Sunday, March 3, 2024
BestWooCommerceThemeBuilttoBoostSales-728x90

Glypican-4 serum levels are associated with cognitive dysfunction and vascular risk factors in Parkinson’s disease – Scientific Reports


  • Kalia, L. V. & Lang, A. E. Parkinson’s disease. Lancet 386, 896–912 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Smith, C. et al. Neuropathology of dementia in patients with Parkinson’s disease: A systematic review of autopsy studies. J. Neurol. Neurosurg. Psychiatry 90, 1234–1243 (2019).

    PubMed 

    Google Scholar
     

  • Siderowf, A. et al. CSF amyloid β 1–42 predicts cognitive decline in Parkinson disease(e–Pub ahead of print). Neurology 75, 1055–1061 (2010).

  • Prell, T., Witte, O. W. & Grosskreutz, J. Biomarkers for dementia, fatigue, and depression in Parkinson’s disease. Front. Neurol. 10, 195 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nicoletti, A. et al. Vascular risk factors, white matter lesions and cognitive impairment in Parkinson’s disease: The PACOS longitudinal study. J. Neurol. 268, 549–558 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pilotto, A. et al. Vascular risk factors and cognition in Parkinson’s disease. J. Alzheimers Dis. 51, 563–570 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Filmus, J. & Selleck, S. B. Glypicans: Proteoglycans with a surprise. J. Clin. Investig. 108, 497–501 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jayakumar, A. R., Apeksha, A. & Norenberg, M. D. Role of matricellular proteins in disorders of the central nervous system. Neurochem. Res. 42, 858–875 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fico, A., Maina, F. & Dono, R. Fine-tuning of cell signaling by glypicans. Cell Mol. Life Sci. 68, 923–929 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Melo, S. A. et al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature 523, 177–182 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lepedda, A. J. et al. Circulating heparan sulfate proteoglycans as biomarkers in health and disease. Semin. Thromb. Hemost. 47, 295–307 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Muendlein, A. et al. Circulating syndecan-1 and glypican-4 predict 12-month survival in metastatic colorectal cancer patients. Front. Oncol. 12, 1045995 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muendlein, A. et al. Circulating glypican-4 is a predictor of 24-month overall survival in metastatic breast cancer. Oncol. Res. Treat. 46, 151–156 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Muendlein, A. et al. Serum glypican-4 is a marker of future vascular risk and mortality in coronary angiography patients. Atherosclerosis 345, 33–38 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Muendlein, A. et al. Serum glypican-4 is associated with the 10-year clinical outcome of patients with peripheral artery disease. Int. J. Cardiol. 369, 54–59 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Tamori, Y. & Kasuga, M. Glypican-4 is a new comer of adipokines working as insulin sensitizer. J. Diabetes Investig. 4, 250–251 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aviles-Olmos, I., Limousin, P., Lees, A. & Foltynie, T. Parkinson’s disease, insulin resistance and novel agents of neuroprotection. Brain 136, 374–384 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Cheong, J. L. Y., de Pablo-Fernandez, E., Foltynie, T. & Noyce, A. J. The association between type 2 diabetes mellitus and Parkinson’s disease. J. Parkinsons Dis. 10, 775–789 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, H. et al. Association between Parkinson’s disease and diabetes mellitus: From epidemiology, pathophysiology and prevention to treatment. Aging Dis. 13, 1591–1605 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bosco, D. et al. Dementia is associated with insulin resistance in patients with Parkinson’s disease. J. Neurol. Sci. 315, 39–43 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fico, A. et al. Modulating Glypican4 suppresses tumorigenicity of embryonic stem cells while preserving self-renewal and pluripotency. Stem Cells 30, 1863–1874 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Corti, S. et al. Enhanced differentiation of human induced pluripotent stem cells toward the midbrain dopaminergic neuron lineage through GLYPICAN-4 downregulation. Stem Cells Transl. Med. 10, 725–742 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Legier, T. et al. Epithelial disruption drives mesendoderm differentiation in human pluripotent stem cells by enabling TGF-β protein sensing. Nat. Commun. 14, 349 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fico, A. et al. Reducing Glypican-4 in ES cells improves recovery in a rat model of Parkinson’s disease by increasing the production of dopaminergic neurons and decreasing teratoma formation. J. Neurosci. 34, 8318–8323 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Allen, N. J. et al. Astrocyte glypicans 4 and 6 promote formation of excitatory synapses via GluA1 AMPA receptors. Nature 486, 410–414 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Farhy-Tselnicker, I. et al. Astrocyte-secreted glypican 4 regulates release of neuronal pentraxin 1 from axons to induce functional synapse formation. Neuron 96, 428-445.e13 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johnson, K. A., Conn, P. J. & Niswender, C. M. Glutamate receptors as therapeutic targets for Parkinson’s disease. CNS Neurol. Disord. Drug Targets 8, 475–491 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Z. et al. Roles of glutamate receptors in Parkinson’s disease. Int. J. Mol. Sci. 20, 4391 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saroja, S. R., Gorbachev, K., TCW, J., Goate, A. M. & Pereira, A. C. Astrocyte-secreted glypican-4 drives APOE4-dependent tau hyperphosphorylation. Proc. Natl. Acad. Sci. 119, e2108870119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reinhard, C., Borgers, M., David, G. & De Strooper, B. Soluble amyloid-β precursor protein binds its cell surface receptor in a cooperative fashion with glypican and syndecan proteoglycans. J. Cell Sci. 126, 4856–4861 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Cheng, F., Fransson, L. -Å. & Mani, K. Interplay between APP and glypican-1 processing and α-synuclein aggregation in undifferentiated and differentiated human neural progenitor cells. Glycobiology 33, 325–341 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deischinger, C. et al. Glypican-4 in pregnancy and its relation to glucose metabolism, insulin resistance and gestational diabetes mellitus status. Sci. Rep. 11, 23898 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lugert, S. et al. Glypican-2 levels in cerebrospinal fluid predict the status of adult hippocampal neurogenesis. Sci. Rep. 7, 46543 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jung, J. H. et al. Proteomic analysis of human lacrimal and tear fluid in dry eye disease. Sci. Rep. 7, 13363 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, L. et al. In-depth analysis of the human tear proteome. J. Proteomics 75, 3877–3885 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gijs, M. et al. Association of tear fluid amyloid and tau levels with disease severity and neurodegeneration. Sci. Rep. 11, 22675 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maass, F. et al. Increased alpha-synuclein tear fluid levels in patients with Parkinson’s disease. Sci. Rep. 10, 8507 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Irwin, D. J., Lee, V.M.-Y. & Trojanowski, J. Q. Parkinson’s disease dementia: convergence of α-synuclein, tau and amyloid-β pathologies. Nat. Rev. Neurosci. 14, 626–636 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schulz, J. G. et al. Evidence that glypican is a receptor mediating beta-amyloid neurotoxicity in PC12 cells. Eur. J. Neurosci. 10, 2085–2093 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reitsma, S., Slaaf, D. W., Vink, H., Van Zandvoort, M. A. M. J. & Oude Egbrink, M. G. A. The endothelial glycocalyx: Composition, functions, and visualization. Pflugers Arch. Eur. J. Physiol. 454, 345–359 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Viswanathan, A., Rocca, W. A. & Tzourio, C. Vascular risk factors and dementia: how to move forward?. Neurology 72, 368–374 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Postuma, R. B. et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov. Disord. 30, 1591–1601 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Tomlinson, C. L. et al. Systematic review of levodopa dose equivalency reporting in Parkinson’s disease: Systematic review of LED reporting in PD. Mov. Disord. 25, 2649–2653 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Teunissen, C. E. et al. A consensus protocol for the standardization of cerebrospinal fluid collection and biobanking. Neurology 73, 1914–1922 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boerger, M. et al. Proteomic analysis of tear fluid reveals disease-specific patterns in patients with Parkinson’s disease: A pilot study. Parkinsonism Rel. Disord. 63, 3–9 (2019).

    Article 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    [td_block_social_counter facebook="beingmedicos1" twitter="being_medicos" youtube="beingmedicosgroup" style="style8 td-social-boxed td-social-font-icons" tdc_css="eyJhbGwiOnsibWFyZ2luLWJvdHRvbSI6IjM4IiwiZGlzcGxheSI6IiJ9LCJwb3J0cmFpdCI6eyJtYXJnaW4tYm90dG9tIjoiMzAiLCJkaXNwbGF5IjoiIn0sInBvcnRyYWl0X21heF93aWR0aCI6MTAxOCwicG9ydHJhaXRfbWluX3dpZHRoIjo3Njh9" custom_title="Stay Connected" block_template_id="td_block_template_8" f_header_font_family="712" f_header_font_transform="uppercase" f_header_font_weight="500" f_header_font_size="17" border_color="#dd3333"]
    - Advertisement -spot_img

    Latest Articles