Friday, September 22, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

Identifying the mediating role of socioeconomic status on the relationship between schizophrenia and major depressive disorder: a Mendelian randomisation analysis – Schizophrenia


  • Castle, D. & Bosanac, P. Depression and schizophrenia. Adv. Psychiatr. Treat. 18, 280–288 (2012).

    Article 

    Google Scholar
     

  • Samsom, J. N. & Wong, A. H. Schizophrenia and depression co-morbidity: what we have learned from animal models. Front. Psychiatry 6, 13 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, W. et al. Prevalence of comorbid depression in schizophrenia: a meta-analysis of observational studies. J. Affect. Disord. 273, 524–531 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Conley, R. R., Ascher-Svanum, H., Zhu, B., Faries, D. E. & Kinon, B. J. The burden of depressive symptoms in the long-term treatment of patients with schizophrenia. Schizophr. Res. 90, 186–197 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Dutta, R., Murray, R. M., Allardyce, J., Jones, P. B. & Boydell, J. Early risk factors for suicide in an epidemiological first episode psychosis cohort. Schizophr. Res. 126, 11–19 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Dubovsky, S. L., Ghosh, B. M., Serotte, J. C. & Cranwell, V. Psychotic depression: diagnosis, differential diagnosis, and treatment. Psychother. Psychosom. 90, 160–177 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Goldberg, E. M. & Morrison, S. L. Schizophrenia and social class. Br. J. Psychiatry 109, 785–802 (1963).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dai, J., Xu, Y., Wang, T. & Zeng, P. Exploring the relationship between socioeconomic deprivation index and Alzheimer’s disease using summary-level data: from genetic correlation to causality. Prog. Neuropsychopharmacol. Biol. Psychiatry 123, 110700 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Matthews, K. A. & Gallo, L. C. Psychological perspectives on pathways linking socioeconomic status and physical health. Annu. Rev. Psychol. 62, 501–530 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kivimäki, M. et al. Association between socioeconomic status and the development of mental and physical health conditions in adulthood: a multi-cohort study. Lancet Public Health 5, e140–e149 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Burns, J. K., Tomita, A. & Kapadia, A. S. Income inequality and schizophrenia: increased schizophrenia incidence in countries with high levels of income inequality. Int. J. Soc. Psychiatry 60, 185–196 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Werner, S., Malaspina, D. & Rabinowitz, J. Socioeconomic status at birth is associated with risk of schizophrenia: population-based multilevel study. Schizophr. Bull. 33, 1373–1378 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Agerbo, E. et al. Polygenic risk score, parental socioeconomic status, family history of psychiatric disorders, and the risk for schizophrenia: a Danish Population-Based Study and Meta-analysis. JAMA Psychiatry 72, 635–641 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Weich, S. & Lewis, G. Poverty, unemployment, and common mental disorders: population based cohort study. BMJ 317, 115–119 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saraceno, B., Levav, I. & Kohn, R. The public mental health significance of research on socio-economic factors in schizophrenia and major depression. World Psychiatry 4, 181–185 (2005).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marees, A. T. et al. Genetic correlates of socio-economic status influence the pattern of shared heritability across mental health traits. Nat. Hum. Behav. 5, 1065–1073 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Upthegrove, R., Marwaha, S. & Birchwood, M. Depression and schizophrenia: cause, consequence, or trans-diagnostic issue? Schizophr. Bull. 43, 240–244 (2017).

    PubMed 

    Google Scholar
     

  • Trubetskoy, V. et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature 604, 502–508 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jones, D. S. & Podolsky, S. H. The history and fate of the gold standard. Lancet 385, 1502–1503 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Lin, L. J., Wei, Y. Y., Zhang, R. Y. & Chen, F. Application of Mendelian randomization methods in causal inference of observational study. Chin. J. Prev. Med. 53, 619–624 (2019).

    CAS 

    Google Scholar
     

  • Smith, G. D. & Ebrahim, S. ‘Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease? Int. J. Epidemiol. 32, 1–22 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Emdin, C. A., Khera, A. V. & Kathiresan, S. Mendelian randomization. JAMA 318, 1925–1926 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Burgess, S. et al. Guidelines for performing Mendelian randomization investigations. Wellcome Open Res. 4, 186 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Lawlor, D. A., Harbord, R. M., Sterne, J. A., Timpson, N. & Davey Smith, G. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat. Med. 27, 1133–1163 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Zheng, J. et al. Recent developments in Mendelian randomization studies. Curr. Epidemiol. Rep. 4, 330–345 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saccaro, L. F., Gasparini, S. & Rutigliano, G. Applications of Mendelian randomization in psychiatry: a comprehensive systematic review. Psychiatr. Genet. 32, 199–213 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, D. et al. Total brain volumetric measures and schizophrenia risk: a two-sample Mendelian Randomization Study. Front. Genet. 13, 782476 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Didelez, V. & Sheehan, N. Mendelian randomization as an instrumental variable approach to causal inference. Stat. Methods Med. Res. 16, 309–330 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Davies, N. M., Holmes, M. V. & Davey Smith, G. Reading Mendelian randomisation studies: a guide, glossary, and checklist for clinicians. BMJ 362, k601 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wray, N. R. et al. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat. Genet. 50, 668–681 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, J. J. et al. Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nat. Genet. 50, 1112–1121 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burgess, S., Davies, N. M. & Thompson, S. G. Bias due to participant overlap in two-sample Mendelian randomization. Genet. Epidemiol. 40, 597–608 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dudbridge, F. & Gusnanto, A. Estimation of significance thresholds for genomewide association scans. Genet. Epidemiol. 32, 227–234 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Uffelmann, E. et al. Genome-wide association studies. Nat. Rev. Methods Primers 1, 59 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Machiela, M. J. & Chanock, S. J. LDlink: a web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants. Bioinformatics 31, 3555–3557 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hemani, G., Tilling, K. & Davey Smith, G. Orienting the causal relationship between imprecisely measured traits using GWAS summary data. PLoS Genet. 13, e1007081 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gormley, M. et al. A multivariable Mendelian randomization analysis investigating smoking and alcohol consumption in oral and oropharyngeal cancer. Nat. Commun. 11, 6071 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wootton, R. E. et al. Evaluation of the causal effects between subjective wellbeing and cardiometabolic health: Mendelian randomisation study. BMJ 362, k3788 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burgess, S. & Thompson, S. G. Avoiding bias from weak instruments in Mendelian randomization studies. Int. J. Epidemiol. 40, 755–764 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Pierce, B. L., Ahsan, H. & Vanderweele, T. J. Power and instrument strength requirements for Mendelian randomization studies using multiple genetic variants. Int. J. Epidemiol. 40, 740–752 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Burgess, S. Sample size and power calculations in Mendelian randomization with a single instrumental variable and a binary outcome. Int. J. Epidemiol. 43, 922–929 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bowden, J. et al. A framework for the investigation of pleiotropy in two-sample summary data Mendelian randomization. Stat. Med. 36, 1783–1802 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hemani, G., Bowden, J. & Davey Smith, G. Evaluating the potential role of pleiotropy in Mendelian randomization studies. Hum. Mol. Genet. 27, R195–R208 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bowden, J., Davey Smith, G. & Burgess, S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int. J. Epidemiol. 44, 512–525 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bowden, J. et al. Assessing the suitability of summary data for two-sample Mendelian randomization analyses using MR-Egger regression: the role of the I2 statistic. Int. J. Epidemiol. 45, 1961–1974 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bowden, J., Davey Smith, G., Haycock, P. C. & Burgess, S. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet. Epidemiol. 40, 304–314 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sanderson, E., Davey Smith, G., Windmeijer, F. & Bowden, J. An examination of multivariable Mendelian randomization in the single-sample and two-sample summary data settings. Int. J. Epidemiol. 48, 713–727 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Burgess, S. & Thompson, S. G. Multivariable Mendelian randomization: the use of pleiotropic genetic variants to estimate causal effects. Am. J. Epidemiol. 181, 251–260 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rees, J. M. B., Wood, A. M. & Burgess, S. Extending the MR-Egger method for multivariable Mendelian randomization to correct for both measured and unmeasured pleiotropy. Stat. Med. 36, 4705–4718 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • VanderWeele, T. J. Mediation analysis: a practitioner’s guide. Annu. Rev. Public Health 37, 17–32 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Carter, A. R. et al. Understanding the consequences of education inequality on cardiovascular disease: Mendelian randomisation study. BMJ 365, l1855 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheung, M. W. Comparison of methods for constructing confidence intervals of standardized indirect effects. Behav. Res. Methods 41, 425–438 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Verbanck, M., Chen, C. Y., Neale, B. & Do, R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat. Genet. 50, 693–698 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hemani, G. et al. The MR-Base platform supports systematic causal inference across the human phenome. Elife 7, e34408 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buckley, P. F., Miller, B. J., Lehrer, D. S. & Castle, D. J. Psychiatric comorbidities and schizophrenia. Schizophr. Bull. 35, 383–402 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Ohayon, M. M. & Schatzberg, A. F. Prevalence of depressive episodes with psychotic features in the general population. Am. J. Psychiatry 159, 1855–1861 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Cross-Disorder Group of the Psychiatric Genomics, C., Lee, S. H. et al. Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nat. Genet. 45, 984–994 (2013).

    Article 

    Google Scholar
     

  • Sonmez, N., Romm, K. L., Andreasssen, O. A., Melle, I. & Rossberg, J. I. Depressive symptoms in first episode psychosis: a one-year follow-up study. BMC Psychiatry 13, 106 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McGlashan, T. H. & Carpenter, W. T. Jr Postpsychotic depression in schizophrenia. Arch. Gen. Psychiatry 33, 231–239 (1976).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Park, S. C. et al. Distinctive clinical correlates of psychotic major depression: the CRESCEND Study. Psychiatry Investig. 11, 281–289 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gournellis, R., Oulis, P. & Howard, R. Psychotic major depression in older people: a systematic review. Int. J. Geriatr. Psychiatry 29, 789–796 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Krynicki, C. R., Upthegrove, R., Deakin, J. F. W. & Barnes, T. R. E. The relationship between negative symptoms and depression in schizophrenia: a systematic review. Acta Psychiatr. Scand. 137, 380–390 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Birchwood, M., Iqbal, Z. & Upthegrove, R. Psychological pathways to depression in schizophrenia: studies in acute psychosis, post psychotic depression and auditory hallucinations. Eur. Arch. Psychiatry Clin. Neurosci. 255, 202–212 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Byrne, M., Agerbo, E., Eaton, W. W. & Mortensen, P. B. Parental socio-economic status and risk of first admission with schizophrenia—a Danish national register based study. Soc. Psychiatry Psychiatr. Epidemiol. 39, 87–96 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Tesli, M. et al. Educational attainment and mortality in schizophrenia. Acta Psychiatr. Scand. 145, 481–493 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sariaslan, A. et al. Schizophrenia and subsequent neighborhood deprivation: revisiting the social drift hypothesis using population, twin and molecular genetic data. Transl. Psychiatry 6, e796 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Freeman, A. et al. The role of socio-economic status in depression: results from the COURAGE (aging survey in Europe). BMC Public Health 16, 1098 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoebel, J., Maske, U. E., Zeeb, H. & Lampert, T. Social inequalities and depressive symptoms in adults: the role of objective and subjective socioeconomic status. PLoS ONE 12, e0169764 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ye, J. et al. Socioeconomic deprivation index is associated with psychiatric disorders: an observational and genome-wide gene-by-environment interaction analysis in the UK Biobank Cohort. Biol. Psychiatry 89, 888–895 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cai, J. et al. Socioeconomic status, individual behaviors and risk for mental disorders: a Mendelian randomization study. Eur. Psychiatry 65, e28 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Campbell, D. et al. Effects of depression on employment and social outcomes: a Mendelian randomisation study. J. Epidemiol. Community Health 76, 563–571 (2022).

    Article 
    PubMed 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    Stay Connected

    9FansLike
    4FollowersFollow
    0SubscribersSubscribe
    - Advertisement -spot_img

    Latest Articles

    %d bloggers like this: