Sunday, March 3, 2024
BestWooCommerceThemeBuilttoBoostSales-728x90

Hippocampal volume changes after (R,S)-ketamine administration in patients with major depressive disorder and healthy volunteers – Scientific Reports


  • MacQueen, G. & Frodl, T. The hippocampus in major depression: Evidence for the convergence of the bench and bedside in psychiatric research?. Mol. Psychiatry 16, 252–264. https://doi.org/10.1038/mp.2010.80 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sheline, Y. I., Wang, P. W., Gado, M. H., Csernansky, J. G. & Vannier, M. W. Hippocampal atrophy in recurrent major depression. Proc. Natl. Acad. Sci. U. S. A. 93, 3908–3913 (1996).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hamilton, J. P., Siemer, M. & Gotlib, I. H. Amygdala volume in major depressive disorder: A meta-analysis of magnetic resonance imaging studies. Mol. Psychiatry 13, 993–1000. https://doi.org/10.1038/mp.2008.57 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nolan, M. et al. Hippocampal and amygdalar volume changes in major depressive disorder: A targeted review and focus on stress. Chronic Stress 4, 247054702094455. https://doi.org/10.1177/2470547020944553 (2020).

    Article 

    Google Scholar
     

  • Duman, R. S., Malberg, J. & Thome, J. Neural plasticity to stress and antidepressant treatment. Biol. Psychiatry 46, 1181–1191. https://doi.org/10.1016/S0006-3223(99)00177-8 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schmaal, L. et al. Subcortical brain alterations in major depressive disorder: Findings from the ENIGMA major depressive disorder working group. Mol. Psychiatry 21, 806–812. https://doi.org/10.1038/mp.2015.69 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao, B. et al. Hippocampal subfield volumes in mood disorders. Mol. Psychiatry 22, 1352–1358. https://doi.org/10.1038/mp.2016.262 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kook Lim, H. et al. Automated hippocampal subfields segmentation in late life depression. J. Affect. Disord. 143, 253–256. https://doi.org/10.1016/j.jad.2012.04.018 (2012).

    Article 

    Google Scholar
     

  • Kraus, C. et al. Hippocampal subfields in acute and remitted depression: An ultra-high field magnetic resonance imaging study. Int. J. Neuropsychopharmacol. 22, 513–522. https://doi.org/10.1093/ijnp/pyz030 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Y. et al. Detection of volume alterations in hippocampal subfields of rats under chronic unpredictable mild stress using 7T MRI: A follow-up study. J. Magn. Reson. Imaging 46, 1456–1463. https://doi.org/10.1002/jmri.25667 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Dranovsky, A. & Hen, R. Hippocampal neurogenesis: Regulation by stress and antidepressants. Biol. Psychiatry 59, 1136–1143. https://doi.org/10.1016/j.biopsych.2006.03.082 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duman, R. S. Depression: A case of neuronal life and death?. Biol. Psychiatry 56, 140–145. https://doi.org/10.1016/J.BIOPSYCH.2004.02.033 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Huang, Y. et al. Structural changes in hippocampal subfields in major depressive disorder: A high-field magnetic resonance imaging study. Biol. Psychiatry 74, 62–68. https://doi.org/10.1016/j.biopsych.2013.01.005 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Samuels, B. A., Leonardo, E. D. & Hen, R. Hippocampal subfields and major depressive disorder. Biol. Psychiatry 77, 210–211 (2015).

    Article 
    PubMed Central 

    Google Scholar
     

  • Brown, S. S. G. et al. Structural MRI at 7T reveals amygdala nuclei and hippocampal subfield volumetric association with major depressive disorder symptom severity. Sci. Rep. 9, 10166. https://doi.org/10.1038/s41598-019-46687-7 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Réus, G. Z. et al. Ketamine treatment partly reverses alterations in brain derived- neurotrophic factor, oxidative stress and energy metabolism parameters induced by an animal model of depression. Curr. Neurovasc. Res. 12, 73–84. https://doi.org/10.2174/1567202612666150122122924 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, N. et al. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 329, 959–964. https://doi.org/10.1126/science.1190287 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moda-Sava, R. N. et al. Sustained rescue of prefrontal circuit dysfunction by antidepressant-induced spine formation. Science https://doi.org/10.1126/science.aat8078 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, M., Minkowicz, S., Dumrongprechachan, V., Hamilton, P. & Kozorovitskiy, Y. Ketamine rapidly enhances glutamate-evoked dendritic spinogenesis in medial prefrontal cortex through dopaminergic mechanisms. Biol. Psychiatry 89, 1096–1105. https://doi.org/10.1016/j.biopsych.2020.12.022 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Serrano, M. E., Kim, E., Petrinovic, M. M., Turkheimer, F. & Cash, D. Imaging synaptic density: The next holy grail of neuroscience?. Front. Neurosci. 16, 796129. https://doi.org/10.3389/fnins.2022.796129 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keifer, O. P. Jr. et al. Voxel-based morphometry predicts shifts in dendritic spine density and morphology with auditory fear conditioning. Nat. Commun. 6, 7582. https://doi.org/10.1038/ncomms8582 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Gerlach, A. R. et al. MRI predictors of pharmacotherapy response in major depressive disorder. Neuroimage Clin. 36, 103157. https://doi.org/10.1016/j.nicl.2022.103157 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abdallah, C. G. et al. The nucleus accumbens and ketamine treatment in major depressive disorder. Neuropsychopharmacology 42, 1739–1746. https://doi.org/10.1038/npp.2017.49 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Höflich, A. et al. Translating the immediate effects of S-Ketamine using hippocampal subfield analysis in healthy subjects-results of a randomized controlled trial. Transl. Psychiatry 11, 200. https://doi.org/10.1038/s41398-021-01318-6 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Joshi, S. H. et al. Structural plasticity of the hippocampus and amygdala induced by electroconvulsive therapy in major depression. Biol. Psychiatry 79, 282–292. https://doi.org/10.1016/j.biopsych.2015.02.029 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Scheidegger, M. et al. Ketamine administration reduces amygdalo-hippocampal reactivity to emotional stimulation. Hum. Brain Mapp. 37, 1941–1952. https://doi.org/10.1002/hbm.23148 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, C.-T. et al. The effects of low-dose ketamine on the prefrontal cortex and amygdala in treatment-resistant depression: A randomized controlled study. Hum. Brain Mapp. 37, 1080–1090. https://doi.org/10.1002/hbm.23085 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nugent, A. C. et al. Ketamine has distinct electrophysiological and behavioral effects in depressed and healthy subjects. Mol. Psychiatry 24, 1040–1052. https://doi.org/10.1038/s41380-018-0028-2 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hallare, J. & Gerriets, V. in StatPearls (2023).

  • Montgomery, S. A. & Asberg, M. A new depression scale designed to be sensitive to change. Br. J. Psychiatry 134, 382–389. https://doi.org/10.1192/bjp.134.4.382 (1979).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lutkenhoff, E. S. et al. Optimized brain extraction for pathological brains (optiBET). PLoS ONE 9, 1–13. https://doi.org/10.1371/journal.pone.0115551 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Roy, S., Butman, J. A. & Pham, D. L. Robust skull stripping using multiple MR image contrasts insensitive to pathology. NeuroImage 146, 132–147. https://doi.org/10.1016/j.neuroimage.2016.11.017 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Fischl, B. FreeSurfer. NeuroImage 62, 774–781. https://doi.org/10.1016/j.neuroimage.2012.01.021.FreeSurfer (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Iglesias, J. E. et al. A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: Application to adaptive segmentation of in vivo MRI, for the Alzheimer’s disease neuroimaging initiative 1. NeuroImage 115, 117–137. https://doi.org/10.1016/j.neuroimage.2015.04.042 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Iglesias, J. E. et al. Bayesian longitudinal segmentation of hippocampal substructures in brain MRI using subject-specific atlases. NeuroImage 141, 542–555. https://doi.org/10.1016/j.neuroimage.2016.07.020 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Saygin, Z. M. et al. High-resolution magnetic resonance imaging reveals nuclei of the human amygdala: Manual segmentation to automatic atlas. NeuroImage 155, 370–382. https://doi.org/10.1016/j.neuroimage.2017.04.046 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reuter, M. & Fischl, B. Avoiding asymmetry-induced bias in longitudinal image processing. NeuroImage 57, 19–21. https://doi.org/10.1016/j.neuroimage.2011.02.076 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Reuter, M., Schmansky, N. J., Rosas, H. D. & Fischl, B. Within-subject template estimation for unbiased longitudinal image analysis. Neuroimage 61, 1402–1418. https://doi.org/10.1016/j.neuroimage.2012.02.084 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Barnes, J. et al. Head size, age and gender adjustment in MRI studies: A necessary nuisance?. Neuroimage 53, 1244–1255. https://doi.org/10.1016/j.neuroimage.2010.06.025 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Gunstad, J. et al. Relationship between body mass index and brain volume in healthy adults. Int. J. Neurosci. 118, 1582–1593. https://doi.org/10.1080/00207450701392282 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Wasserstein, R. L. & Lazar, N. A. The ASA statement on p-values: Context, process, and purpose. Am. Stat. 70, 129–133 (2016).

    Article 
    MathSciNet 

    Google Scholar
     

  • Taylor, P. A. & Saad, Z. S. FATCAT: (An efficient) functional and tractographic connectivity analysis toolbox. Brain Connect. 3, 523–535 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giavarina, D. Understanding Bland Altman analysis. Biochem. Med. (Zagreb) 25, 141–151. https://doi.org/10.11613/BM.2015.015 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Campbell, S., Marriott, M., Nahmias, C. & MacQueen, G. M. Lower hippocampal volume in patients suffering from depression: A meta-analysis. Am. J. Psychiatry 161, 598–607. https://doi.org/10.1176/appi.ajp.161.4.598 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Malberg, J. E., Eisch, A. J., Nestler, E. J. & Duman, R. S. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J. Neurosci. 20, 9104–9110 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McKinnon, M. C., Yucel, K., Nazarov, A. & MacQueen, G. M. A meta-analysis examining clinical predictors of hippocampal volume in patients with major depressive disorder. J. Psychiatry Neurosci. 34, 41–54 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Santos, M. A. O. et al. Global hippocampal atrophy in major depressive disorder: A meta-analysis of magnetic resonance imaging studies. Trends Psychiatry Psychother. 40, 369–378. https://doi.org/10.1590/2237-6089-2017-0130 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Videbech, P. & Ravnkilde, B. Hippocampal volume and depression: A meta-analysis of MRI studies. Am. J. Psychiatry 161, 1957–1966. https://doi.org/10.1176/appi.ajp.161.11.1957 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Arnone, D. Functional MRI findings, pharmacological treatment in major depression and clinical response. Prog. Neuropsychopharmacol. Biol. Psychiatry 91, 28–37 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sheline, Y. I., Gado, M. H. & Kraemer, H. C. Untreated depression and hippocampal volume loss. Am. J. Psychiatry 160, 1516–1518. https://doi.org/10.1176/appi.ajp.160.8.1516 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Phillips, J. L., Batten, L. A., Tremblay, P., Aldosary, F. & Blier, P. A prospective, longitudinal study of the effect of remission on cortical thickness and hippocampal volume in patients with treatment-resistant depression. Int. J. Neuropsychopharmacol. 18, py037. https://doi.org/10.1093/ijnp/pyv037 (2015).

    Article 

    Google Scholar
     

  • Yushkevich, P. A. et al. Quantitative comparison of 21 protocols for labeling hippocampal subfields and parahippocampal subregions in in vivo MRI: Towards a harmonized segmentation protocol. NeuroImage 111, 526–541. https://doi.org/10.1016/j.neuroimage.2015.01.004 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Quattrini, G. et al. Amygdalar nuclei and hippocampal subfields on MRI: Test-retest reliability of automated volumetry across different MRI sites and vendors. Neuroimage 218, 116932. https://doi.org/10.1016/j.neuroimage.2020.116932 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Brown, E. M. et al. Test-retest reliability of FreeSurfer automated hippocampal subfield segmentation within and across scanners. NeuroImage 210, 116563. https://doi.org/10.1016/j.neuroimage.2020.116563 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Worker, A. et al. Test–retest reliability and longitudinal analysis of automated hippocampal subregion volumes in healthy ageing and Alzheimer’s disease populations. Hum. Brain Mapp. 39, 1743–1754. https://doi.org/10.1002/hbm.23948 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh, M. K. & Singh, K. K. A review of publicly available automatic brain segmentation methodologies, machine learning models, recent advancements, and their comparison. Ann. Neurosci. 28, 82–93. https://doi.org/10.1177/0972753121990175 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schenberg, E. E. Who is blind in psychedelic research? Letter to the editor regarding: Blinding and expectancy confounds in psychedelic randomized controlled trials. Expert Rev. Clin. Pharmacol. 14, 1317–1319. https://doi.org/10.1080/17512433.2021.1951473 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Devilly, G. J. & Borkovec, T. D. Psychometric properties of the credibility/expectancy questionnaire. J. Behav. Ther. Exp. Psychiatry 31, 73–86. https://doi.org/10.1016/s0005-7916(00)00012-4 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, Y.-L. et al. Volumetric changes in subcortical structures following repeated ketamine treatment in patients with major depressive disorder: A longitudinal analysis. Transl. Psychiatry 10, 264. https://doi.org/10.1038/s41398-020-00945-9 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tannous, J. et al. Stress, inflammation and hippocampal subfields in depression: A 7 Tesla MRI Study. Transl. Psychiatry 10, 78. https://doi.org/10.1038/s41398-020-0759-0 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roddy, D. W. et al. The hippocampus in depression: More than the sum of its parts? Advanced hippocampal substructure segmentation in depression. Biol. Psychiatry 85, 487–497. https://doi.org/10.1016/j.biopsych.2018.08.021 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Abdallah, C. G. et al. Hippocampal volume and the rapid antidepressant effect of ketamine. J. Psychopharmacol. 29, 591–595. https://doi.org/10.1177/0269881114544776 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Spellman, T. & Liston, C. Toward circuit mechanisms of pathophysiology in depression. Am. J. Psychiatry 177, 381–390. https://doi.org/10.1176/appi.ajp.2020.20030280 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    [td_block_social_counter facebook="beingmedicos1" twitter="being_medicos" youtube="beingmedicosgroup" style="style8 td-social-boxed td-social-font-icons" tdc_css="eyJhbGwiOnsibWFyZ2luLWJvdHRvbSI6IjM4IiwiZGlzcGxheSI6IiJ9LCJwb3J0cmFpdCI6eyJtYXJnaW4tYm90dG9tIjoiMzAiLCJkaXNwbGF5IjoiIn0sInBvcnRyYWl0X21heF93aWR0aCI6MTAxOCwicG9ydHJhaXRfbWluX3dpZHRoIjo3Njh9" custom_title="Stay Connected" block_template_id="td_block_template_8" f_header_font_family="712" f_header_font_transform="uppercase" f_header_font_weight="500" f_header_font_size="17" border_color="#dd3333"]
    - Advertisement -spot_img

    Latest Articles