wu, M. Combined visual feedback with pelvic assistance force improves step length during treadmill walking in individuals with post-stroke hemiparesis. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2018, 2333–2336 (2018).

    PubMed 

    Google Scholar
     

  • Padmanabhan, P. et al. Persons post-stroke improve step length symmetry by walking asymmetrically. J. Neuroeng. Rehabil. 17, 105 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park, S. et al. Using biofeedback to reduce step length asymmetry impairs dynamic balance in people poststroke. Neurorehabil. Neural. Repair 35, 738–749 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sánchez, N. & Finley, J. M. Individual differences in locomotor function predict the capacity to reduce asymmetry and modify the energetic cost of walking poststroke. Neurorehabil. Neural. Repair 32, 701–713 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Genthe, K. et al. Effects of real-time gait biofeedback on paretic propulsion and gait biomechanics in individuals post-stroke. Top Stroke Rehabil. 25, 186–193 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, J., Santucci, V., Eicholtz, S. & Kesar, T. M. Comparison of the effects of real-time propulsive force versus limb angle gait biofeedback on gait biomechanics. Gait Posture 83, 107–113 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Franz, J. R., Maletis, M. & Kram, R. Real-time feedback enhances forward propulsion during walking in old adults. Clin. Biomech. (Bristol, Avon) 29, 68–74 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Browne, M. G. & Franz, J. R. More push from your push-off: Joint-level modifications to modulate propulsive forces in old age. PLoS ONE 13, e0201407 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jellish, J. et al. A system for real-time feedback to improve gait and posture in Parkinson’s disease. IEEE J. Biomed. Health Inform. 19, 1809–1819 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Werner, W. G. & Gentile, A. M. Improving gait and promoting retention in individuals with Parkinson’s disease: A pilot study. J. Neurol. 257, 1841–1847 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Spencer, J., Wolf, S. L. & Kesar, T. M. Biofeedback for post-stroke gait retraining: A review of current evidence and future research directions in the context of emerging technologies. Front. Neurol. 12, 637199 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nguyen, T. M. et al. Self-selected step length asymmetry is not explained by energy cost minimization in individuals with chronic stroke. J. NeuroEng. Rehabil. 17, 119 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leech, K. A. & Roemmich, R. T. Independent voluntary correction and savings in locomotor learning. J. Exp. Biol. 221, jeb181826 (2018).

  • Roemmich, R. T., Leech, K. A., Gonzalez, A. J. & Bastian, A. J. Trading symmetry for energy cost during walking in healthy adults and persons poststroke. Neurorehabil. Neural. Repair. 33, 602–613 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schenck, C. & Kesar, T. M. Effects of unilateral real-time biofeedback on propulsive forces during gait. J. Neuroeng. Rehabil. 14, 52 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chao, E. Y., Laughman, R. K., Schneider, E. & Stauffer, R. N. Normative data of knee joint motion and ground reaction forces in adult level walking. J. Biomech. 16, 219–233 (1983).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oberg, T., Karsznia, A. & Oberg, K. Basic gait parameters: Reference data for normal subjects, 10–79 years of age. J. Rehabil. Res. Dev. 30, 210–223 (1993).

    CAS 
    PubMed 

    Google Scholar
     

  • Fukuchi, C. A., Fukuchi, R. K. & Duarte, M. Effects of walking speed on gait biomechanics in healthy participants: A systematic review and meta-analysis. Syst. Rev. 8, 153 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hof, A. L. Scaling gait data to body size. Gait Posture 4, 222–223 (1996).

    Article 

    Google Scholar
     

  • JudgeRoy, J. O., Davis, B. & Ounpuu, S. Step length reductions in advanced age: The role of ankle and hip kinetics. J. Gerontol. A Biol. Sci. Med. Sci. 51A, M303–M312 (1996).

    Article 

    Google Scholar
     

  • Winter, D. A., Patla, A. E., Frank, J. S. & Walt, S. E. Biomechanical walking pattern changes in the fit and healthy elderly. Phys. Ther. 70, 340–347 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McGibbon, C. A. Toward a better understanding of gait changes with age and disablement: Neuromuscular adaptation. Exerc. Sport Sci. Rev. 31, 102–108 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Franz, J. R. The age-associated reduction in propulsive power generation in walking. Exerc. Sport Sci. Rev. 44, 129–136 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fukuchi, C. A. & Duarte, M. A prediction method of speed-dependent walking patterns for healthy individuals. Gait Posture 68, 280–284 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Lelas, J. L., Merriman, G. J., Riley, P. O. & Kerrigan, D. C. Predicting peak kinematic and kinetic parameters from gait speed. Gait Posture 17, 106–112 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Hanlon, M. & Anderson, R. Prediction methods to account for the effect of gait speed on lower limb angular kinematics. Gait Posture 24, 280–287 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Fukuchi, C. A., Fukuchi, R. K. & Duarte, M. Test of two prediction methods for minimum and maximum values of gait kinematics and kinetics data over a range of speeds. Gait Posture 73, 269–272 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Park, J.-W., Baek, S.-H., Sung, J. H. & Kim, B.-J. Predictors of Step Length from Surface Electromyography and Body Impedance Analysis Parameters. Sensors (Basel) 22, 5686 (2022).

  • Dingwell, J. B., Davis, B. L. & Frazder, D. M. Use of an instrumented treadmill for real-time gait symmetry evaluation and feedback in normal and trans-tibial amputee subjects. Prosthet. Orthot. Int. 20, 101–110 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, S. J. & Hidler, J. Biomechanics of overground vs. treadmill walking in healthy individuals. J. Appl. Physiol. 104, 747–755 (2008).

  • Fukuchi, C. A., Fukuchi, R. K. & Duarte, M. A public dataset of overground and treadmill walking kinematics and kinetics in healthy individuals. PeerJ 6, e4640 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, C., McNitt-Gray, J. L. & Finley, J. M. Impairments in the mechanical effectiveness of reactive balance control strategies during walking in people post-stroke. https://doi.org/10.1101/2022.07.28.499225 (2022).

  • Winter, D. A. Biomechanics and Motor Control of Human Movement. (John Wiley & Sons, Inc., 2009). https://doi.org/10.1002/9780470549148.

  • An introduction to statistical learning: with applications in R. (Springer, 2013).

  • Skrondal, A. & Rabe-Hesketh, S. Prediction in multilevel generalized linear models. J. R. Stat. Soc. A. Stat. Soc. 172, 659–687 (2009).

    Article 
    MathSciNet 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    Stay Connected

    9FansLike
    4FollowersFollow
    0SubscribersSubscribe
    - Advertisement -spot_img

    Latest Articles

    %d bloggers like this: