Villain, N. & Dubois, B. Alzheimer’s disease including focal presentations. Semin. Neurol. 39, 213–226. https://doi.org/10.1055/s-0039-1681041 (2019).
Zhang, F., Zhong, R. J., Cheng, C., Li, S. & Le, W. D. New therapeutics beyond amyloid-β and tau for the treatment of Alzheimer’s disease. Acta Pharmacol. Sin. 42, 1382–1389. https://doi.org/10.1038/s41401-020-00565-5 (2021).
Hodson, R. Alzheimer’s disease. Nature 559, S1. https://doi.org/10.1038/d41586-018-05717-6 (2018).
Reitz, C. & Mayeux, R. Alzheimer disease: Epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem. Pharmacol. 88, 640–651. https://doi.org/10.1016/j.bcp.2013.12.024 (2014).
Korte, N., Nortley, R. & Attwell, D. Cerebral blood flow decrease as an early pathological mechanism in Alzheimer’s disease. Acta Neuropathol. 140, 793–810. https://doi.org/10.1007/s00401-020-02215-w (2020).
Arias, C., Sepúlveda, P., Castillo, R. L. & Salazar, L. A. Relationship between hypoxic and immune pathways activation in the progression of neuroinflammation: Role of HIF-1α and Th17 cells. Int. J. Mol. Sci. 24, 3073. https://doi.org/10.3390/ijms24043073 (2023).
Richalet, J. P. The invention of hypoxia. J. Appl. Physiol. (Bethesda, Md. 1985) 130, 1573–1582. https://doi.org/10.1152/japplphysiol.00936.2020 (2021).
Silver, I. & Erecińska, M. Oxygen and ion concentrations in normoxic and hypoxic brain cells. Adv. Experim. Med. Biol. 454, 7–16. https://doi.org/10.1007/978-1-4615-4863-8_2 (1998).
Cobley, J. N., Fiorello, M. L. & Bailey, D. M. 13 reasons why the brain is susceptible to oxidative stress. Redox Biol. 15, 490–503. https://doi.org/10.1016/j.redox.2018.01.008 (2018).
Kisler, K., Nelson, A. R., Montagne, A. & Zlokovic, B. V. Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease. Nat. Rev. Neurosci. 18, 419–434. https://doi.org/10.1038/nrn.2017.48 (2017).
Sun, X. et al. Hypoxia facilitates Alzheimer’s disease pathogenesis by up-regulating BACE1 gene expression. Proc. Natl. Acad. Sci. U. S. A. 103, 18727–18732. https://doi.org/10.1073/pnas.0606298103 (2006).
Rossier, J., Audigier, Y., Ling, N., Cros, J. & Udenfriend, S. Met-enkephalin-Arg6-Phe7, present in high amounts in brain of rat, cattle and man, is an opioid agonist. Nature 288, 88–90. https://doi.org/10.1038/288088a0 (1980).
Matsumoto, S., Goto, S. & Hirano, A. A comparative immunohistochemical study on striatal Met-enkephalin expression in Alzheimer’s disease and in progressive supranuclear palsy. Acta Neuropathol. 81, 74–77. https://doi.org/10.1007/bf00662640 (1990).
Nalivaeva, N. N., Turner, A. J. & Zhuravin, I. A. Role of prenatal hypoxia in brain development, cognitive functions, and neurodegeneration. Front. Neurosci. 12, 825. https://doi.org/10.3389/fnins.2018.00825 (2018).
De Mario, A. et al. The link of the prion protein with Ca(2+) metabolism and ROS production, and the possible implication in Aβ toxicity. Int. J. Mol. Sci. 20, 4640. https://doi.org/10.3390/ijms20184640 (2019).
Guo, T. et al. Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer’s disease. Mol. Neurodegener. 15, 40. https://doi.org/10.1186/s13024-020-00391-7 (2020).
Chen, P. S. et al. Pathophysiological implications of hypoxia in human diseases. J. Biomed. Sci. 27, 63. https://doi.org/10.1186/s12929-020-00658-7 (2020).
Jie, Y. K. et al. Characterization of a novel prolyl hydroxylase 2 gene from mud crab Scylla paramamosain: Insights into its role in the regulation of hypoxia-inducible factor-1α. Compar. Biochem. Physiol. Toxicol. Pharmacol. CBP 269, 109634. https://doi.org/10.1016/j.cbpc.2023.109634 (2023).
Corcoran, A. & O’Connor, J. J. Hypoxia-inducible factor signalling mechanisms in the central nervous system. Acta Physiologica (Oxford, England) 208, 298–310. https://doi.org/10.1111/apha.12117 (2013).
Iyalomhe, O. et al. The role of hypoxia-inducible factor 1 in mild cognitive impairment. Cell. Mol. Neurobiol. 37, 969–977. https://doi.org/10.1007/s10571-016-0440-6 (2017).
Lei, L. et al. HIF-1α causes LCMT1/PP2A deficiency and mediates tau hyperphosphorylation and cognitive dysfunction during chronic hypoxia. Int. J. Mol. Sci. 23, 16140. https://doi.org/10.3390/ijms232416140 (2022).
Yang, C. et al. The neuroprotective effects of oxygen therapy in Alzheimer’s disease: A narrative review. Neural Regener. Res. 18, 57–63. https://doi.org/10.4103/1673-5374.343897 (2023).
Lane, C. A., Hardy, J. & Schott, J. M. Alzheimer’s disease. Eur. J. Neurol. 25, 59–70. https://doi.org/10.1111/ene.13439 (2018).
Turovskaya, M. V., Gaidin, S. G., Vedunova, M. V., Babaev, A. A. & Turovsky, E. A. BDNF overexpression enhances the preconditioning effect of brief episodes of hypoxia, promoting survival of GABAergic neurons. Neurosci. Bull. 36, 733–760. https://doi.org/10.1007/s12264-020-00480-z (2020).
Summers, P. M. et al. Functional deficits induced by cortical microinfarcts. J. Cerebral Blood Flow Metabol. 37, 3599–3614. https://doi.org/10.1177/0271678×16685573 (2017).
Pinky, et al. Age-related pathophysiological alterations in molecular stress markers and key modulators of hypoxia. Ageing Res. Rev. 90, 102022. https://doi.org/10.1016/j.arr.2023.102022 (2023).
Li, L. et al. Hypoxia increases Abeta generation by altering beta- and gamma-cleavage of APP. Neurobiol. Aging 30, 1091–1098. https://doi.org/10.1016/j.neurobiolaging.2007.10.011 (2009).
Gao, L., Tian, S., Gao, H. & Xu, Y. Hypoxia increases Aβ-induced tau phosphorylation by calpain and promotes behavioral consequences in AD transgenic mice. J. Mol. Neurosci. MN 51, 138–147. https://doi.org/10.1007/s12031-013-9966-y (2013).
Merelli, A., Repetto, M., Lazarowski, A. & Auzmendi, J. Hypoxia, oxidative stress, and inflammation: Three faces of neurodegenerative diseases. J. Alzheimer’s Dis. JAD 82, S109-s126. https://doi.org/10.3233/jad-201074 (2021).
Lall, R., Mohammed, R. & Ojha, U. What are the links between hypoxia and Alzheimer’s disease?. Neuropsychiatr. Dis. Treat. 15, 1343–1354. https://doi.org/10.2147/ndt.S203103 (2019).
Cryan, L. M. et al. Capillary morphogenesis gene 2 (CMG2) mediates growth factor-induced angiogenesis by regulating endothelial cell chemotaxis. Angiogenesis 25, 397–410. https://doi.org/10.1007/s10456-022-09833-w (2022).
Ye, L. et al. Therapeutic potential of capillary morphogenesis gene 2 extracellular vWA domain in tumour-related angiogenesis. Int. J. Oncol. 45, 1565–1573. https://doi.org/10.3892/ijo.2014.2533 (2014).
de Oliveira, F. F. M. et al. Binding of the von Willebrand factor A Domain of capillary morphogenesis protein 2 to anthrax protective antigen vaccine reduces immunogenicity in mice. mSphere https://doi.org/10.1128/mSphere.00556-19 (2020).
Zhu, Y. et al. Hyaline fibromatosis syndrome with a novel 4.41-kb deletion in ANTXR2 gene: A case report and literature review. Mol. Genet. Genomic Med. 10, e1993. https://doi.org/10.1002/mgg3.1993 (2022).
Yang, N. J. et al. Anthrax toxins regulate pain signaling and can deliver molecular cargoes into ANTXR2(+) DRG sensory neurons. Nat. Neurosci. 25, 168–179. https://doi.org/10.1038/s41593-021-00973-8 (2022).
Castroflorio, E. et al. The capillary morphogenesis gene 2 triggers the intracellular hallmarks of Collagen VI-related muscular dystrophy. Int. J. Mol. Sci. 23, 7651. https://doi.org/10.3390/ijms23147651 (2022).
De Ferrari, G. V. et al. Common genetic variation within the low-density lipoprotein receptor-related protein 6 and late-onset Alzheimer’s disease. Proc. Natl. Acad. Sci. U. S. A. 104, 9434–9439. https://doi.org/10.1073/pnas.0603523104 (2007).
Elsheikh, S. S. M., Chimusa, E. R., Mulder, N. J. & Crimi, A. Genome-wide association study of brain connectivity changes for Alzheimer’s disease. Sci. Rep. 10, 1433. https://doi.org/10.1038/s41598-020-58291-1 (2020).
Lin, S. C. et al. Targeting anthrax toxin receptor 2 ameliorates endometriosis progression. Theranostics 9, 620–632. https://doi.org/10.7150/thno.30655 (2019).
Alfonsetti, M., d’Angelo, M. & Castelli, V. Neurotrophic factor-based pharmacological approaches in neurological disorders. Neural Regener. Res. 18, 1220–1228. https://doi.org/10.4103/1673-5374.358619 (2023).
Ng, T. K. S., Ho, C. S. H., Tam, W. W. S., Kua, E. H. & Ho, R. C. Decreased serum brain-derived neurotrophic factor (BDNF) levels in patients with Alzheimer’s Disease (AD): A systematic review and meta-analysis. Int. J. Mol. Sci. 20, 257. https://doi.org/10.3390/ijms20020257 (2019).
Buhusi, M., Griffin, D. & Buhusi, C. V. Brain-derived neurotrophic factor val66met genotype modulates latent inhibition: Relevance for schizophrenia. Schizophrenia Bull. 49, 626–634. https://doi.org/10.1093/schbul/sbac188 (2023).
Szarowicz, C. A., Steece-Collier, K. & Caulfield, M. E. New frontiers in neurodegeneration and regeneration associated with brain-derived neurotrophic factor and the rs6265 single nucleotide polymorphism. Int. J. Mol. Sci. 23, 8011. https://doi.org/10.3390/ijms23148011 (2022).
Mori, Y. et al. Serum BDNF as a potential biomarker of Alzheimer’s disease: Verification through assessment of serum, cerebrospinal fluid, and medial temporal lobe atrophy. Front. Neurol. 12, 653267. https://doi.org/10.3389/fneur.2021.653267 (2021).
Qian, F. et al. Association of plasma brain-derived neurotrophic factor with Alzheimer’s disease and its influencing factors in Chinese elderly population. Front. Aging Neurosci. 14, 987244. https://doi.org/10.3389/fnagi.2022.987244 (2022).
Chroboczek, M., Kujach, S., Łuszczyk, M., Soya, H. & Laskowski, R. Exercise-induced elevated BDNF concentration seems to prevent cognitive impairment after acute exposure to moderate normobaric hypoxia among young men. Int. J. Environ. Res. Public Health 20, 3629. https://doi.org/10.3390/ijerph20043629 (2023).
Yang, W. et al. Elevated expression of the rhythm gene NFIL3 promotes the progression of TNBC by activating NF-κB signaling through suppression of NFKBIA transcription. J. Experim. Clin. Cancer Res. CR 41, 67. https://doi.org/10.1186/s13046-022-02260-1 (2022).
Perkins, N. D. Achieving transcriptional specificity with NF-kappa B. Int. J. Biochem. Cell Biol. 29, 1433–1448. https://doi.org/10.1016/s1357-2725(97)00088-5 (1997).
Wang, C. et al. Microglial NF-κB drives tau spreading and toxicity in a mouse model of tauopathy. Nat. Commun. 13, 1969. https://doi.org/10.1038/s41467-022-29552-6 (2022).
Nam, S. Y. et al. A hypoxia-dependent upregulation of hypoxia-inducible factor-1 by nuclear factor-κB promotes gastric tumour growth and angiogenesis. Br. J. Cancer 104, 166–174. https://doi.org/10.1038/sj.bjc.6606020 (2011).
Yang, S. et al. Evolutionary and expression analysis of MOV10 and MOV10L1 reveals their origin, duplication and divergence. Int. J. Mol. Sci. 23, 7523. doi:https://doi.org/10.3390/ijms23147523 (2022).
Zheng, K. et al. Mouse MOV10L1 associates with Piwi proteins and is an essential component of the Piwi-interacting RNA (piRNA) pathway. Proc. Natl. Acad. Sci. U. S. A. 107, 11841–11846. https://doi.org/10.1073/pnas.1003953107 (2010).
Guan, Y., Keeney, S., Jain, D. & Wang, P. J. yama, a mutant allele of Mov10l1, disrupts retrotransposon silencing and piRNA biogenesis. PLoS Genet. 17, e1009265. https://doi.org/10.1371/journal.pgen.1009265 (2021).
Ma, C. et al. piRNA-63076 contributes to pulmonary arterial smooth muscle cell proliferation through acyl-CoA dehydrogenase. J. Cell. Mol. Med. 24, 5260–5273. https://doi.org/10.1111/jcmm.15179 (2020).
Rajan, K. S. & Ramasamy, S. Retrotransposons and piRNA: The missing link in central nervous system. Neurochem. Int. 77, 94–102. https://doi.org/10.1016/j.neuint.2014.05.017 (2014).
Muotri, A. R., Zhao, C., Marchetto, M. C. & Gage, F. H. Environmental influence on L1 retrotransposons in the adult hippocampus. Hippocampus 19, 1002–1007. https://doi.org/10.1002/hipo.20564 (2009).
Narayanan, M. et al. Common dysregulation network in the human prefrontal cortex underlies two neurodegenerative diseases. Mol. Syst. Biol. 10, 743. https://doi.org/10.15252/msb.20145304 (2014).
Liang, W. S. et al. Alzheimer’s disease is associated with reduced expression of energy metabolism genes in posterior cingulate neurons. Proc. Natl. Acad. Sci. U. S. A. 105, 4441–4446. https://doi.org/10.1073/pnas.0709259105 (2008).
Cervera, A. M., Apostolova, N., Crespo, F. L., Mata, M. & McCreath, K. J. Cells silenced for SDHB expression display characteristic features of the tumor phenotype. Cancer Res. 68, 4058–4067. https://doi.org/10.1158/0008-5472.Can-07-5580 (2008).
Langfelder, P. & Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 9, 559. https://doi.org/10.1186/1471-2105-9-559 (2008).