Wednesday, October 4, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

Hearing loss and vestibular schwannoma: new insights into Schwann cells implication – Cell Death & Disease


  • Alford RL, Arnos KS, Fox M, Lin JW, Palmer CG, Pandya A, et al. American College of Medical Genetics and Genomics guideline for the clinical evaluation and etiologic diagnosis of hearing loss. Genet Med. 2014;16:347–55.

    PubMed 

    Google Scholar
     

  • Huang Y, Yang J, Duan M. Auditory neuropathy: from etiology to management. Curr Opin Otolaryngol Head Neck Surg. 2022;30:332–8.

    PubMed 

    Google Scholar
     

  • Wang SJ, Furusho M, D’Sa C, Kuwada S, Conti L, Morest DK, et al. Inactivation of fibroblast growth factor receptor signaling in myelinating glial cells results in significant loss of adult spiral ganglion neurons accompanied by age-related hearing impairment. J Neurosci Res. 2009;87:3428–37.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Manchaiah VKC, Zhao F, Danesh AA, Duprey R. The genetic basis of auditory neuropathy spectrum disorder (ANSD). Int J Pediatr Otorhinolaryngol. 2011;75:151–8.

    PubMed 

    Google Scholar
     

  • Grosse SD, Ross DS, Dollard SC. Congenital cytomegalovirus (CMV) infection as a cause of permanent bilateral hearing loss: a quantitative assessment. J Clin Virol. 2008;41:57–62.

    PubMed 

    Google Scholar
     

  • Luxon L, Furman JM, Martini A, Stephens SDG. A Textbook of Audiological Medicine. Clinical aspects of hearing and balance. CRC Press; 2002.

  • Jecmenica J, Bajec-Opancina A, Jecmenica D. Genetic hearing impairment. Childs Nerv Syst. 2015;31:515–9.

    PubMed 

    Google Scholar
     

  • Glueckert R, Pfaller K, Kinnefors A, Rask-Andersen H, Schrott-Fischer A. The human spiral ganglion: new insights into ultrastructure, survival rate and implications for cochlear implants. Audio Neurootol. 2005;10:258–73.


    Google Scholar
     

  • Shrestha BR, Chia C, Wu L, Kujawa SG, Liberman MC, Goodrich LV. Sensory neuron diversity in the inner ear is shaped by activity. Cell. 2018;174:1229–1246 e1217.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun S, Babola T, Pregernig G, So KS, Nguyen M, Su SM, et al. Hair cell mechanotransduction regulates spontaneous activity and spiral ganglion subtype specification in the auditory system. Cell. 2018;174:1247–1263.e1215.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jang MW, Lim J, Park MG, Lee JH, Lee CJ. Active role of glia‐like supporting cells in the organ of Corti: membrane proteins and their roles in hearing. Glia. 2022;70:1799–825.

    CAS 
    PubMed 

    Google Scholar
     

  • Chen Z, Huang Y, Yu C, Liu Q, Qiu C, Wan G. Cochlear Sox2+ glial cells are potent progenitors for spiral ganglion neuron reprogramming induced by small molecules. Front Cell Devl Biol. 2021;9:728352.

  • Ramírez-Camacho R, García-Berrocal JR, Trinidad A, González-García JA, Verdaguer JM, Ibáñez A, et al. Central role of supporting cells in cochlear homeostasis and pathology. Med Hypotheses. 2006;67:550–5.

    PubMed 

    Google Scholar
     

  • Olusanya BO, Neumann KJ, Saunders JE. The global burden of disabling hearing impairment: a call to action. Bull World Health Organ. 2014;92:367–73.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hansen MR, Vijapurkar U, Koland JG, Green SH. Reciprocal signaling between spiral ganglion neurons and Schwann cells involves neuregulin and neurotrophins. Hear Res. 2001;161:87–98.

    CAS 
    PubMed 

    Google Scholar
     

  • Ito T, Tokuriki M, Shibamori Y, Saito T, Nojyo Y. Cochlear nerve demyelination causes prolongation of wave I latency in ABR of the myelin deficient (md) rat. Hear Res. 2004;191:119–24.

    PubMed 

    Google Scholar
     

  • Ford MC, Alexandrova O, Cossell L, Stange-Marten A, Sinclair J, Kopp-Scheinpflug C, et al. Tuning of Ranvier node and internode properties in myelinated axons to adjust action potential timing. Nat Commun. 2015;6:8073.

    CAS 
    PubMed 

    Google Scholar
     

  • Terayama Y, Kaneko K, Tanaka K, Kawamoto K. Ultrastructural changes of the nerve elements following disruption of the organ of Corti. II. Nerve elements outside the organ of Corti. Acta Otolaryngol. 1979;8:27–36.


    Google Scholar
     

  • Hardie NA, Shepherd RK. Sensorineural hearing loss during development: morphological and physiological response of the cochlea and auditory brainstem. Hear Res. 1999;128:147–65.

    CAS 
    PubMed 

    Google Scholar
     

  • Koles ZJ, Rasminsky M. A computer simulation of conduction in demyelinated nerve fibres. J Physiol. 1972;227:351–64.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Naud R, Longtin A. Linking demyelination to compound action potential dispersion with a spike-diffuse-spike approach. J Math Neurosci. 2019;9:3.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shepherd RK, Javel E. Electrical stimulation of the auditory nerve. I. Correlation of physiological responses with cochlear status. Hear Res. 1997;108:112–44.

    CAS 
    PubMed 

    Google Scholar
     

  • Tagoe T, Barker M, Jones A, Allcock N, Hamann M. Auditory nerve perinodal dysmyelination in noise-induced hearing loss. J Neurosci. 2014;34:2684–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bramhall Naomi F, Shi F, Arnold K, Hochedlinger K, Edge Albert SB. Lgr5-positive supporting cells generate new hair cells in the postnatal cochlea. Stem Cell Rep. 2014;2:311–22.

    CAS 

    Google Scholar
     

  • Mizutari K, Fujioka M, Hosoya M, Bramhall N, Okano Hirotaka J, Okano H, et al. Notch inhibition induces cochlear hair cell regeneration and recovery of hearing after acoustic trauma. Neuron. 2013;77:58–69.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Richardson RT, Atkinson PJ. Atoh1 gene therapy in the cochlea for hair cell regeneration. Expert Opin Biol Ther. 2015;15:417–30.

    CAS 
    PubMed 

    Google Scholar
     

  • Ni W, Zeng S, Li W, Chen Y, Zhang S, Tang M, et al. Wnt activation followed by Notch inhibition promotes mitotic hair cell regeneration in the postnatal mouse cochlea. Oncotarget. 2016;7:66754–68.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schaette R, McAlpine D. Tinnitus with a normal audiogram: physiological evidence for hidden hearing loss and computational model. J Neurosci. 2011;31:13452–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sergeyenko Y, Lall K, Liberman MC, Kujawa SG. Age-related cochlear synaptopathy: an early-onset contributor to auditory functional decline. J Neurosci. 2013;33:13686–94.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mehraei G, Hickox AE, Bharadwaj HM, Goldberg H, Verhulst S, Liberman MC, et al. Auditory brainstem response latency in noise as a marker of cochlear synaptopathy. J Neurosci. 2016;36:3755–64.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liberman MC, Epstein MJ, Cleveland SS, Wang H, Maison SF. Toward a differential diagnosis of hidden hearing loss in humans. PLoS ONE. 2016;11:e0162726.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wan G, Corfas G. Transient auditory nerve demyelination as a new mechanism for hidden hearing loss. Nat Commun. 2017;8:14487.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Castelnovo LF, Bonalume V, Melfi S, Ballabio M, Colleoni D, Magnaghi V. Schwann cell development, maturation and regeneration: a focus on classic and emerging intracellular signaling pathways. Neural Regen Res. 2017;12:1013–23.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feltri ML, Poitelon Y, Previtali SC. How Schwann cells sort axons: new concepts. Neuroscientist. 2016;22:252–65.

    CAS 
    PubMed 

    Google Scholar
     

  • Jessen KR, Mirsky R. The repair Schwann cell and its function in regenerating nerves. J Physiol. 2016;594:3521–31.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Monk KR, Feltri ML, Taveggia C. New insights on Schwann cell development. Glia. 2015;63:1376–93.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Woodhoo A, Sommer L. Development of the Schwann cell lineage: from the neural crest to the myelinated nerve. Glia. 2008;56:1481–90.

    PubMed 

    Google Scholar
     

  • Doddrell RD, Dun XP, Moate RM, Jessen KR, Mirsky R, Parkinson DB. Regulation of Schwann cell differentiation and proliferation by the Pax-3 transcription factor. Glia. 2012;60:1269–78.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong Z, Brennan A, Liu N, Yarden Y, Lefkowitz G, Mirsky R, et al. Neu differentiation factor is a neuron-glia signal and regulates survival, proliferation, and maturation of rat Schwann cell precursors. Neuron. 1995;15:585–96.

    CAS 
    PubMed 

    Google Scholar
     

  • Raphael AR, Talbot WS. New insights into signaling during myelination in zebrafish. Curr Top Dev Biol. 2011;97:1–19.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Woodhoo A, Alonso MB, Droggiti A, Turmaine M, D’Antonio M, Parkinson DB, et al. Notch controls embryonic Schwann cell differentiation, postnatal myelination and adult plasticity. Nat Neurosci. 2009;12:839–47.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jessen KR, Mirsky R. The origin and development of glial cells in peripheral nerves. Nat Rev Neurosci. 2005;6:671–82.

    CAS 
    PubMed 

    Google Scholar
     

  • Grigoryan T, Stein S, Qi J, Wende H, Garratt AN, Nave KA, et al. Wnt/Rspondin/beta-catenin signals control axonal sorting and lineage progression in Schwann cell development. Proc Natl Acad Sci USA. 2013;110:18174–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lemke G, Chao M. Axons regulate Schwann cell expression of the major myelin and NGF receptor genes. Development. 1988;102:499–504.

    CAS 
    PubMed 

    Google Scholar
     

  • Morgan L, Jessen KR, Mirsky R. The effects of cAMP on differentiation of cultured Schwann cells: progression from an early phenotype (04+) to a myelin phenotype (P0+, GFAP-, N-CAM-, NGF-receptor-) depends on growth inhibition. J Cell Biol. 1991;112:457–67.

    CAS 
    PubMed 

    Google Scholar
     

  • Mathis S, Goizet C, Tazir M, Magdelaine C, Lia AS, Magy L, et al. Charcot-Marie-Tooth diseases: an update and some new proposals for the classification. J Med Genet. 2015;52:681–90.

    PubMed 

    Google Scholar
     

  • Stierli S, Napoli I, White IJ, Cattin AL, Monteza Cabrejos A, Garcia et al. The regulation of the homeostasis and regeneration of peripheral nerve is distinct from the CNS and independent of a stem cell population. Development. 2018;145:dev170316.

  • Arthur-Farraj PJ, Latouche M, Wilton DK, Quintes S, Chabrol E, Banerjee A, et al. c-Jun reprograms Schwann cells of injured nerves to generate a repair cell essential for regeneration. Neuron. 2012;75:633–47.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jessen KR, Arthur-Farraj P. Repair Schwann cell update: adaptive reprogramming, EMT, and stemness in regenerating nerves. Glia. 2019;67:421–37.

    PubMed 

    Google Scholar
     

  • Savagner P. The epithelial-mesenchymal transition (EMT) phenomenon. Ann Oncol. 2010;21:vii89–92.

    PubMed 

    Google Scholar
     

  • Verstappe J, Berx G. A role for partial epithelial-to-mesenchymal transition in enabling stemness in homeostasis and cancer. Semin Cancer Biol. 2023;90:15–28.

    CAS 
    PubMed 

    Google Scholar
     

  • Mani SA, Guo W, Liao M-J, Eaton EN, Ayyanan A, Zhou AY, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133:704–15.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Radisky DC, LaBarge MA. Epithelial-mesenchymal transition and the stem cell phenotype. Cell Stem Cell. 2008;2:511–2.

    CAS 
    PubMed 

    Google Scholar
     

  • Dongre A, Weinberg RA. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol. 2019;20:69–84.

    CAS 
    PubMed 

    Google Scholar
     

  • Kaucka M, Adameyko I. Non-canonical functions of the peripheral nerve. Exp Cell Res. 2014;321:17–24.

    CAS 
    PubMed 

    Google Scholar
     

  • Boilly B, Faulkner S, Jobling P, Hondermarck H. Nerve dependence: from regeneration to cancer. Cancer Cell. 2017;31:342–54.

    CAS 
    PubMed 

    Google Scholar
     

  • Zahalka AH, Arnal-Estape A, Maryanovich M, Nakahara F, Cruz CD, Finley LWS, et al. Adrenergic nerves activate an angio-metabolic switch in prostate cancer. Science. 2017;358:321–6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Monje M, Borniger JC, D’Silva NJ, Deneen B, Dirks PB, Fattahi F, et al. Roadmap for the emerging field of cancer neuroscience. Cell. 2020;81:219–22.


    Google Scholar
     

  • Demir IE, Friess H, Ceyhan GO. Neural plasticity in pancreatitis and pancreatic cancer. Nat Rev Gastroenterol Hepatol. 2015;12:649–59.

    CAS 
    PubMed 

    Google Scholar
     

  • Syroid DE, Maycox PJ, Soilu-Hanninen M, Petratos S, Bucci T, Burrola P, et al. Induction of postnatal Schwann cell death by the low-affinity neurotrophin receptor in vitro and after axotomy. J Neurosci. 2000;20:5741–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Provenzano MJ, Xu N, Ver Meer MR, Clark JJ, Hansen MR. p75NTR and sortilin increase after facial nerve injury. Laryngoscope. 2008;118:87–93.

    CAS 
    PubMed 

    Google Scholar
     

  • Gravel M, Di Polo A, Valera PB, Braun PE. Four-kilobase sequence of the mouse CNP gene directs spatial and temporal expression of lacZ in transgenic mice. J Neurosci Res. 1998;53:393–404.

    CAS 
    PubMed 

    Google Scholar
     

  • Lerat J, Magdelaine C, Roux AF, Darnaud L, Beauvais-Dzugan H, Naud S, et al. Hearing loss in inherited peripheral neuropathies: Molecular diagnosis by NGS in a French series. Mol Genet Genom Med. 2019;7:e839.


    Google Scholar
     

  • Takazawa T, Ikeda K, Murata K, Kawase Y, Hirayama T, Ohtsu M, et al. Sudden deafness and facial diplegia in Guillain-Barre Syndrome: radiological depiction of facial and acoustic nerve lesions. Intern Med. 2012;51:2433–7.

    PubMed 

    Google Scholar
     

  • Ueda N, Kuroiwa Y. Sensorineural deafness in Guillain-Barre syndrome. Brain Nerve. 2008;60:1181–6.

  • Giuliani N, Holte L, Shy M, Grider T. The audiologic profile of patients with Charcot-Marie Tooth neuropathy can be characterised by both cochlear and neural deficits. Int J Audio. 2019;58:902–12.


    Google Scholar
     

  • Rance G, Ryan MM, Bayliss K, Gill K, O’Sullivan C, Whitechurch M. Auditory function in children with Charcot-Marie-Tooth disease. Brain. 2012;35:1412–22.


    Google Scholar
     

  • Laura M, Pipis M, Rossor AM, Reilly MM. Charcot-Marie-Tooth disease and related disorders: an evolving landscape. Curr Opin Neurol. 2019;32:641–50.

    PubMed 

    Google Scholar
     

  • Fortun J, Go JC, Li J, Amici SA, Dunn WA Jr, Notterpek L. Alterations in degradative pathways and protein aggregation in a neuropathy model based on PMP22 overexpression. Neurobiol Dis. 2006;22:153–64.

    CAS 
    PubMed 

    Google Scholar
     

  • Papadakis CE, Hajiioannou JK, Kyrmizakis DE, Bizakis JG. Bilateral sudden sensorineural hearing loss caused by Charcot-Marie-Tooth disease. J Laryngol Otol. 2003;117:399–401.

    PubMed 

    Google Scholar
     

  • Starr A, Picton TW, Sininger Y, Hood LJ, Berlin CI. Auditory neuropathy. Brain. 1996;119:741–53.

    PubMed 

    Google Scholar
     

  • Bahr M, Andres F, Timmerman V, Nelis ME, Van Broeckhoven C, Dichgans J. Central visual, acoustic, and motor pathway involvement in a Charcot-Marie-Tooth family with an Asn205Ser mutation in the connexin 32 gene. J Neurol Neurosurg Psychiatry. 1999;66:202–6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choi JE, Seok JM, Ahn J, Ji YS, Lee KM, Hong SH, et al. Hidden hearing loss in patients with Charcot-Marie-Tooth disease type 1A. Sci Rep. 2018;8:10335.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Waqas M, Us-Salam I, Bibi Z, Wang Y, Li H, Zhu Z, et al. Stem cell-based therapeutic approaches to restore sensorineural hearing loss in mammals. Neural Plast. 2020;2020:8829660.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coleman B, Hardman J, Coco A, Epp S, de Silva M, Crook J, et al. Fate of embryonic stem cells transplanted into the deafened mammalian cochlea. Cell Transpl. 2006;15:369–80.

    CAS 

    Google Scholar
     

  • Matsuoka AJ, Morrissey ZD, Zhang C, Homma K, Belmadani A, Miller CA, et al. Directed differentiation of human embryonic stem cells toward placode-derived spiral ganglion-like sensory neurons. Stem Cells Transl Med. 2017;6:923–36.

    CAS 
    PubMed 

    Google Scholar
     

  • Corrales CE, Pan L, Li H, Liberman MC, Heller S, Edge AS. Engraftment and differentiation of embryonic stem cell-derived neural progenitor cells in the cochlear nerve trunk: growth of processes into the organ of Corti. J Neurobiol. 2006;66:1489–1500.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi F, Corrales CE, Liberman MC, Edge AS. BMP4 induction of sensory neurons from human embryonic stem cells and reinnervation of sensory epithelium. Eur J Neurosci. 2007;26:3016–23.

    PubMed 

    Google Scholar
     

  • Diensthuber M, Brandis A, Lenarz T, Stover T. Co-expression of transforming growth factor-beta1 and glial cell line-derived neurotrophic factor in vestibular schwannoma. Otol Neurotol. 2004;25:359–65.

    CAS 
    PubMed 

    Google Scholar
     

  • Kramer F, Stover T, Warnecke A, Diensthuber M, Lenarz T, Wissel K. BDNF mRNA expression is significantly upregulated in vestibular schwannomas and correlates with proliferative activity. J Neurooncol. 2010;98:31–39.

    CAS 
    PubMed 

    Google Scholar
     

  • Blair KJ, Kiang A, Wang-Rodriguez J, Yu MA, Doherty JK, Ongkeko WM. EGF and bFGF promote invasion that is modulated by PI3/Akt kinase and Erk in vestibular schwannoma. Otol Neurotol. 2011;32:308–14.

    PubMed 

    Google Scholar
     

  • Hurley PA, Crook JM, Shepherd RK. Schwann cells revert to non-myelinating phenotypes in the deafened rat cochlea. Eur J Neurosci. 2007;26:1813–21.

    PubMed 

    Google Scholar
     

  • Wakizono T, Nakashima H, Yasui T, Noda T, Aoyagi K, Okada K, et al. Growth factors with valproic acid restore injury-impaired hearing by promoting neuronal regeneration. JCI Insight. 2021;6:e139171.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stavrou M, Sargiannidou I, Georgiou E, Kagiava A, Kleopa KA. Emerging therapies for Charcot-Marie-Tooth inherited neuropathies. Int J Mol Sci. 2021;22:6048.

  • Attarian S, Young P, Brannagan TH, Adams D, Van Damme P, Thomas FP, et al. A double-blind, placebo-controlled, randomized trial of PXT3003 for the treatment of Charcot-Marie-Tooth type 1A. Orphanet J Rare Dis. 2021;16:433.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boutary S, Echaniz-Laguna A, Adams D, Loisel-Duwattez J, Schumacher M, Massaad C, et al. Treating PMP22 gene duplication-related Charcot-Marie-Tooth disease: the past, the present and the future. Transl Res. 2021;227:100–11.

    CAS 
    PubMed 

    Google Scholar
     

  • Neff BA, Welling DB, Akhmametyeva E, Chang LS. The molecular biology of vestibular schwannomas: dissecting the pathogenic process at the molecular level. Otol Neurotol. 2006;27:197–208.

    PubMed 

    Google Scholar
     

  • Skovronsky DM, Oberholtzer JC. Pathologic classification of peripheral nerve tumors. Neurosurg Clin N Am. 2004;15:157–66.

    PubMed 

    Google Scholar
     

  • Evans DG, Moran A, King A, Saeed S, Gurusinghe N, Ramsden R. Incidence of vestibular schwannoma and neurofibromatosis 2 in the North West of England over a 10-year period: higher incidence than previously thought. Otol Neurotol. 2005;26:93–97.

    PubMed 

    Google Scholar
     

  • Stangerup SE, Tos M, Thomsen J, Caye-Thomasen P. True incidence of vestibular schwannoma? Neurosurgery. 2010;67:1335–40.

    PubMed 

    Google Scholar
     

  • Pecina-Slaus N. Merlin, the NF2 gene product. Pathol Oncol Res. 2013;19:365–73.

    CAS 
    PubMed 

    Google Scholar
     

  • Abe M, Kawase T, Urano M, Mizoguchi Y, Kuroda M, Kasahara M, et al. Analyses of proliferative potential in schwannomas. Brain Tumor Pathol. 2000;17:35–40.

    CAS 
    PubMed 

    Google Scholar
     

  • Trofatter JA, MacCollin MM, Rutter JL, Murrell JR, Duyao MP, Parry DM, et al. A novel moesin-, ezrin-, radixin-like gene is a candidate for the neurofibromatosis 2 tumor suppressor. Cell. 1993;72:791–800.

    CAS 
    PubMed 

    Google Scholar
     

  • Michie KA, Bermeister A, Robertson NO, Goodchild SC, Curmi PMG. Two sides of the coin: ezrin/radixin/moesin and merlin control membrane structure and contact inhibition. Int J Mol Sci. 2019;20:1996.

  • Li W, You L, Cooper J, Schiavon G, Pepe-Caprio A, Zhou L, et al. Merlin/NF2 suppresses tumorigenesis by inhibiting the E3 ubiquitin ligase CRL4(DCAF1) in the nucleus. Cell. 2010;140:477–90.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Houshmandi SS, Emnett RJ, Giovannini M, Gutmann DH. The neurofibromatosis 2 protein, merlin, regulates glial cell growth in an ErbB2- and Src-dependent manner. Mol Cell Biol. 2009;29:1472–86.

    CAS 
    PubMed 

    Google Scholar
     

  • Guo L, Moon C, Niehaus K, Zheng Y, Ratner N. Rac1 controls Schwann cell myelination through cAMP and NF2/merlin. J Neurosci. 2012;32:17251–61.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lopez-Lago MA, Okada T, Murillo MM, Socci N, Giancotti FG. Loss of the tumor suppressor gene NF2, encoding merlin, constitutively activates integrin-dependent mTORC1 signaling. Mol Cell Biol. 2009;29:4235–49.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rong R, Tang X, Gutmann DH, Ye K. Neurofibromatosis 2 (NF2) tumor suppressor merlin inhibits phosphatidylinositol 3-kinase through binding to PIKE-L. Proc Natl Acad Sci USA. 2004;101:18200–5.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meng Z, Moroishi T, Guan KL. Mechanisms of Hippo pathway regulation. Genes Dev. 2016;30:1–17.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Melfi S, Colciago A, Giannotti G, Bonalume V, Caffino L, Fumagalli F, et al. Stressing out the Hippo/YAP signaling pathway: toward a new role in Schwann cells. Cell Death Dis. 2015;6:e1915.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Colciago A, Melfi S, Giannotti G, Bonalume V, Ballabio M, Caffino L, et al. Tumor suppressor Nf2/merlin drives Schwann cell changes following electromagnetic field exposure through Hippo-dependent mechanisms. Cell Death Discov. 2015;1:15021.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brodhun M, Stahn V, Harder A. Pathogenesis and molecular pathology of vestibular schwannoma. HNO. 2017;65:362–72.

    CAS 
    PubMed 

    Google Scholar
     

  • Mehta GU, Feldman MJ, Wang H, Ding D, Chittiboina P. Unilateral vestibular schwannoma in a patient with schwannomatosis in the absence of LZTR1 mutation. J Neurosurg. 2016;125:1469–71.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stankovic KM, Mrugala MM, Martuza RL, Silver M, Betensky RA, Nadol JB Jr, et al. Genetic determinants of hearing loss associated with vestibular schwannomas. Otol Neurotol. 2009;30:661–7.

    PubMed 

    Google Scholar
     

  • Edvardsson Rasmussen J, Laurell G, Rask-Andersen H, Bergquist J, Eriksson PO. The proteome of perilymph in patients with vestibular schwannoma. A possibility to identify biomarkers for tumor associated hearing loss? PLoS ONE. 2018;13:e0198442.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lysaght AC, Kao SY, Paulo JA, Merchant SN, Steen H, Stankovic KM. Proteome of human perilymph. J Proteome Res. 2011;10:3845–51.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moffat DA, Baguley DM, von Blumenthal H, Irving RM, Hardy DG. Sudden deafness in vestibular schwannoma. J Laryngol Otol. 1994;108:116–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Sauvaget E, Kici S, Kania R, Herman P, Tran Ba Huy P. Sudden sensorineural hearing loss as a revealing symptom of vestibular schwannoma. Acta Otolaryngol. 2005;125:592–5.

    PubMed 

    Google Scholar
     

  • Schmidt RF, Boghani Z, Choudhry OJ, Eloy JA, Jyung RW, Liu JK. Incidental vestibular schwannomas: a review of prevalence, growth rate, and management challenges. Neurosurg Focus. 2012;33:E4.

    PubMed 

    Google Scholar
     

  • Schulz A, Buttner R, Hagel C, Baader SL, Kluwe L, Salamon J, et al. The importance of nerve microenvironment for schwannoma development. Acta Neuropathol. 2016;132:289–307.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roosli C, Linthicum FH Jr, Cureoglu S, Merchant SN. Dysfunction of the cochlea contributing to hearing loss in acoustic neuromas: an underappreciated entity. Otol Neurotol. 2012;3:473–80.


    Google Scholar
     

  • Helbing DL, Schulz A, Morrison H. Pathomechanisms in schwannoma development and progression. Oncogene. 2020;39:5421–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fong B, Barkhoudarian G, Pezeshkian P, Parsa AT, Gopen Q, Yang I. The molecular biology and novel treatments of vestibular schwannomas. J Neurosurg. 2011;115:906–14.

    PubMed 

    Google Scholar
     

  • Papsin BC, Abel SM, Nedzelski JM. Frequency selectivity in patients with acoustic neuroma. Laryngoscope. 1994;104:1092–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Celis-Aguilar E, Lassaletta L, Torres-Martin M, Rodrigues FY, Nistal M, Castresana JS, et al. The molecular biology of vestibular schwannomas and its association with hearing loss: a review. Genet Res Int. 2012;2012:856157.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaul V, Cosetti MK. Management of vestibular schwannoma (Including NF2): facial nerve considerations. Otolaryngol Clin North Am. 2018;51:1193–212.

    PubMed 

    Google Scholar
     

  • Hannan CJ, Lewis D, O’Leary C, Donofrio CA, Evans DG, Roncaroli F, et al. The inflammatory microenvironment in vestibular schwannoma. Neurooncol Adv. 2020;2:vdaa023.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dilwali S, Landegger LD, Soares VY, Deschler DG, Stankovic KM. Secreted factors from human vestibular schwannomas can cause cochlear damage. Sci Rep. 2015;5:18599.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Caye-Thomasen P, Werther K, Nalla A, Bog-Hansen TC, Nielsen HJ, Stangerup SE, et al. VEGF and VEGF receptor-1 concentration in vestibular schwannoma homogenates correlates to tumor growth rate. Otol Neurotol. 2005;26:98–101.

    PubMed 

    Google Scholar
     

  • Koutsimpelas D, Stripf T, Heinrich UR, Mann WJ, Brieger J. Expression of vascular endothelial growth factor and basic fibroblast growth factor in sporadic vestibular schwannomas correlates to growth characteristics. Otol Neurotol. 2007;28:1094–9.

    PubMed 

    Google Scholar
     

  • Belyaev I, Dean A, Eger H, Hubmann G, Jandrisovits R, Kern M, et al. EUROPAEM EMF Guideline 2016 for the prevention, diagnosis and treatment of EMF-related health problems and illnesses. Rev Environ Health. 2016;31:363–97.

    PubMed 

    Google Scholar
     

  • Moon IS, Kim BG, Kim J, Lee JD, Lee WS. Association between vestibular schwannomas and mobile phone use. Tumour Biol. 2014;35:581–7.

    PubMed 

    Google Scholar
     

  • Hardell L, Carlberg M, Soderqvist F, Mild KH. Case-control study of the association between malignant brain tumours diagnosed between 2007 and 2009 and mobile and cordless phone use. Int J Oncol. 2013;43:1833–45.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hardell L, Carlberg M. Use of mobile and cordless phones and survival of patients with glioma. Neuroepidemiology. 2013;40:101–8.

    PubMed 

    Google Scholar
     

  • Hephzibah A, Pandey SK, Rupa V, Moorthy RK, Rajshekhar V. Changes in pattern of presentation of patients with unilateral vestibular schwannoma over two decades: Influence of cell phone use in early diagnosis. J Clin Neurosci. 2021;94:102–6.

    PubMed 

    Google Scholar
     

  • Roosli M. [Health effects of electromagnetic fields]. Ther Umsch. 2013;70:733–8.

    PubMed 

    Google Scholar
     

  • Kaszuba-Zwoinska J, Gremba J, Galdzinska-Calik B, Wojcik-Piotrowicz K, Thor PJ. Electromagnetic field induced biological effects in humans. Przegl Lek. 2015;72:636–41.

    PubMed 

    Google Scholar
     

  • Demir IE, Boldis A, Pfitzinger PL, Teller S, Brunner E, Klose N, et al. Investigation of Schwann cells at neoplastic cell sites before the onset of cancer invasion. J Natl Cancer Inst. 2014;106:dju184.

  • Deborde S, Omelchenko T, Lyubchik A, Zhou Y, He S, McNamara WF, et al. Schwann cells induce cancer cell dispersion and invasion. J Clin Investig. 2016;126:1538–54.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feltri ML, Weaver MR, Belin S, Poitelon Y. The Hippo pathway: horizons for innovative treatments of peripheral nerve diseases. J Peripher Nerv Syst. 2021;26:4–16.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jeanette H, Marziali LN, Bhatia U, Hellman A, Herron J, Kopec AM, et al. YAP and TAZ regulate Schwann cell proliferation and differentiation during peripheral nerve regeneration. Glia. 2021;69:1061–74.

    CAS 
    PubMed 

    Google Scholar
     

  • Grove M, Kim H, Santerre M, Krupka AJ, Han SB, Zhai J, et al. YAP/TAZ initiate and maintain Schwann cell myelination. eLife 2017;6:e20982.

  • Colciago A, Audano M, Bonalume V, Melfi V, Mohamed T, Reid AJ, et al. Transcriptomic profile reveals deregulation of hearing-loss related genes in vestibular schwannoma cells following electromagnetic field exposure. Cells. 2021;10:1840.

  • Shearer AE, DeLuca AP, Hildebrand MS, Taylor KR, Gurrola J 2nd, Scherer S, et al. Comprehensive genetic testing for hereditary hearing loss using massively parallel sequencing. Proc Natl Acad Sci USA. 2010;107:21104–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tekin D, Yan D, Bademci G, Feng Y, Guo S, Foster J 2nd, et al. A next-generation sequencing gene panel (MiamiOtoGenes) for comprehensive analysis of deafness genes. Hear Res. 2016;333:179–84.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gupta VK, Thakker A, Gupta KK. Vestibular schwannoma: what we know and where we are heading. Head Neck Pathol. 2020;14:1058–66.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Halliday J, Rutherford SA, McCabe MG, Evans DG. An update on the diagnosis and treatment of vestibular schwannoma. Expert Rev Neurother. 2018;18:29–39.

    CAS 
    PubMed 

    Google Scholar
     

  • Pollock BE, Driscoll CL, Foote RL, Link MJ, Gorman DA, Bauch CD, et al. Patient outcomes after vestibular schwannoma management: a prospective comparison of microsurgical resection and stereotactic radiosurgery. Neurosurgery. 2006;59:77–85.

    PubMed 

    Google Scholar
     

  • Myrseth E, Moller P, Pedersen PH, Lund-Johansen M. Vestibular schwannoma: surgery or gamma knife radiosurgery? A prospective, nonrandomized study. Neurosurgery. 2009;64:654–61.

    PubMed 

    Google Scholar
     

  • Shih T, Lindley C. Bevacizumab: an angiogenesis inhibitor for the treatment of solid malignancies. Clin Ther. 2006;28:1779–802.

    CAS 
    PubMed 

    Google Scholar
     

  • Lane HA, Wood JM, McSheehy PM, Allegrini PR, Boulay A, Brueggen J, et al. mTOR inhibitor RAD001 (everolimus) has antiangiogenic/vascular properties distinct from a VEGFR tyrosine kinase inhibitor. Clin Cancer Res. 2009;15:1612–22.

    CAS 
    PubMed 

    Google Scholar
     

  • James MF, Han S, Polizzano C, Plotkin SR, Manning BD, Stemmer-Rachamimov AO, et al. NF2/merlin is a novel negative regulator of mTOR complex 1, and activation of mTORC1 is associated with meningioma and schwannoma growth. Mol Cell Biol. 2009;29:4250–61.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Plotkin SR, Halpin C, McKenna MJ, Loeffler JS, Batchelor TT, Barker FG 2nd. Erlotinib for progressive vestibular schwannoma in neurofibromatosis 2 patients. Otol Neurotol. 2010;31:1135–43.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sagers JE, Beauchamp RL, Zhang Y, Vasilijic S, Wu L, DeSouza P, et al. Combination therapy with mTOR kinase inhibitor and dasatinib as a novel therapeutic strategy for vestibular schwannoma. Sci Rep. 2020;10:4211.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gamboa OL, Gutierrez PM, Alcalde I, De la Fuente I, Gayoso MJ. Absence of relevant effects of 5 mT static magnetic field on morphology, orientation and growth of a rat Schwann cell line in culture. Histol Histopathol. 2007;22:777–80.

    CAS 
    PubMed 

    Google Scholar
     

  • Kerimoglu G, Guney C, Ersoz S, Odaci E. A histopathological and biochemical evaluation of oxidative injury in the sciatic nerves of male rats exposed to a continuous 900-megahertz electromagnetic field throughout all periods of adolescence. J Chem Neuroanat. 2018;91:1–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Say F, Altunkaynak BZ, Coskun S, Deniz OG, Yildiz C, Altun G, et al. Controversies related to electromagnetic field exposure on peripheral nerves. J Chem Neuroanat. 2016;75:70–76.

    PubMed 

    Google Scholar
     

  • Sisken BF, Kanje M, Lundborg G, Herbst E, Kurtz W. Stimulation of rat sciatic nerve regeneration with pulsed electromagnetic fields. Brain Res. 1989;485:309–16.

    CAS 
    PubMed 

    Google Scholar
     

  • Kanje M, Rusovan A, Sisken B, Lundborg G. Pretreatment of rats with pulsed electromagnetic fields enhances regeneration of the sciatic nerve. Bioelectromagnetics. 1993;14:353–9.

    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    Stay Connected

    9FansLike
    4FollowersFollow
    0SubscribersSubscribe
    - Advertisement -spot_img

    Latest Articles

    %d bloggers like this: