Monday, May 29, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

Glycosylation and behavioral symptoms in neurological disorders – Translational Psychiatry


  • Reily C, Stewart TJ, Renfrow MB, Novak J. Glycosylation in health and disease. Nat Rev Nephrol. 2019;15:346–66.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Varki A, Kornfeld S. Historical background and overview. In: Varki A, Cummings RD, Esko J, Stanley P, Hart GW, Aebi M, et al. editors. Essentials of glycobiology. 4th ed. Chapter 1. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2022.

  • Fisher P, Thomas-Oates J, Wood AJ, Ungar D. The N-glycosylation processing potential of the mammalian Golgi apparatus. Front Cell Dev Biol. 2019;7:157.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vosseller K, Wells L, Hart GW. Nucleocytoplasmic O-glycosylation: O-GlcNAc and functional proteomics. Biochimie. 2001;83:575–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hart GW, Housley MP, Slawson C. Cycling of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins. Nature. 2007;446:1017–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wells L, Gao Y, Mahoney JA, Vosseller K, Chen C, Rosen A, et al. Dynamic O-glycosylation of nuclear and cytosolic proteins: further characterization of the nucleocytoplasmic β-n-acetylglucosaminidase, O-Glcnacase*. J Biol Chem. 2002;277:1755–61.

    Article 
    PubMed 

    Google Scholar
     

  • Mueller TM, Meador-Woodruff JH. Post-translational protein modifications in schizophrenia. npj Schizophr. 2020;6:5.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moremen KW, Tiemeyer M, Nairn AV. Vertebrate protein glycosylation: diversity, synthesis and function. Nat Rev Mol Cell Biol. 2012;13:448–62.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hart GW, Copeland RJ. Glycomics hits the big time. Cell. 2010;143:672–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goreta SS, Dabelic S, Dumic J. Insights into complexity of congenital disorders of glycosylation. Biochem Med (Zagreb). 2012;22:156–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Verheijen J, Tahata S, Kozicz T, Witters P, Morava E. Therapeutic approaches in Congenital Disorders of Glycosylation (CDG) involving N-linked glycosylation: an update. Genet Med. 2020;22:268–79.

    Article 
    PubMed 

    Google Scholar
     

  • Lefeber DJ, Freeze HH, Steet R, Kinoshita T. Congenital disorders of glycosylation. In: Essentials of glycobiology. 4th ed. Chapter 45. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2022.

  • Paprocka J, Jezela-Stanek A, Tylki-Szymańska A, Grunewald S. Congenital disorders of glycosylation from a neurological perspective. Brain Sci. 2021;11:88.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Freeze HH, Eklund EA, Ng BG, Patterson MC. Neurology of inherited glycosylation disorders. Lancet Neurol. 2012;11:453–66.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Freeze HH. Genetic defects in the human glycome. Nat Rev Genet. 2006;7:537–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Altassan R, Péanne R, Jaeken J, Barone R, Bidet M, Borgel D, et al. International clinical guidelines for the management of phosphomannomutase 2-congenital disorders of glycosylation: diagnosis, treatment and follow up. J Inherit Metab Dis. 2019;42:5–28.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • West CM, Malzl D, Hykollari A, Wilson IBH. Glycomics. Glycoproteomics, and glycogenomics: an inter-taxa evolutionary perspective. Mol Cell Proteom. 2021;20:100024.

    Article 
    CAS 

    Google Scholar
     

  • Guo Y, Jia W, Yang J, Zhan X. Cancer glycomics offers potential biomarkers and therapeutic targets in the framework of 3P medicine. Front Endocrinol (Lausanne). 2022;13:970489.

    Article 
    PubMed 

    Google Scholar
     

  • Rudman N, Gornik O, Lauc G. Altered N-glycosylation profiles as potential biomarkers and drug targets in diabetes. FEBS Lett. 2019;593:1598–615.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shinohara Y, Furukawa J-I, Miura Y. Glycome as biomarkers. In: General methods in biomarker research and their applications. Dordrecht, Netherlands: Springer; 2015. 111–40.

  • Peng W, Kobeissy F, Mondello S, Barsa C, Mechref Y. MS-based glycomics: an analytical tool to assess nervous system diseases. Front Neurosci. 2022;16:1000179.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kobeissy F, Kobaisi A, Peng W, Barsa C, Goli M, Sibahi A, et al. Glycomic and glycoproteomic techniques in neurodegenerative disorders and neurotrauma: towards personalized markers. Cells. 2022;11:581.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iqbal S, Ghanimi Fard M, Everest-Dass A, Packer NH, Parker LM. Understanding cellular glycan surfaces in the central nervous system. Biochem Soc Trans. 2019;47:89–100.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bauer D, Haroutunian V, Meador-Woodruff JH, McCullumsmith RE. Abnormal glycosylation of EAAT1 and EAAT2 in prefrontal cortex of elderly patients with schizophrenia. Schizophr Res. 2010;117:92–8.

    Article 
    PubMed 

    Google Scholar
     

  • Hüttenrauch M, Ogorek I, Klafki H, Otto M, Stadelmann C, Weggen S, et al. Glycoprotein NMB: a novel Alzheimer’s disease associated marker expressed in a subset of activated microglia. Acta Neuropathol Commun. 2018;6:108.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • García-Ayllón MS, Botella-López A, Cuchillo-Ibañez I, Rábano A, Andreasen N, Blennow K, et al. HNK-1 carrier glycoproteins are decreased in the Alzheimer’s disease brain. Mol Neurobiol. 2017;54:188–99.

    Article 
    PubMed 

    Google Scholar
     

  • Hartz AM, Zhong Y, Wolf A, LeVine H 3rd, Miller DS, Bauer B. Abeta40 Reduces P-glycoprotein at the blood–brain barrier through the ubiquitin–proteasome pathway. J Neurosci. 2016;36:1930–41.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chai AB, Leung GKF, Callaghan R, Gelissen IC. P-glycoprotein: a role in the export of amyloid-beta in Alzheimer’s disease?. FEBS J. 2020;287:612–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stanley P, Moremen KW, Lewis NE, Taniguchi N, Aebi M. N-Glycans. In: Essentials of glycobiology. 4th ed. Chapter 9. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2022.

  • Abou-Abbass H, Abou-El-Hassan H, Bahmad H, Zibara K, Zebian A, Youssef R, et al. Glycosylation and other PTMs alterations in neurodegenerative diseases: current status and future role in neurotrauma. Electrophoresis. 2016;37:1549–61.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Diego V, Martínez-Monseny AF, Muchart J, Cuadras D, Montero R, Artuch R, et al. Longitudinal volumetric and 2D assessment of cerebellar atrophy in a large cohort of children with phosphomannomutase deficiency (PMM2-CDG). J Inherit Metab Dis. 2017;40:709–13.

    Article 
    PubMed 

    Google Scholar
     

  • Serrano NL, De Diego V, Cuadras D, Martinez Monseny AF, Velázquez-Fragua R, López L, et al. A quantitative assessment of the evolution of cerebellar syndrome in children with phosphomannomutase-deficiency (PMM2-CDG). Orphanet J Rare Dis. 2017;12:155.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Izquierdo-Serra M, Martínez-Monseny AF, López L, Carrillo-García J, Edo A, Ortigoza-Escobar JD, et al. Stroke-like episodes and cerebellar syndrome in phosphomannomutase deficiency (PMM2-CDG): evidence for hypoglycosylation-driven channelopathy. Int J Mol Sci. 2018;19:619.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferreira CR, Altassan R, Marques-Da-Silva D, Francisco R, Jaeken J, Morava E. Recognizable phenotypes in CDG. J Inherit Metab Dis. 2018;41:541–53.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ng BG, Buckingham KJ, Raymond K, Kircher M, Turner EH, He M, et al. Mosaicism of the UDP-galactose transporter SLC35A2 causes a congenital disorder of glycosylation. Am J Hum Genet. 2013;92:632–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kodera H, Nakamura K, Osaka H, Maegaki Y, Haginoya K, Mizumoto S, et al. De novo mutations in SLC35A2 encoding a UDP-galactose transporter cause early-onset epileptic encephalopathy. Hum Mutat. 2013;34:1708–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • EuroEPINOMICS-RES Consortium; Epilepsy Phenome/Genome Project; Epi4K Consortium. De novo mutations in synaptic transmission genes including DNM1 cause epileptic encephalopathies. Am J Hum Genet. 2014;95:360–70.

    Article 

    Google Scholar
     

  • Dörre K, Olczak M, Wada Y, Sosicka P, Grüneberg M, Reunert J, et al. A new case of UDP-galactose transporter deficiency (SLC35A2-CDG): molecular basis, clinical phenotype, and therapeutic approach. J Inherit Metab Dis. 2015;38:931–40.

    Article 
    PubMed 

    Google Scholar
     

  • Bosch DG, Boonstra FN, de Leeuw N, Pfundt R, Nillesen WM, de Ligt J, et al. Novel genetic causes for cerebral visual impairment. Eur J Hum Genet. 2016;24:660–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lelieveld SH, Reijnders MR, Pfundt R, Yntema HG, Kamsteeg EJ, de Vries P, et al. Meta-analysis of 2,104 trios provides support for 10 new genes for intellectual disability. Nat Neurosci. 2016;19:1194–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kimizu T, Takahashi Y, Oboshi T, Horino A, Koike T, Yoshitomi S, et al. A case of early onset epileptic encephalopathy with de novo mutation in SLC35A2: Clinical features and treatment for epilepsy. Brain Dev. 2017;39:256–60.

    Article 
    PubMed 

    Google Scholar
     

  • Bruneel A, Cholet S, Drouin-Garraud V, Jacquemont ML, Cano A, Mégarbané A, et al. Complementarity of electrophoretic, mass spectrometric, and gene sequencing techniques for the diagnosis and characterization of congenital disorders of glycosylation. Electrophoresis. 2018;39:3123–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Westenfield K, Sarafoglou K, Speltz LC, Pierpont EI, Steyermark J, Nascene D, et al. Mosaicism of the UDP-Galactose transporter SLC35A2 in a female causing a congenital disorder of glycosylation: a case report. BMC Med Genet. 2018;19:100.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Winawer MR, Griffin NG, Samanamud J, Baugh EH, Rathakrishnan D, Ramalingam S, et al. Somatic SLC35A2 variants in the brain are associated with intractable neocortical epilepsy. Ann Neurol. 2018;83:1133–46.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yates TM, Suri M, Desurkar A, Lesca G, Wallgren-Pettersson C, Hammer TB, et al. SLC35A2-related congenital disorder of glycosylation: defining the phenotype. Eur J Paediatr Neurol. 2018;22:1095–102.

    Article 
    PubMed 

    Google Scholar
     

  • Sim NS, Seo Y, Lim JS, Kim WK, Son H, Kim HD, et al. Brain somatic mutations in SLC35A2 cause intractable epilepsy with aberrant N-glycosylation. Neurol Genet. 2018;4:e294.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iqbal Z, Shahzad M, Vissers LE, van Scherpenzeel M, Gilissen C, Razzaq A, et al. A compound heterozygous mutation in DPAGT1 results in a congenital disorder of glycosylation with a relatively mild phenotype. Eur J Hum Genet. 2013;21:844–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuste-Checa P, Vega AI, Martín-Higueras C, Medrano C, Gámez A, Desviat LR, et al. DPAGT1-CDG: functional analysis of disease-causing pathogenic mutations and role of endoplasmic reticulum stress. PLoS ONE. 2017;12:e0179456.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Öncül Ü, Kose E, Eminoğlu FT. ALG1-CDG: a patient with a mild phenotype and literature review. Mol Syndromol. 2022;13:69–74.

    Article 
    PubMed 

    Google Scholar
     

  • Kamarus Jaman N, Rehsi P, Henderson RH, Löbel U, Mankad K, Grunewald S. SRD5A3-CDG: emerging phenotypic features of an ultrarare CDG subtype. Front Genet. 2021;12:737094.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dwyer CA, Esko JD. Glycan susceptibility factors in autism spectrum disorders. Mol Asp Med. 2016;51:104–14.

    Article 
    CAS 

    Google Scholar
     

  • Cast TP, Boesch DJ, Smyth K, Shaw AE, Ghebrial M, Chanda S. An autism-associated mutation impairs neuroligin-4 glycosylation and enhances excitatory synaptic transmission in human neurons. J Neurosci. 2021;41:392–407.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barone R, Sturiale L, Fiumara A, Palmigiano A, Bua RO, Rizzo R, et al. CSF N-glycan profile reveals sialylation deficiency in a patient with GM2 gangliosidosis presenting as childhood disintegrative disorder. Autism Res. 2016;9:423–8.

    Article 
    PubMed 

    Google Scholar
     

  • Pivac N, Knezević A, Gornik O, Pucić M, Igl W, Peeters H, et al. Human plasma glycome in attention-deficit hyperactivity disorder and autism spectrum disorders. Mol Cell Proteom. 2011;10:M110.004200.

    Article 

    Google Scholar
     

  • Kumar A, Sidhu J, Goyal A. Alzheimer disease. In: Tsao JW editor. StatPearls. Treasure Island, FL: StatPearls Publishing; 2022.

  • Conroy LR, Hawkinson TR, Young LEA, Gentry MS, Sun RC. Emerging roles of N-linked glycosylation in brain physiology and disorders. Trends Endocrinol Metab. 2021;32:980–93.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cho BG, Veillon L, Mechref Y. N-Glycan profile of cerebrospinal fluids from Alzheimer’s disease patients using liquid chromatography with mass spectrometry. J Proteome Res. 2019;18:3770–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vanoni O, Paganetti P, Molinari M. Consequences of individual N-glycan deletions and of proteasomal inhibition on secretion of active BACE. Mol Biol Cell. 2008;19:4086–98.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kizuka Y, Kitazume S, Taniguchi N. N-glycan and Alzheimer’s disease. Biochim Biophys Acta—Gen Subj. 2017;1861:2447–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schedin-Weiss S, Winblad B, Tjernberg LO. The role of protein glycosylation in Alzheimer disease. FEBS J. 2014;281:46–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu G, Nishimura M, Arawaka S, Levitan D, Zhang L, Tandon A, et al. Nicastrin modulates presenilin-mediated notch/glp-1 signal transduction and βAPP processing. Nature. 2000;407:48–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arnold CS, Johnson GV, Cole RN, Dong DL, Lee M, Hart GW. The microtubule-associated protein tau is extensively modified with O-linked N-acetylglucosamine. J Biol Chem. 1996;271:28741–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Losev Y, Frenkel-Pinter M, Abu-Hussien M, Viswanathan GK, Elyashiv-Revivo D, Geries R, et al. Differential effects of putative N-glycosylation sites in human Tau on Alzheimer’s disease-related neurodegeneration. Cell Mol Life Sci. 2021;78:2231–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Q, Ma C, Chin LS, Li L. Integrative glycoproteomics reveals protein N-glycosylation aberrations and glycoproteomic network alterations in Alzheimer’s disease. Sci Adv. 2020;6:eabc5802.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gizaw ST, Ohashi T, Tanaka M, Hinou H, Nishimura S. Glycoblotting method allows for rapid and efficient glycome profiling of human Alzheimer’s disease brain, serum and cerebrospinal fluid towards potential biomarker discovery. Biochim Biophys Acta. 2016;1860:1716–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Videira PAQ, Castro-Caldas M. Linking glycation and glycosylation with inflammation and mitochondrial dysfunction in Parkinson’s disease. Front Neurosci. 2018;12:381.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang H, Jiang Q, Feng J. Parkin increases dopamine uptake by enhancing the cell surface expression of dopamine transporter *. J Biol Chem. 2004;279:54380–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu M, Jin H, Wu Z, Han Y, Chen J, Mao C, et al. Mass spectrometry-based analysis of serum N-glycosylation changes in patients with Parkinson’s disease. ACS Chem Neurosci. 2022;13:1719–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee SU, Grigorian A, Pawling J, Chen IJ, Gao G, Mozaffar T, et al. N-Glycan processing deficiency promotes spontaneous inflammatory demyelination and neurodegeneration*. J Biol Chem. 2007;282:33725–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cvetko A, Kifer D, Gornik O, Klarić L, Visser E, Lauc G, et al. Glycosylation alterations in multiple sclerosis show increased proinflammatory potential. Biomedicines. 2020;8:410.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rebelo AL, Chevalier MT, Russo L, Pandit A. Role and therapeutic implications of protein glycosylation in neuroinflammation. Trends Mol Med. 2022;28:270–89.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Patel KR, Cherian J, Gohil K, Atkinson D. Schizophrenia: overview and treatment options. P T. 2014;39:638–45.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lavretsky H. History of schizophrenia as a psychiatric disorder. In Clinical handbook of schizophrenia. New York, NY, USA: The Guilford Press; 2008. 3–13.

  • Crismon M, Smith TL, Buckley PF. Schizophrenia. In: DiPiro JT, et al., editors. DiPiro’s pharmacotherapy: a pathophysiologic approach, 12e. New York, NY: McGraw Hill; 2023.

  • Beck AT, Rector NA, Stolar N, Grant P. Schizophrenia: cognitive theory, research, and therapy. New York, NY, USA: The Guilford Press; 2009, p. xiv, 418-xiv, 418.

  • Stanta JL, Saldova R, Struwe WB, Byrne JC, Leweke FM, Rothermund M, et al. Identification of N-glycosylation changes in the CSF and serum in patients with schizophrenia. J Proteome Res. 2010;9:4476–89.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Klarić TS, Lauc G. The dynamic brain N-glycome. Glycoconj J. 2022;39:443–71.

    Article 
    PubMed 

    Google Scholar
     

  • Tucholski J, Simmons MS, Pinner AL, Haroutunian V, McCullumsmith RE, Meador-Woodruff JH. Abnormal N-linked glycosylation of cortical AMPA receptor subunits in schizophrenia. Schizophr Res. 2013;146:177–83.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Williams SE, Mealer RG, Scolnick EM, Smoller JW, Cummings RD. Aberrant glycosylation in schizophrenia: a review of 25 years of post-mortem brain studies. Mol Psychiatry. 2020;25:3198–207.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mueller TM, Haroutunian V, Meador-Woodruff JH. N-glycosylation of GABAA receptor subunits is altered in schizophrenia. Neuropsychopharmacology. 2014;39:528–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mealer RG, Jenkins BG, Chen CY, Daly MJ, Ge T, Lehoux S, et al. The schizophrenia risk locus in SLC39A8 alters brain metal transport and plasma glycosylation. Sci Rep. 2020;10:13162.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tudor L, Nedic Erjavec G, Nikolac Perkovic M, Konjevod M, Svob Strac D, et al. N-glycomic profile in combat related post-traumatic stress disorder. Biomolecules. 2019;9:834.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fazekas CL, Sipos E, Klaric T, Török B, Bellardie M, Erjave GN, et al. Searching for glycomic biomarkers for predicting resilience and vulnerability in a rat model of posttraumatic stress disorder. Stress. 2020;23:715–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boeck C, Pfister S, Bürkle A, Vanhooren V, Libert C, Salinas-Manrique J, et al. Alterations of the serum N-glycan profile in female patients with Major Depressive Disorder. J Affect Disord. 2018;234:139–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Park DI, Štambuk J, Razdorov G, Pučić-Baković M, Martins-de-Souza D, Lauc G, et al. Blood plasma/IgG N-glycome biosignatures associated with major depressive disorder symptom severity and the antidepressant response. Sci Rep. 2018;8:179.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baysal BE, Willett-Brozick JE, Badner JA, Corona W, Ferrell RE, Nimgaonkar VL, et al. A mannosyltransferase gene at 11q23 is disrupted by a translocation breakpoint that co-segregates with bipolar affective disorder in a small family. Neurogenetics. 2002;4:43–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brockhausen I, Wandall HH, Hagen KGT, Stanley P. O-GalNAc Glycans. In: Varki A, Cummings RD, Esko JD, et al., editors. Essentials of Glycobiology. 4th ed. Chapter 10. Cold Spring Harbor, NY; Cold Spring Harbor Laboratory Press; 2022.

  • van Tol W, Wessels H, Lefeber DJ. O-glycosylation disorders pave the road for understanding the complex human O-glycosylation machinery. Curr Opin Struct Biol. 2019;56:107–18.

    Article 
    PubMed 

    Google Scholar
     

  • Hennet T. Diseases of glycosylation beyond classical congenital disorders of glycosylation. Biochim Biophys Acta. 2012;1820:1306–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Scott K, Gadomski T, Kozicz T, Morava E. Congenital disorders of glycosylation: new defects and still counting. J Inherit Metab Dis. 2014;37:609–17.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lipiński P, Tylki-Szymańska A. Congenital disorders of glycosylation: what clinicians need to know? Front Pediatr. 2021;9:715151.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Péanne R, de Lonlay P, Foulquier F, Kornak U, Lefeber DJ, Morava E, et al. Congenital disorders of glycosylation (CDG): Quo vadis?. Eur J Med Genet. 2018;61:643–63.

    Article 
    PubMed 

    Google Scholar
     

  • Zilmer M, Edmondson AC, Khetarpal SA, Alesi V, Zaki MS, Rostasy K, et al. Novel congenital disorder of O-linked glycosylation caused by GALNT2 loss of function. Brain. 2020;143:1114–26.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nickolls AR, Bönneman CG. The roles of dystroglycan in the nervous system: insights from animal models of muscular dystrophy. Dis Model Mech. 2018;11:dmm035931.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haukedal H, Freude KK. Implications of glycosylation in Alzheimer’s disease. Front Neurosci. 2021;14:625348.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taniguchi K, Kobayashi K, Saito K, Yamanouchi H, Ohnuma A, Hayashi YK, et al. Worldwide distribution and broader clinical spectrum of muscle-eye-brain disease. Hum Mol Genet. 2003;12:527–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang A, Venkat A, Taujale R, Mull JL, Ito A, Kannan N, et al. Peters plus syndrome mutations affect the function and stability of human β1,3-glucosyltransferase. J Biol Chem. 2021;297:100843.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moll T, Shaw PJ, Cooper-Knock J. Disrupted glycosylation of lipids and proteins is a cause of neurodegeneration. Brain. 2019;143:1332–40.

    Article 
    PubMed Central 

    Google Scholar
     

  • Kobeissy F, Kobaisi A, Peng W, Barsa C, Goli M, Sibahi A, et al. Glycomic and glycoproteomic techniques in neurodegenerative disorders and neurotrauma: towards personalized markers. Cells. 2022;11:581.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Akasaka-Manya K, Manya H. The role of APP O-glycosylation in Alzheimer’s disease. Biomolecules. 2020;10:1569.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Akasaka-Manya K, Kawamura M, Tsumoto H, Saito Y, Tachida Y, Kitazume S, et al. Excess APP O-glycosylation by GalNAc-T6 decreases Aβ production. J Biochem. 2016;161:99–111.

    Article 
    PubMed 

    Google Scholar
     

  • Gizaw ST, Koda T, Amano M, Kamimura K, Ohashi T, Hinou H, et al. A comprehensive glycome profiling of Huntington’s disease transgenic mice. Biochim Biophys Acta. 2015;1850:1704–18.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kanekiyo K, Inamori K, Kitazume S, Sato K, Maeda J, Higuchi M, et al. Loss of branched O-mannosyl glycans in astrocytes accelerates remyelination. J Neurosci. 2013;33:10037–47.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rincón-Cortés M, Sullivan RM. Emergence of social behavior deficit, blunted corticolimbic activity and adult depression-like behavior in a rodent model of maternal maltreatment. Transl Psychiatry. 2016;6:e930.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mealer RG, Williams SE, Daly MJ, Scolnick EM, Cummings RD, Smoller JW. Glycobiology and schizophrenia: a biological hypothesis emerging from genomic research. Mol psychiatry. 2020;25:3129–39.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kato K, Hansen L, Clausen H. Polypeptide N-acetylgalactosaminyltransferase-associated phenotypes in mammals. Molecules. 2021;26:5504.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Newbury DF, Warburton PC, Wilson N, Bacchelli E, Carone S. International Molecular Genetic Study of Autism Consortium, et al. Mapping of partially overlapping de novo deletions across an autism susceptibility region (AUTS5) in two unrelated individuals affected by developmental delays with communication impairment. Am J Med Genet A. 2009;149a:588–97.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Milani D, Sabatini C, Manzoni FM, Ajmone PF, Rigamonti C, Malacarne M, et al. Microdeletion 2q23.3q24.1: exploring genotype-phenotype correlations. Congenit Anom (Kyoto). 2015;55:107–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu Y, Pang W, Lu J, Shan A, Zhang Y. Polypeptide N-acetylgalactosaminyltransferase 13 contributes to neurogenesis via stabilizing the mucin-type O-glycoprotein podoplanin. J Biol Chem. 2016;291:23477–88.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mueller TM, Mallepalli NR, Meador-Woodruff JH. Altered protein expression of galactose and N-acetylgalactosamine transferases in schizophrenia superior temporal gyrus. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory; 2019.

  • Hori H, Sasayama D, Teraishi T, Yamamoto N, Nakamura S, Ota M, et al. Blood-based gene expression signatures of medication-free outpatients with major depressive disorder: integrative genome-wide and candidate gene analyses. Sci Rep. 2016;6:18776.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao L, Gao Y, Xu E, Xie J. Microarray Analysis of the Major Depressive Disorder mRNA Profile Data. Psychiatry Investig. 2015;12:388–96.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zachara NE, Akimoto Y, Boyce M, Hart GW. The O-GlcNAc modification. Essentials of glycobiology. 4th ed. Chapter 19. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2022.

  • Matsuura A, Ito M, Sakaidani Y, Kondo T, Murakami K, Furukawa K, et al. O-linked N-acetylglucosamine is present on the extracellular domain of notch receptors. J Biol Chem. 2008;283:35486–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sakaidani Y, Nomura T, Matsuura A, Ito M, Suzuki E, Murakami K, et al. O-linked-N-acetylglucosamine on extracellular protein domains mediates epithelial cell–matrix interactions. Nat Commun. 2011;2:583.

    Article 
    PubMed 

    Google Scholar
     

  • Varshney S, Stanley P. EOGT and O-GlcNAc on secreted and membrane proteins. Biochem Soc Trans. 2017;45:401–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wani WY, Chatham JC, Darley-Usmar V, McMahon LL, Zhang J. O-GlcNAcylation and neurodegeneration. Brain Res Bull. 2017;133:80–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Trinidad JC, Barkan DT, Gulledge BF, Thalhammer A, Sali A, Schoepfer R, et al. Global identification and characterization of both O-GlcNAcylation and phosphorylation at the murine synapse. Mol Cell Proteom. 2012;11:215–29.

    Article 

    Google Scholar
     

  • Schröder KC, Duman D, Tekin M, Schanze D, Sukalo M, Meester J, et al. Adams–Oliver syndrome caused by mutations of the EOGT gene. Am J Med Genet Part A. 2019;179:2246–51.

    Article 
    PubMed 

    Google Scholar
     

  • Fenckova M, Muha V, Mariappa D, Catinozzi M, Czajewski I, Blok LER, et al. Intellectual disability-associated disruption of O-GlcNAc cycling impairs habituation learning in Drosophila. PLoS Genet. 2022;18:e1010159.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Percy AK. Rett syndrome: exploring the autism link. Arch Neurol. 2011;68:985–9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Neul JL. The relationship of Rett syndrome and MECP2 disorders to autism. Dialogues Clin Neurosci. 2012;14:253–62.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng J, Zhao Z, Chen L, Li Y, Du R, Wu Y, et al. Loss of O-GlcNAcylation on MeCP2 at threonine 203 leads to neurodevelopmental disorders. Neurosci Bull. 2022;38:113–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bertelli MO, Munir K, Harris J, Salvador-Carulla L. “Intellectual developmental disorders”: reflections on the international consensus document for redefining “mental retardation-intellectual disability” in ICD-11. Adv Ment Health Intellect Disabil. 2016;10:36–58.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee K, Cascella M, Marwaha R. Intellectual disability. In: StatPearls. Treasure Island, Fl: StatPearls Publishing; 2022.

  • Pravata VM, Omelková M, Stavridis MP, Desbiens CM, Stephen HM, Lefeber DJ, et al. An intellectual disability syndrome with single-nucleotide variants in O-GlcNAc transferase. Eur J Hum Genet. 2020;28:706–14.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee BE, Suh PG, Kim JI. O-GlcNAcylation in health and neurodegenerative diseases. Exp Mol Med. 2021;53:1674–82.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haukedal H, Freude KK. Implications of glycosylation in Alzheimer’s disease. Front Neurosci. 2021;11:581.


    Google Scholar
     

  • Ma X, Li H, He Y, Hao J. The emerging link between O-GlcNAcylation and neurological disorders. Cell Mol Life Sci. 2017;74:3667–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oddo S, Billings L, Kesslak JP, Cribbs DH, LaFerla FM. Abeta immunotherapy leads to clearance of early, but not late, hyperphosphorylated tau aggregates via the proteasome. Neuron. 2004;43:321–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cruz JC, Kim D, Moy LY, Dobbin MM, Sun X, Bronson RT, et al. p25/cyclin-dependent kinase 5 induces production and intraneuronal accumulation of amyloid beta in vivo. J Neurosci. 2006;26:10536–41.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rajmohan R, Reddy PH. Amyloid-Beta and phosphorylated Tau accumulations cause abnormalities at synapses of Alzheimer’s disease neurons. J Alzheimers Dis. 2017;57:975–99.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu F, Iqbal K, Grundke-Iqbal I, Hart GW, Gong CX. O-GlcNAcylation regulates phosphorylation of tau: a mechanism involved in Alzheimer’s disease. Proc Natl Acad Sci USA. 2004;101:10804–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang AC, Jensen EH, Rexach JE, Vinters HV, Hsieh-Wilson LC. Loss of O -GlcNAc glycosylation in forebrain excitatory neurons induces neurodegeneration. Proc Natl Acad Sci USA. 2016;113:15120–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park J, Ha HJ, Chung ES, Baek SH, Cho Y, Kim HK, et al. O-GlcNAcylation ameliorates the pathological manifestations of Alzheimer’s disease by inhibiting necroptosis. Sci Adv. 2021;7:eabd3207.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Permanne B, Sand A, Ousson S, Nény M, Hantson J, Schubert R, et al. O-GlcNAcase inhibitor ASN90 is a multimodal drug candidate for tau and α-synuclein proteinopathies. ACS Chem Neurosci. 2022;13:1296–314.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marotta NP, Lin YH, Lewis YE, Ambroso MR, Zaro BW, Roth MT, et al. O-GlcNAc modification blocks the aggregation and toxicity of the protein alpha-synuclein associated with Parkinson’s disease. Nat Chem. 2015;7:913–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ryan P, Xu MM, Davey AK, Kassiou M, Mellick GD, Rudrawar S. O-GlcNAcylation of truncated NAC segment alters peptide-dependent effects on α-synuclein aggregation. Bioorg Chem. 2020;94:103389.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee BE, Kim HY, Kim HJ, Jeong H, Kim BG, Lee HE, et al. O-GlcNAcylation regulates dopamine neuron function, survival and degeneration in Parkinson disease. Brain. 2020;143:3699–716.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wani WY, Ouyang X, Benavides GA, Redmann M, Cofield SS, Shacka JJ, et al. O-GlcNAc regulation of autophagy and α-synuclein homeostasis; implications for Parkinson’s disease. Mol Brain. 2017;10:32.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar A, Singh PK, Parihar R, Dwivedi V, Lakhotia SC, Ganesh S. Decreased O-linked GlcNAcylation protects from cytotoxicity mediated by huntingtin exon1 protein fragment. J Biol Chem. 2014;289:13543–53.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang B, Seredenina T, Coppola G, Kuhn A, Geschwind DH, Luthi-Carter R, et al. Gene expression profiling of R6/2 transgenic mice with different CAG repeat lengths reveals genes associated with disease onset and progression in Huntington’s disease. Neurobiol Dis. 2011;42:459–67.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Menalled LB, Kudwa AE, Miller S, Fitzpatrick J, Watson-Johnson J, Keating N, et al. Comprehensive behavioral and molecular characterization of a new knock-in mouse model of Huntington’s disease: zQ175. PLoS ONE. 2012;7:e49838.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lange J, Wood-Kaczmar A, Ali A, Farag S, Ghosh R, Parker J, et al. Mislocalization of nucleocytoplasmic transport proteins in human Huntington’s disease PSC-derived striatal neurons. Front Cell Neurosci. 2021;15:742763.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grima JC, Daigle JG, Arbez N, Cunningham KC, Zhang K, Ochaba J, et al. Mutant Huntingtin disrupts the nuclear pore complex. Neuron. 2017;94:93–107.e6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moll T, Shaw PJ, Cooper-Knock J. Disrupted glycosylation of lipids and proteins is a cause of neurodegeneration. Brain. 2020;143:1332–40.

    Article 
    PubMed 

    Google Scholar
     

  • Shan X, Vocadlo DJ, Krieger C. Reduced protein O-glycosylation in the nervous system of the mutant SOD1 transgenic mouse model of amyotrophic lateral sclerosis. Neurosci Lett. 2012;516:296–301.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hsieh YL, Su FY, Tsai LK, Huang CC, Ko YL, Su LW, et al. NPGPx-mediated adaptation to oxidative stress protects motor neurons from degeneration in aging by directly modulating O-GlcNAcase. Cell Rep. 2019;29:2134–2143.e7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao MJ, Yao X, Wei P, Zhao C, Cheng M, Zhang D, et al. O-GlcNAcylation of TDP-43 suppresses proteinopathies and promotes TDP-43’s mRNA splicing activity. EMBO Rep. 2021;22:e51649.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mueller T, Pinner A, Meador-Woodruff J. F199. O-Glcnac dysregulation in Schizophrenia cortex. Schizophr Bull. 2018;44:S298.

    Article 
    PubMed Central 

    Google Scholar
     

  • Stewart LT, Abiraman K, Chatham JC, McMahon LL. Increased O-GlcNAcylation rapidly decreases GABAAR currents in hippocampus but depresses neuronal output. Sci Rep. 2020;10:7494.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cho Y, Hwang H, Rahman MA, Chung C, Rhim H. Elevated O-GlcNAcylation induces an antidepressant-like phenotype and decreased inhibitory transmission in medial prefrontal cortex. Sci Rep. 2020;10:6924.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fan J, Zhong QL, Mo R, Lu CL, Ren J, Mo JW, et al. Proteomic profiling of astrocytic O-GlcNAc transferase-related proteins in the medial prefrontal cortex. Front Mol Neurosci. 2021;14:729975.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lagerlöf O, Slocomb JE, Hong I, Aponte Y, Blackshaw S, Hart GW, et al. The nutrient sensor OGT in PVN neurons regulates feeding. Science. 2016;351:1293–6.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dai CL, Gu JH, Liu F, Iqbal K, Gong CX. Neuronal O-GlcNAc transferase regulates appetite, body weight, and peripheral insulin resistance. Neurobiol Aging. 2018;70:40–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Andersson B, Tan EP, McGreal SR, Apte U, Hanover JA, Slawson C, et al. O-GlcNAc cycling mediates energy balance by regulating caloric memory. Appetite. 2021;165:105320.

    Article 
    PubMed 

    Google Scholar
     

  • Wheatley EG, Albarran E, White CW 3rd, Bieri G, Sanchez-Diaz C, Pratt K, et al. Neuronal O-GlcNAcylation improves cognitive function in the aged mouse brain. Curr Biol. 2019;29:3359–3369.e4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Butler AA, Sanchez RG, Jarome TJ, Webb WM, Lubin FD. O-GlcNAc and EZH2-mediated epigenetic regulation of gene expression during consolidation of fear memories. Learn Mem. 2019;26:373–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taylor EW, Wang K, Nelson AR, Bredemann TM, Fraser KB, Clinton SM, et al. O-GlcNAcylation of AMPA receptor GluA2 is associated with a novel form of long-term depression at hippocampal synapses. J Neurosci. 2014;34:10–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    Stay Connected

    9FansLike
    4FollowersFollow
    0SubscribersSubscribe
    - Advertisement -spot_img

    Latest Articles

    %d bloggers like this: