Thursday, September 21, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

Heat-shock protein 90α protects NME1 against degradation and suppresses metastasis of breast cancer – British Journal of Cancer


  • Yoshida BA, Sokoloff MM, Welch DR, Rinker-Schaeffer CW. Metastasis-suppressor genes: a review and perspective on an emerging field. J Natl Cancer Inst. 2000;92:1717–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Steeg PS, Bevilacqua G, Kopper L, Thorgeirsson UP, Talmadge JE, Liotta LA, et al. Evidence for a novel gene associated with low tumor metastatic potential. J Natl Cancer Inst. 1988;80:200–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu L, Wang X, Zhang W, Khan E, Lin C, Guo C. The multiple regulation of metastasis suppressor NM23-H1 in cancer. Life Sci. 2021;268:118995.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kuo KT, Chen CL, Chou TY, Yeh CT, Lee WH, Wang LS. Nm23H1 mediates tumor invasion in esophageal squamous cell carcinoma by regulation of CLDN1 through the AKT signaling. Oncogenesis 2016;5:e239.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li MQ, Shao J, Meng YH, Mei J, Wang Y, Li H, et al. NME1 suppression promotes growth, adhesion and implantation of endometrial stromal cells via Akt and MAPK/Erk1/2 signal pathways in the endometriotic milieu. Hum Reprod. 2013;28:2822–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marshall JC, Collins J, Marino N, Steeg P. The Nm23-H1 metastasis suppressor as a translational target. Eur J Cancer. 2010;46:1278–82.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ouatas T, Halverson D, Steeg PS. Dexamethasone and medroxyprogesterone acetate elevate Nm23-H1 metastasis suppressor gene expression in metastatic human breast carcinoma cells: new uses for old compounds. Clin Cancer Res. 2003;9:3763–72.

    CAS 
    PubMed 

    Google Scholar
     

  • Lim J, Jang G, Kang S, Lee G, Nga do TT, Phuong, et al. Cell-permeable NM23 blocks the maintenance and progression of established pulmonary metastasis. Cancer Res. 2011;71:7216–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen W, Xiong S, Li J, Li X, Liu Y, Zou C, et al. The ubiquitin E3 ligase SCF-FBXO24 recognizes deacetylated nucleoside diphosphate kinase A to enhance its degradation. Mol Cell Biol. 2015;35:1001–13.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fiore LS, Ganguly SS, Sledziona J, Cibull ML, Wang C, Richards DL, et al. c-Abl and Arg induce cathepsin-mediated lysosomal degradation of the NM23-H1 metastasis suppressor in invasive cancer. Oncogene. 2014;33:4508–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khera L, Paul C, Kaul R. Hepatitis C Virus E1 protein promotes cell migration and invasion by modulating cellular metastasis suppressor Nm23-H1. Virology. 2017;506:110–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Paul C, Khera L, Kaul R. Hepatitis C virus core protein interacts with cellular metastasis suppressor Nm23-H1 and promotes cell migration and invasion. Arch Virol. 2019;164:1271–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Holliday DL, Speirs V. Choosing the right cell line for breast cancer research. Breast Cancer Res. 2011;13:215.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dai X, Cheng H, Bai Z, Li J. Breast cancer cell line classification and its relevance with breast tumor subtyping. J Cancer. 2017;8:3131–41.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh B, Tai K, Madan S, Raythatha MR, Cady AM, Braunlin M, et al. Selection of metastatic breast cancer cells based on adaptability of their metabolic state. PLoS ONE. 2012;7:e36510.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hartsough MT, Clare SE, Mair M, Elkahloun AG, Sgroi D, Osborne CK, et al. Elevation of breast carcinoma Nm23-H1 metastasis suppressor gene expression and reduced motility by DNA methylation inhibition. Cancer Res. 2001;61:2320–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Yu BYK, Tossounian MA, Hristov SD, Lawrence R, Arora P, Tsuchiya Y, et al. Regulation of metastasis suppressor NME1 by a key metabolic cofactor coenzyme A. Redox Biol. 2021;44:101978.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schopf FH, Biebl MM, Buchner J. The HSP90 chaperone machinery. Nat Rev Mol Cell Biol. 2017;18:345–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ciechanover A, Schwartz AL. The ubiquitin-proteasome pathway: the complexity and myriad functions of proteins death. Proc Natl Acad Sci USA. 1998;95:2727–30.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salerno M, Palmieri D, Bouadis A, Halverson D, Steeg PS. Nm23-H1 metastasis suppressor expression level influences the binding properties, stability, and function of the kinase suppressor of Ras1 (KSR1) Erk scaffold in breast carcinoma cells. Mol Cell Biol. 2005;25:1379–88.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hua K, Feng W, Cao Q, Zhou X, Lu X, Feng Y. Estrogen and progestin regulate metastasis through the PI3K/AKT pathway in human ovarian cancer. Int J Oncol. 2008;33:959–67.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang X, Fu LJ, Liu XQ, Hu ZY, Jiang Y, Gao RF, et al. nm23 regulates decidualization through the PI3K-Akt-mTOR signaling pathways in mice and humans. Hum Reprod. 2016;31:2339–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abu-Taha IH, Vettel C, Wieland T. Targeting altered Nme heterooligomerization in disease? Oncotarget. 2018;9:1492–3.

    Article 
    PubMed 

    Google Scholar
     

  • Chen Y, Qian C, Guo C, Ge F, Zhang X, Gao X, et al. A Cys/Ser mutation of NDPK-A stabilizes its oligomerization state and enhances its activity. J Biochem. 2010;148:149–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim YI, Park S, Jeoung DI, Lee H. Point mutations affecting the oligomeric structure of Nm23-H1 abrogates its inhibitory activity on colonization and invasion of prostate cancer cells. Biochem Biophys Res. Commun. 2003;307:281–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Postel EH. NM23-NDP kinase. Int J Biochem Cell Biol. 1998;30:1291–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Souza TA, Trindade DM, Tonoli CC, Santos CR, Ward RJ, Arni RK, et al. Molecular adaptability of nucleoside diphosphate kinase b from trypanosomatid parasites: stability, oligomerization and structural determinants of nucleotide binding. Mol Biosyst. 2011;7:2189–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Webb PA, Perisic O, Mendola CE, Backer JM, Williams RL. The crystal structure of a human nucleoside diphosphate kinase, NM23-H2. J Mol Biol. 1995;251:574–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li YJ, Liu W, Saini V, Wong YH. Mutations at the dimer interface and surface residues of Nm23-H1 metastasis suppressor affect its expression and function. Mol Cell Biochem. 2020;474:95–112.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wayne N, Mishra P, Bolon DN. Hsp90 and client protein maturation. Methods Mol Biol. 2011;787:33–44.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Echeverria PC, Bernthaler A, Dupuis P, Mayer B, Picard D. An interaction network predicted from public data as a discovery tool: application to the Hsp90 molecular chaperone machine. PLoS ONE. 2011;6:e26044.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li ZN, Luo Y. HSP90 inhibitors and cancer: prospects for use in targeted therapies (Review). Oncol Rep. 2023;49:6.

  • Hahn JS. The Hsp90 chaperone machinery: from structure to drug development. BMB Rep. 2009;42:623–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Giese A, Loo MA, Tran N, Haskett D, Coons SW, Berens ME. Dichotomy of astrocytoma migration and proliferation. Int J Cancer. 1996;67:275–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hatzikirou H, Basanta D, Simon M, Schaller K, Deutsch A. ‘Go or grow’: the key to the emergence of invasion in tumour progression? Math Med Biol. 2012;29:49–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fischer KR, Durrans A, Lee S, Sheng J, Li F, Wong ST, et al. Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature. 2015;527:472–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng X, Carstens JL, Kim J, Scheible M, Kaye J, Sugimoto H, et al. Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature. 2015;527:525–30.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Otvos L Jr, Wade JD. Current challenges in peptide-based drug discovery. Front Chem. 2014;2:62.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    Stay Connected

    9FansLike
    4FollowersFollow
    0SubscribersSubscribe
    - Advertisement -spot_img

    Latest Articles

    %d bloggers like this: