Sunday, October 1, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

Identification and verification of genes associated with hypoxia microenvironment in Alzheimer’s disease – Scientific Reports


  • Villain, N. & Dubois, B. Alzheimer’s disease including focal presentations. Semin. Neurol. 39, 213–226. https://doi.org/10.1055/s-0039-1681041 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, F., Zhong, R. J., Cheng, C., Li, S. & Le, W. D. New therapeutics beyond amyloid-β and tau for the treatment of Alzheimer’s disease. Acta Pharmacol. Sin. 42, 1382–1389. https://doi.org/10.1038/s41401-020-00565-5 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hodson, R. Alzheimer’s disease. Nature 559, S1. https://doi.org/10.1038/d41586-018-05717-6 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Reitz, C. & Mayeux, R. Alzheimer disease: Epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem. Pharmacol. 88, 640–651. https://doi.org/10.1016/j.bcp.2013.12.024 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Korte, N., Nortley, R. & Attwell, D. Cerebral blood flow decrease as an early pathological mechanism in Alzheimer’s disease. Acta Neuropathol. 140, 793–810. https://doi.org/10.1007/s00401-020-02215-w (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arias, C., Sepúlveda, P., Castillo, R. L. & Salazar, L. A. Relationship between hypoxic and immune pathways activation in the progression of neuroinflammation: Role of HIF-1α and Th17 cells. Int. J. Mol. Sci. 24, 3073. https://doi.org/10.3390/ijms24043073 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Richalet, J. P. The invention of hypoxia. J. Appl. Physiol. (Bethesda, Md. 1985) 130, 1573–1582. https://doi.org/10.1152/japplphysiol.00936.2020 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Silver, I. & Erecińska, M. Oxygen and ion concentrations in normoxic and hypoxic brain cells. Adv. Experim. Med. Biol. 454, 7–16. https://doi.org/10.1007/978-1-4615-4863-8_2 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Cobley, J. N., Fiorello, M. L. & Bailey, D. M. 13 reasons why the brain is susceptible to oxidative stress. Redox Biol. 15, 490–503. https://doi.org/10.1016/j.redox.2018.01.008 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kisler, K., Nelson, A. R., Montagne, A. & Zlokovic, B. V. Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease. Nat. Rev. Neurosci. 18, 419–434. https://doi.org/10.1038/nrn.2017.48 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, X. et al. Hypoxia facilitates Alzheimer’s disease pathogenesis by up-regulating BACE1 gene expression. Proc. Natl. Acad. Sci. U. S. A. 103, 18727–18732. https://doi.org/10.1073/pnas.0606298103 (2006).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rossier, J., Audigier, Y., Ling, N., Cros, J. & Udenfriend, S. Met-enkephalin-Arg6-Phe7, present in high amounts in brain of rat, cattle and man, is an opioid agonist. Nature 288, 88–90. https://doi.org/10.1038/288088a0 (1980).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Matsumoto, S., Goto, S. & Hirano, A. A comparative immunohistochemical study on striatal Met-enkephalin expression in Alzheimer’s disease and in progressive supranuclear palsy. Acta Neuropathol. 81, 74–77. https://doi.org/10.1007/bf00662640 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nalivaeva, N. N., Turner, A. J. & Zhuravin, I. A. Role of prenatal hypoxia in brain development, cognitive functions, and neurodegeneration. Front. Neurosci. 12, 825. https://doi.org/10.3389/fnins.2018.00825 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Mario, A. et al. The link of the prion protein with Ca(2+) metabolism and ROS production, and the possible implication in Aβ toxicity. Int. J. Mol. Sci. 20, 4640. https://doi.org/10.3390/ijms20184640 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, T. et al. Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer’s disease. Mol. Neurodegener. 15, 40. https://doi.org/10.1186/s13024-020-00391-7 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, P. S. et al. Pathophysiological implications of hypoxia in human diseases. J. Biomed. Sci. 27, 63. https://doi.org/10.1186/s12929-020-00658-7 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jie, Y. K. et al. Characterization of a novel prolyl hydroxylase 2 gene from mud crab Scylla paramamosain: Insights into its role in the regulation of hypoxia-inducible factor-1α. Compar. Biochem. Physiol. Toxicol. Pharmacol. CBP 269, 109634. https://doi.org/10.1016/j.cbpc.2023.109634 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Corcoran, A. & O’Connor, J. J. Hypoxia-inducible factor signalling mechanisms in the central nervous system. Acta Physiologica (Oxford, England) 208, 298–310. https://doi.org/10.1111/apha.12117 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Iyalomhe, O. et al. The role of hypoxia-inducible factor 1 in mild cognitive impairment. Cell. Mol. Neurobiol. 37, 969–977. https://doi.org/10.1007/s10571-016-0440-6 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lei, L. et al. HIF-1α causes LCMT1/PP2A deficiency and mediates tau hyperphosphorylation and cognitive dysfunction during chronic hypoxia. Int. J. Mol. Sci. 23, 16140. https://doi.org/10.3390/ijms232416140 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, C. et al. The neuroprotective effects of oxygen therapy in Alzheimer’s disease: A narrative review. Neural Regener. Res. 18, 57–63. https://doi.org/10.4103/1673-5374.343897 (2023).

    Article 

    Google Scholar
     

  • Lane, C. A., Hardy, J. & Schott, J. M. Alzheimer’s disease. Eur. J. Neurol. 25, 59–70. https://doi.org/10.1111/ene.13439 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Turovskaya, M. V., Gaidin, S. G., Vedunova, M. V., Babaev, A. A. & Turovsky, E. A. BDNF overexpression enhances the preconditioning effect of brief episodes of hypoxia, promoting survival of GABAergic neurons. Neurosci. Bull. 36, 733–760. https://doi.org/10.1007/s12264-020-00480-z (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Summers, P. M. et al. Functional deficits induced by cortical microinfarcts. J. Cerebral Blood Flow Metabol. 37, 3599–3614. https://doi.org/10.1177/0271678×16685573 (2017).

    Article 

    Google Scholar
     

  • Pinky, et al. Age-related pathophysiological alterations in molecular stress markers and key modulators of hypoxia. Ageing Res. Rev. 90, 102022. https://doi.org/10.1016/j.arr.2023.102022 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, L. et al. Hypoxia increases Abeta generation by altering beta- and gamma-cleavage of APP. Neurobiol. Aging 30, 1091–1098. https://doi.org/10.1016/j.neurobiolaging.2007.10.011 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao, L., Tian, S., Gao, H. & Xu, Y. Hypoxia increases Aβ-induced tau phosphorylation by calpain and promotes behavioral consequences in AD transgenic mice. J. Mol. Neurosci. MN 51, 138–147. https://doi.org/10.1007/s12031-013-9966-y (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Merelli, A., Repetto, M., Lazarowski, A. & Auzmendi, J. Hypoxia, oxidative stress, and inflammation: Three faces of neurodegenerative diseases. J. Alzheimer’s Dis. JAD 82, S109-s126. https://doi.org/10.3233/jad-201074 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lall, R., Mohammed, R. & Ojha, U. What are the links between hypoxia and Alzheimer’s disease?. Neuropsychiatr. Dis. Treat. 15, 1343–1354. https://doi.org/10.2147/ndt.S203103 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cryan, L. M. et al. Capillary morphogenesis gene 2 (CMG2) mediates growth factor-induced angiogenesis by regulating endothelial cell chemotaxis. Angiogenesis 25, 397–410. https://doi.org/10.1007/s10456-022-09833-w (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ye, L. et al. Therapeutic potential of capillary morphogenesis gene 2 extracellular vWA domain in tumour-related angiogenesis. Int. J. Oncol. 45, 1565–1573. https://doi.org/10.3892/ijo.2014.2533 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • de Oliveira, F. F. M. et al. Binding of the von Willebrand factor A Domain of capillary morphogenesis protein 2 to anthrax protective antigen vaccine reduces immunogenicity in mice. mSphere https://doi.org/10.1128/mSphere.00556-19 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, Y. et al. Hyaline fibromatosis syndrome with a novel 4.41-kb deletion in ANTXR2 gene: A case report and literature review. Mol. Genet. Genomic Med. 10, e1993. https://doi.org/10.1002/mgg3.1993 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, N. J. et al. Anthrax toxins regulate pain signaling and can deliver molecular cargoes into ANTXR2(+) DRG sensory neurons. Nat. Neurosci. 25, 168–179. https://doi.org/10.1038/s41593-021-00973-8 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Castroflorio, E. et al. The capillary morphogenesis gene 2 triggers the intracellular hallmarks of Collagen VI-related muscular dystrophy. Int. J. Mol. Sci. 23, 7651. https://doi.org/10.3390/ijms23147651 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Ferrari, G. V. et al. Common genetic variation within the low-density lipoprotein receptor-related protein 6 and late-onset Alzheimer’s disease. Proc. Natl. Acad. Sci. U. S. A. 104, 9434–9439. https://doi.org/10.1073/pnas.0603523104 (2007).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elsheikh, S. S. M., Chimusa, E. R., Mulder, N. J. & Crimi, A. Genome-wide association study of brain connectivity changes for Alzheimer’s disease. Sci. Rep. 10, 1433. https://doi.org/10.1038/s41598-020-58291-1 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, S. C. et al. Targeting anthrax toxin receptor 2 ameliorates endometriosis progression. Theranostics 9, 620–632. https://doi.org/10.7150/thno.30655 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alfonsetti, M., d’Angelo, M. & Castelli, V. Neurotrophic factor-based pharmacological approaches in neurological disorders. Neural Regener. Res. 18, 1220–1228. https://doi.org/10.4103/1673-5374.358619 (2023).

    Article 

    Google Scholar
     

  • Ng, T. K. S., Ho, C. S. H., Tam, W. W. S., Kua, E. H. & Ho, R. C. Decreased serum brain-derived neurotrophic factor (BDNF) levels in patients with Alzheimer’s Disease (AD): A systematic review and meta-analysis. Int. J. Mol. Sci. 20, 257. https://doi.org/10.3390/ijms20020257 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buhusi, M., Griffin, D. & Buhusi, C. V. Brain-derived neurotrophic factor val66met genotype modulates latent inhibition: Relevance for schizophrenia. Schizophrenia Bull. 49, 626–634. https://doi.org/10.1093/schbul/sbac188 (2023).

    Article 

    Google Scholar
     

  • Szarowicz, C. A., Steece-Collier, K. & Caulfield, M. E. New frontiers in neurodegeneration and regeneration associated with brain-derived neurotrophic factor and the rs6265 single nucleotide polymorphism. Int. J. Mol. Sci. 23, 8011. https://doi.org/10.3390/ijms23148011 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mori, Y. et al. Serum BDNF as a potential biomarker of Alzheimer’s disease: Verification through assessment of serum, cerebrospinal fluid, and medial temporal lobe atrophy. Front. Neurol. 12, 653267. https://doi.org/10.3389/fneur.2021.653267 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qian, F. et al. Association of plasma brain-derived neurotrophic factor with Alzheimer’s disease and its influencing factors in Chinese elderly population. Front. Aging Neurosci. 14, 987244. https://doi.org/10.3389/fnagi.2022.987244 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chroboczek, M., Kujach, S., Łuszczyk, M., Soya, H. & Laskowski, R. Exercise-induced elevated BDNF concentration seems to prevent cognitive impairment after acute exposure to moderate normobaric hypoxia among young men. Int. J. Environ. Res. Public Health 20, 3629. https://doi.org/10.3390/ijerph20043629 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, W. et al. Elevated expression of the rhythm gene NFIL3 promotes the progression of TNBC by activating NF-κB signaling through suppression of NFKBIA transcription. J. Experim. Clin. Cancer Res. CR 41, 67. https://doi.org/10.1186/s13046-022-02260-1 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Perkins, N. D. Achieving transcriptional specificity with NF-kappa B. Int. J. Biochem. Cell Biol. 29, 1433–1448. https://doi.org/10.1016/s1357-2725(97)00088-5 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, C. et al. Microglial NF-κB drives tau spreading and toxicity in a mouse model of tauopathy. Nat. Commun. 13, 1969. https://doi.org/10.1038/s41467-022-29552-6 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nam, S. Y. et al. A hypoxia-dependent upregulation of hypoxia-inducible factor-1 by nuclear factor-κB promotes gastric tumour growth and angiogenesis. Br. J. Cancer 104, 166–174. https://doi.org/10.1038/sj.bjc.6606020 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, S. et al. Evolutionary and expression analysis of MOV10 and MOV10L1 reveals their origin, duplication and divergence. Int. J. Mol. Sci. 23, 7523. doi:https://doi.org/10.3390/ijms23147523 (2022).

  • Zheng, K. et al. Mouse MOV10L1 associates with Piwi proteins and is an essential component of the Piwi-interacting RNA (piRNA) pathway. Proc. Natl. Acad. Sci. U. S. A. 107, 11841–11846. https://doi.org/10.1073/pnas.1003953107 (2010).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guan, Y., Keeney, S., Jain, D. & Wang, P. J. yama, a mutant allele of Mov10l1, disrupts retrotransposon silencing and piRNA biogenesis. PLoS Genet. 17, e1009265. https://doi.org/10.1371/journal.pgen.1009265 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, C. et al. piRNA-63076 contributes to pulmonary arterial smooth muscle cell proliferation through acyl-CoA dehydrogenase. J. Cell. Mol. Med. 24, 5260–5273. https://doi.org/10.1111/jcmm.15179 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rajan, K. S. & Ramasamy, S. Retrotransposons and piRNA: The missing link in central nervous system. Neurochem. Int. 77, 94–102. https://doi.org/10.1016/j.neuint.2014.05.017 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Muotri, A. R., Zhao, C., Marchetto, M. C. & Gage, F. H. Environmental influence on L1 retrotransposons in the adult hippocampus. Hippocampus 19, 1002–1007. https://doi.org/10.1002/hipo.20564 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Narayanan, M. et al. Common dysregulation network in the human prefrontal cortex underlies two neurodegenerative diseases. Mol. Syst. Biol. 10, 743. https://doi.org/10.15252/msb.20145304 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang, W. S. et al. Alzheimer’s disease is associated with reduced expression of energy metabolism genes in posterior cingulate neurons. Proc. Natl. Acad. Sci. U. S. A. 105, 4441–4446. https://doi.org/10.1073/pnas.0709259105 (2008).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cervera, A. M., Apostolova, N., Crespo, F. L., Mata, M. & McCreath, K. J. Cells silenced for SDHB expression display characteristic features of the tumor phenotype. Cancer Res. 68, 4058–4067. https://doi.org/10.1158/0008-5472.Can-07-5580 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Langfelder, P. & Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 9, 559. https://doi.org/10.1186/1471-2105-9-559 (2008).

    Article 
    CAS 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    Stay Connected

    9FansLike
    4FollowersFollow
    0SubscribersSubscribe
    - Advertisement -spot_img

    Latest Articles

    %d bloggers like this: