Wednesday, September 27, 2023
BestWooCommerceThemeBuilttoBoostSales-728x90

Immune checkpoint therapy for solid tumours: clinical dilemmas and future trends – Signal Transduction and Targeted Therapy


  • Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kraehenbuehl, L. et al. Enhancing immunotherapy in cancer by targeting emerging immunomodulatory pathways. Nat. Rev. Clin. Oncol. 19, 37–50 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ikemizu, S. et al. Structure and dimerization of a soluble form of B7-1. Immunity 12, 51–60 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Valk, E., Rudd, C. E. & Schneider, H. CTLA-4 trafficking and surface expression. Trends Immunol. 29, 272–279 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rudd, C. E., Taylor, A. & Schneider, H. CD28 and CTLA-4 coreceptor expression and signal transduction. Immunol. Rev. 229, 12–26 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tekguc, M. et al. Treg-expressed CTLA-4 depletes CD80/CD86 by trogocytosis, releasing free PD-L1 on antigen-presenting cells. Proc. Natl. Acad. Sci. USA 118, e2023739118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rudd, C. E. CTLA-4 co-receptor impacts on the function of Treg and CD8+ T-cell subsets. Eur. J. Immunol. 39, 687–690 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bozec, A. et al. T cell costimulation molecules CD80/86 inhibit osteoclast differentiation by inducing the IDO/tryptophan pathway. Sci. Transl. Med 6, 235ra260 (2014).

    Article 

    Google Scholar
     

  • Wang, C. J. et al. CTLA-4 controls follicular helper T-cell differentiation by regulating the strength of CD28 engagement. Proc. Natl. Acad. Sci. USA 112, 524–529 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gough, S. C., Walker, L. S. & Sansom, D. M. CTLA4 gene polymorphism and autoimmunity. Immunol. Rev. 204, 102–115 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shiratori, T. et al. Tyrosine phosphorylation controls internalization of CTLA-4 by regulating its interaction with clathrin-associated adaptor complex AP-2. Immunity 6, 583–589 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zenke, S. et al. Differential trafficking of ligands trogocytosed via CD28 versus CTLA4 promotes collective cellular control of co-stimulation. Nat. Commun. 13, 6459 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, H. et al. Regulatory mechanisms of immune checkpoints PD-L1 and CTLA-4 in cancer. J. Exp. Clin. Cancer Res. 40, 184 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gibson, H. M. et al. Induction of the CTLA-4 gene in human lymphocytes is dependent on NFAT binding the proximal promoter. J. Immunol. 179, 3831–3840 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, Y. et al. FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell 126, 375–387 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lozano, T. et al. Inhibition of FOXP3/NFAT Interaction Enhances T Cell Function after TCR Stimulation. J. Immunol. 195, 3180–3189 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marangoni, F. et al. Expansion of tumor-associated Treg cells upon disruption of a CTLA-4-dependent feedback loop. Cell 184, 3998–4015.e3919 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mitsuiki, N., Schwab, C. & Grimbacher, B. What did we learn from CTLA-4 insufficiency on the human immune system? Immunol. Rev. 287, 33–49 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Selby, M. J. et al. Anti-CTLA-4 antibodies of IgG2a isotype enhance antitumor activity through reduction of intratumoral regulatory T cells. Cancer Immunol. Res 1, 32–42 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Altman, A. & Kong, K. F. pH-sensitive anti-CTLA4 antibodies: yes to efficacy, no to toxicity. Cell Res. 29, 601–602 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chang, H. W. et al. Generating tumor-selective conditionally active biologic anti-CTLA4 antibodies via protein-associated chemical switches. Proc. Natl. Acad. Sci. USA 118, e2020606118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burton, E. M. & Tawbi, H. A. Bispecific antibodies to PD-1 and CTLA4: Doubling down on T cells to decouple efficacy from toxicity. Cancer Discov. 11, 1008–1010 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, G. T. et al. Inhibition of SRC family kinases facilitates anti-CTLA4 immunotherapy in head and neck squamous cell carcinoma. Cell Mol. Life Sci. 75, 4223–4234 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kaptein, P. et al. Addition of interleukin-2 overcomes resistance to neoadjuvant CTLA4 and PD1 blockade in ex vivo patient tumors. Sci. Transl. Med. 14, eabj9779 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, X. et al. Structural and functional analysis of the costimulatory receptor programmed death-1. Immunity 20, 337–347 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yokosuka, T. et al. Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. J. Exp. Med. 209, 1201–1217 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chemnitz, J. M. et al. SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. J. Immunol. 173, 945–954 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Terawaki, S. et al. IFN-α directly promotes programmed cell death-1 transcription and limits the duration of T cell-mediated immunity. J. Immunol. 186, 2772–2779 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Youngblood, B. et al. Chronic virus infection enforces demethylation of the locus that encodes PD-1 in antigen-specific CD8(+) T cells. Immunity 35, 400–412 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Redd, P. S. et al. H3K4me3 mediates the NF-κB p50 homodimer binding to the pdcd1 promoter to activate PD-1 transcription in T cells. Oncoimmunology 7, e1483302 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Austin, J. W. et al. STAT3, STAT4, NFATc1, and CTCF regulate PD-1 through multiple novel regulatory regions in murine T cells. J. Immunol. 192, 4876–4886 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chang, C. H. et al. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 153, 1239–1251 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bally, A. P. et al. NF-κB regulates PD-1 expression in macrophages. J. Immunol. 194, 4545–4554 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eppihimer, M. J. et al. Expression and regulation of the PD-L1 immunoinhibitory molecule on microvascular endothelial cells. Microcirculation 9, 133–145 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prima, V. et al. COX2/mPGES1/PGE2 pathway regulates PD-L1 expression in tumor-associated macrophages and myeloid-derived suppressor cells. Proc. Natl Acad. Sci. USA 114, 1117–1122 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cha, J. H. et al. Mechanisms controlling PD-L1 expression in cancer. Mol. Cell 76, 359–370 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, T. et al. Histone deacetylase 6 in cancer. J. Hematol. Oncol. 11, 111 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • M, L. et al. Essential role of HDAC6 in the regulation of PD-L1 in melanoma. Mol. Oncol. 10, 735–750 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, Z. et al. The DPY30-H3K4me3 axis-mediated PD-L1 expression in melanoma. J. Inflamm. Res. 15, 5595–5609 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, C. et al. WDR5-H3K4me3 epigenetic axis regulates OPN expression to compensate PD-L1 function to promote pancreatic cancer immune escape. J. Immunother. Cancer 9, e002624 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, C. et al. The MLL1-H3K4me3 axis-mediated PD-L1 expression and pancreatic cancer immune evasion. J. Natl. Cancer Inst. 109, djw283 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fritz, J. M. & Lenardo, M. J. Development of immune checkpoint therapy for cancer. J. Exp. Med. 216, 1244–1254 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, M. J. et al. Deletion of PD-1 destabilizes the lineage identity and metabolic fitness of tumor-infiltrating regulatory T cells. Nat. Immunol. 24, 148–161 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Triebel, F. et al. LAG-3, a novel lymphocyte activation gene closely related to CD4. J. Exp. Med. 171, 1393–1405 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Durham, N. M. et al. Lymphocyte Activation Gene 3 (LAG-3) modulates the ability of CD4 T-cells to be suppressed in vivo. PLoS One 9, e109080 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andrews, L. P., Marciscano, A. E., Drake, C. G. & Vignali, D. A. LAG3 (CD223) as a cancer immunotherapy target. Immunol. Rev. 276, 80–96 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baixeras, E. et al. Characterization of the lymphocyte activation gene 3-encoded protein. A new ligand for human leukocyte antigen class II antigens. J. Exp. Med. 176, 327–337 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, F. et al. LSECtin expressed on melanoma cells promotes tumor progression by inhibiting antitumor T-cell responses. Cancer Res. 74, 3418–3428 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Burnell, S. E. A. et al. Seven mysteries of LAG-3: a multi-faceted immune receptor of increasing complexity. Immunother. Adv. 2, ltab025 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Chocarro, L. et al. Clinical landscape of LAG-3-targeted therapy. Immunooncol Technol. 14, 100079 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tawbi, H. A. et al. Relatlimab and nivolumab versus nivolumab in untreated advanced melanoma. N. Engl. J. Med 386, 24–34 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tahara-Hanaoka, S. et al. Functional characterization of DNAM-1 (CD226) interaction with its ligands PVR (CD155) and nectin-2 (PRR-2/CD112). Int Immunol. 16, 533–538 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Manieri, N. A., Chiang, E. Y. & Grogan, J. L. TIGIT: A key inhibitor of the cancer immunity cycle. Trends Immunol. 38, 20–28 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pawłowska, A. et al. The dual blockade of the TIGIT and PD-1/PD-L1 pathway as a new hope for ovarian cancer patients. Cancers (Basel) 14, 5757 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Cho, B. C. et al. Tiragolumab plus atezolizumab versus placebo plus atezolizumab as a first-line treatment for PD-L1-selected non-small-cell lung cancer (CITYSCAPE): primary and follow-up analyses of a randomised, double-blind, phase 2 study. Lancet Oncol. 23, 781–792 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tiragolumab impresses in multiple trials. Cancer Discov. 10, 1086–1087(2020).

  • Huang, Y. H. et al. CEACAM1 regulates TIM-3-mediated tolerance and exhaustion. Nature 517, 386–390 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lake, C. M. et al. TIM-3 drives temporal differences in restimulation-induced cell death sensitivity in effector CD8(+) T cells in conjunction with CEACAM1. Cell Death Dis. 12, 400 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, R. et al. Galectin-9 interacts with PD-1 and TIM-3 to regulate T cell death and is a target for cancer immunotherapy. Nat. Commun. 12, 832 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ni, X. et al. Interrogating glioma-M2 macrophage interactions identifies Gal-9/Tim-3 as a viable target against PTEN-null glioblastoma. Sci. Adv. 8, eabl5165 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Curigliano, G. et al. Phase I/Ib clinical trial of sabatolimab, an Anti-TIM-3 antibody, alone and in combination with spartalizumab, an Anti-PD-1 antibody, in advanced solid tumors. Clin. Cancer Res 27, 3620–3629 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mellor, A. L. & Munn, D. H. IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat. Rev. Immunol. 4, 762–774 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sharma, M. D. et al. The PTEN pathway in Tregs is a critical driver of the suppressive tumor microenvironment. Sci. Adv. 1, e1500845 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith, C. et al. IDO is a nodal pathogenic driver of lung cancer and metastasis development. Cancer Discov. 2, 722–735 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Munn, D. H. & Mellor, A. L. IDO in the tumor microenvironment: Inflammation, counter-regulation, and tolerance. Trends Immunol. 37, 193–207 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Röhrig, U. F. et al. Inhibition mechanisms of indoleamine 2,3-dioxygenase 1 (IDO1). J. Med Chem. 62, 8784–8795 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Mitchell, T. C. et al. Epacadostat plus pembrolizumab in patients with advanced solid tumors: Phase I results from a multicenter, open-label phase I/II Trial (ECHO-202/KEYNOTE-037). J. Clin. Oncol. 36, 3223–3230 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Long, G. V. et al. Epacadostat plus pembrolizumab versus placebo plus pembrolizumab in patients with unresectable or metastatic melanoma (ECHO-301/KEYNOTE-252): a phase 3, randomised, double-blind study. Lancet Oncol. 20, 1083–1097 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fujiwara, Y. et al. Indoleamine 2,3-dioxygenase (IDO) inhibitors and cancer immunotherapy. Cancer Treat. Rev. 110, 102461 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sadik, A. et al. IL4I1 is a metabolic immune checkpoint that activates the AHR and promotes tumor progression. Cell 182, 1252–1270.e1234 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Z. et al. IL4I1-driven AHR signature: a new avenue for cancer therapy. Signal Transduct. Target Ther. 6, 118 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, J., Li, Y. & Lv, X. IL4I1 enhances PD-L1 expression through JAK/STAT signaling pathway in lung adenocarcinoma. Immunogenetics 75, 17–25 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, H., Han, W., Wen, J. & Ma, X. IL4I1 and tryptophan metabolites enhance AHR signals to facilitate colorectal cancer progression and immunosuppression. Am. J. Transl. Res. 14, 7758–7770 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Allard, B., Longhi, M. S., Robson, S. C. & Stagg, J. The ectonucleotidases CD39 and CD73: Novel checkpoint inhibitor targets. Immunol. Rev. 276, 121–144 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stagg, J. et al. CD73-deficient mice have increased antitumor immunity and are resistant to experimental metastasis. Cancer Res. 71, 2892–2900 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, X. Y. et al. Targeting CD39 in cancer reveals an extracellular ATP- and inflammasome-driven tumor immunity. Cancer Discov. 9, 1754–1773 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moesta, A. K., Li, X. Y. & Smyth, M. J. Targeting CD39 in cancer. Nat. Rev. Immunol. 20, 739–755 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chiarella, A. M., Ryu, Y. K., Manji, G. A. & Rustgi, A. K. Extracellular ATP and adenosine in cancer pathogenesis and treatment. Trends Cancer 7, 731–750 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schäkel, L. et al. Protein kinase inhibitor ceritinib blocks ectonucleotidase CD39 – a promising target for cancer immunotherapy. J. Immunother. Cancer 10, e004660 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carretero, M. et al. The CD94 and NKG2-A C-type lectins covalently assemble to form a natural killer cell inhibitory receptor for HLA class I molecules. Eur. J. Immunol. 27, 563–567 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kamiya, T. et al. Blocking expression of inhibitory receptor NKG2A overcomes tumor resistance to NK cells. J. Clin. Invest 129, 2094–2106 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abd Hamid, M. et al. Enriched HLA-E and CD94/NKG2A interaction limits antitumor CD8(+) tumor-infiltrating T lymphocyte responses. Cancer Immunol. Res 7, 1293–1306 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • van Montfoort, N. et al. NKG2A blockade potentiates CD8 T cell immunity induced by cancer vaccines. Cell 175, 1744–1755.e1715 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ducoin, K. et al. Targeting NKG2A to boost anti-tumor CD8 T-cell responses in human colorectal cancer. Oncoimmunology 11, 2046931 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Hall, T. et al. Monalizumab: inhibiting the novel immune checkpoint NKG2A. J. Immunother. Cancer 7, 263 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Galot, R. et al. A phase II study of monalizumab in patients with recurrent/metastatic squamous cell carcinoma of the head and neck: The I1 cohort of the EORTC-HNCG-1559 UPSTREAM trial. Eur. J. Cancer 158, 17–26 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Herbst, R. S. et al. COAST: An open-label, phase ii, multidrug platform study of durvalumab alone or in combination with oleclumab or monalizumab in patients with unresectable, stage III non-small-cell lung cancer. J. Clin. Oncol. 40, 3383–3393 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Logtenberg, M. E. W., Scheeren, F. A. & Schumacher, T. N. The CD47-SIRPα immune checkpoint. Immunity 52, 742–752 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, J. et al. Pre-clinical development of a humanized Anti-CD47 antibody with anti-cancer therapeutic potential. PLoS One 10, e0137345 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Upton, R. et al. Combining CD47 blockade with trastuzumab eliminates HER2-positive breast cancer cells and overcomes trastuzumab tolerance. Proc. Natl. Acad. Sci. USA 118, e2026849118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jeong, S. & Park, S. H. Co-stimulatory receptors in cancers and their implications for cancer immunotherapy. Immune Netw. 20, e3 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gutierrez, M. et al. OX40 agonist BMS-986178 alone or in combination with nivolumab and/or ipilimumab in patients with advanced solid tumors. Clin. Cancer Res 27, 460–472 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Davis, E. J. et al. First-in-human phase I/II, open-label study of the anti-OX40 agonist INCAGN01949 in patients with advanced solid tumors. J. Immunother. Cancer 10, e004235 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ito, H. et al. Inhibition of indoleamine 2,3-dioxygenase activity enhances the anti-tumour effects of a Toll-like receptor 7 agonist in an established cancer model. Immunology 144, 621–630 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sato, Y., Goto, Y., Narita, N. & Hoon, D. S. Cancer cells expressing toll-like receptors and the tumor microenvironment. Cancer Microenviron. 2(Suppl 1), 205–214 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Angrini, M., Varthaman, A. & Cremer, I. Toll-like receptors (TLRs) in the tumor microenvironment (TME): A dragon-like weapon in a non-fantasy game of thrones. Adv. Exp. Med Biol. 1263, 145–173 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kaur, A. et al. Toll-like receptor (TLR) agonists as a driving force behind next-generation vaccine adjuvants and cancer therapeutics. Curr. Opin. Chem. Biol. 70, 102172 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Janku, F. et al. Preclinical characterization and phase I study of an Anti-HER2-TLR7 immune-stimulator antibody conjugate in patients with HER2+ malignancies. Cancer Immunol. Res. 10, 1441–1461 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, X. et al. PD-L1/TLR7 dual-targeting nanobody-drug conjugate mediates potent tumor regression via elevating tumor immunogenicity in a host-expressed PD-L1 bias-dependent way. J. Immunother. Cancer 10, e004590 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mullins, S. R. et al. Intratumoral immunotherapy with TLR7/8 agonist MEDI9197 modulates the tumor microenvironment leading to enhanced activity when combined with other immunotherapies. J. Immunother. Cancer 7, 244 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, J. et al. The TLR7/8 agonist R848 optimizes host and tumor immunity to improve therapeutic efficacy in murine lung cancer. Int J. Oncol. 61, 81 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pan, D., Hu, A. Y., Antonia, S. J. & Li, C. Y. A Gene Mutation Signature Predicting Immunotherapy Benefits in Patients With NSCLC. J. Thorac. Oncol. 16, 419–427 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gajic, Z. Z. et al. Recurrent somatic mutations as predictors of immunotherapy response. Nat. Commun. 13, 3938 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, G. et al. CRISPR-GEMM pooled mutagenic screening identifies KMT2D as a major modulator of immune checkpoint blockade. Cancer Discov. 10, 1912–1933 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, W. et al. The low-complexity domains of the KMT2D protein regulate histone monomethylation transcription to facilitate pancreatic cancer progression. Cell Mol. Biol. Lett. 26, 45 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alam, H. et al. KMT2D deficiency impairs super-enhancers to confer a glycolytic vulnerability in lung cancer. Cancer Cell 37, 599–617.e597 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Toska, E. et al. PI3K pathway regulates ER-dependent transcription in breast cancer through the epigenetic regulator KMT2D. Science 355, 1324–1330 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lv, S. et al. Histone methyltransferase KMT2D sustains prostate carcinogenesis and metastasis via epigenetically activating LIFR and KLF4. Oncogene 37, 1354–1368 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maitituoheti, M. et al. Enhancer reprogramming confers dependence on glycolysis and IGF signaling in KMT2D mutant melanoma. Cell Rep. 33, 108293 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Janku, F., Yap, T. A. & Meric-Bernstam, F. Targeting the PI3K pathway in cancer: are we making headway? Nat. Rev. Clin. Oncol. 15, 273–291 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fruman, D. A. et al. The PI3K pathway in human disease. Cell 170, 605–635 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Y. et al. Whole-exome sequencing of rectal neuroendocrine tumors. Endocr. Relat. Cancer, ERC-22-0257 (2023).

  • Shi, C. et al. The role of DNA damage repair (DDR) system in response to immune checkpoint inhibitor (ICI) therapy. J. Exp. Clin. Cancer Res 41, 268 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang, Z. et al. ATR inhibition induces CDK1-SPOP signaling and enhances Anti-PD-L1 cytotoxicity in prostate cancer. Clin. Cancer Res. 27, 4898–4909 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, M. et al. ATM inhibition enhances cancer immunotherapy by promoting mtDNA leakage and cGAS/STING activation. J. Clin. Invest 131, e139333 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Q. et al. Inhibition of ATM increases interferon signaling and sensitizes pancreatic cancer to immune checkpoint blockade therapy. Cancer Res 79, 3940–3951 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gutiontov, S. I. & Weichselbaum, R. R. STING (or SRC) like an ICB: Priming the immune response in pancreatic cancer. Cancer Res 79, 3815–3817 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Staniszewska, A. D. et al. PARP inhibition is a modulator of anti-tumor immune response in BRCA-deficient tumors. Oncoimmunology 11, 2083755 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Samstein, R. M. et al. Mutations in BRCA1 and BRCA2 differentially affect the tumor microenvironment and response to checkpoint blockade immunotherapy. Nat. Cancer 1, 1188–1203 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Cindy Yang, S. Y. et al. Pan-cancer analysis of longitudinal metastatic tumors reveals genomic alterations and immune landscape dynamics associated with pembrolizumab sensitivity. Nat. Commun. 12, 5137 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Negrao, M. V. et al. Oncogene-specific differences in tumor mutational burden, PD-L1 expression, and outcomes from immunotherapy in non-small cell lung cancer. J. Immunother. Cancer 9, e002891 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zuo, Y. H. et al. Tumor PKCδ instigates immune exclusion in EGFR-mutated non-small cell lung cancer. BMC Med. 20, 470 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, S. M. et al. KDM5B promotes immune evasion by recruiting SETDB1 to silence retroelements. Nature 598, 682–687 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sundar, R. et al. Epigenetic promoter alterations in GI tumour immune-editing and resistance to immune checkpoint inhibition. Gut 71, 1277–1288 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Coelho, M. A. et al. Base editing screens map mutations affecting interferon-γ signaling in cancer. Cancer Cell 41, 288–303.e286 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, X. D. et al. PBRM1 loss defines a nonimmunogenic tumor phenotype associated with checkpoint inhibitor resistance in renal carcinoma. Nat. Commun. 11, 2135 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, J. et al. Loss of IFN-γ pathway genes in tumor cells as a mechanism of resistance to Anti-CTLA-4 Therapy. Cell 167, 397–404.e399 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • IFNγ Mutations Prompt CTLA-4 inhibitor resistance. Cancer Discov. 7, Of3, (2017).

  • Zaretsky, J. M. et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N. Engl. J. Med 375, 819–829 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shin, D. S. et al. Primary resistance to PD-1 blockade mediated by JAK1/2 mutations. Cancer Discov. 7, 188–201 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Skoulidis, F. et al. STK11/LKB1 mutations and PD-1 inhibitor resistance in KRAS-mutant lung adenocarcinoma. Cancer Discov. 8, 822–835 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kitajima, S. et al. Suppression of STING associated with LKB1 loss in KRAS-driven lung cancer. Cancer Discov. 9, 34–45 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bruand, M. et al. Cell-autonomous inflammation of BRCA1-deficient ovarian cancers drives both tumor-intrinsic immunoreactivity and immune resistance via STING. Cell Rep. 36, 109412 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kerepesi, C. et al. Significant association between tumor mutational burden and immune-related adverse events during immune checkpoint inhibition therapies. Cancer Immunol. Immunother. 69, 683–687 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bomze, D., Hasan Ali, O., Bate, A. & Flatz, L. Association between immune-related adverse events during anti-PD-1 therapy and tumor mutational burden. JAMA Oncol. 5, 1633–1635 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sholl, L. M. et al. The promises and challenges of tumor mutation burden as an immunotherapy biomarker: A perspective from the international association for the study of lung cancer pathology committee. J. Thorac. Oncol. 15, 1409–1424 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ramos-Casals, M. et al. Immune-related adverse events of checkpoint inhibitors. Nat. Rev. Dis. Prim. 6, 38 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Pauken, K. E. et al. Adverse events following cancer immunotherapy: Obstacles and opportunities. Trends Immunol. 40, 511–523 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karasarides, M. et al. Hallmarks of resistance to immune-checkpoint inhibitors. Cancer Immunol. Res 10, 372–383 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vesely, M. D., Zhang, T. & Chen, L. Resistance mechanisms to anti-PD cancer immunotherapy. Annu Rev. Immunol. 40, 45–74 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Davar, D. et al. Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients. Science 371, 595–602 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baruch, E. N. et al. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science 371, 602–609 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hole, C. R. et al. Induction of memory-like dendritic cell responses in vivo. Nat. Commun. 10, 2955 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kvedaraite, E. & Ginhoux, F. Human dendritic cells in cancer. Sci. Immunol. 7, eabm9409 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Böttcher, J. P. & Reis e Sousa, C. The role of type 1 conventional dendritic cells in cancer immunity. Trends Cancer 4, 784–792 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fu, J. et al. STING agonist formulated cancer vaccines can cure established tumors resistant to PD-1 blockade. Sci. Transl. Med. 7, 283ra252 (2015).

    Article 

    Google Scholar
     

  • Lv, M. et al. Manganese is critical for antitumor immune responses via cGAS-STING and improves the efficacy of clinical immunotherapy. Cell Res. 30, 966–979 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zitvogel, L. et al. Type I interferons in anticancer immunity. Nat. Rev. Immunol. 15, 405–414 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Garris, C. S. et al. Successful anti-PD-1 cancer immunotherapy requires T cell-dendritic cell crosstalk involving the cytokines IFN-γ and IL-12. Immunity 49, 1148–1161.e1147 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hewitt, S. L. et al. Intratumoral IL12 mRNA therapy promotes TH1 transformation of the tumor microenvironment. Clin. Cancer Res 26, 6284–6298 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Böttcher, J. P. et al. NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control. Cell 172, 1022–1037.e1014 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kirchhammer, N. et al. NK cells with tissue-resident traits shape response to immunotherapy by inducing adaptive antitumor immunity. Sci. Transl. Med. 14, eabm9043 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bae, E. A. et al. Activation of NKT cells in an Anti-PD-1-resistant tumor model enhances antitumor immunity by reinvigorating exhausted CD8 T cells. Cancer Res 78, 5315–5326 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tait Wojno, E. D., Hunter, C. A. & Stumhofer, J. S. The immunobiology of the interleukin-12 family: Room for discovery. Immunity 50, 851–870 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qi, Q. et al. Association between serum levels of 12 different cytokines and short-term efficacy of anti-PD-1 monoclonal antibody combined with chemotherapy in advanced gastric cancer. Int Immunopharmacol. 114, 109553 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hydes, T. et al. IL-12 and IL-15 induce the expression of CXCR6 and CD49a on peripheral natural killer cells. Immun. Inflamm. Dis. 6, 34–46 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Quatrini, L. et al. Glucocorticoids and the cytokines IL-12, IL-15, and IL-18 present in the tumor microenvironment induce PD-1 expression on human natural killer cells. J. Allergy Clin. Immunol. 147, 349–360 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Walch-Rückheim, B. et al. Cervical cancer-instructed stromal fibroblasts enhance IL23 expression in dendritic cells to support expansion of Th17 Cells. Cancer Res. 79, 1573–1586 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Zhu, J. et al. Interleukin-27 gene therapy prevents the development of autoimmune encephalomyelitis but fails to attenuate established inflammation due to the expansion of CD11b(+)Gr-1(+) myeloid cells. Front Immunol. 9, 873 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kishton, R. J., Sukumar, M. & Restifo, N. P. Metabolic regulation of T cell longevity and function in tumor immunotherapy. Cell Metab. 26, 94–109 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yost, K. E. et al. Clonal replacement of tumor-specific T cells following PD-1 blockade. Nat. Med. 25, 1251–1259 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ford, B. R. et al. Tumor microenvironmental signals reshape chromatin landscapes to limit the functional potential of exhausted T cells. Sci. Immunol. 7, eabj9123 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Man, K. et al. Transcription factor IRF4 promotes CD8(+) T cell exhaustion and limits the development of memory-like T Cells during Chronic Infection. Immunity 47, 1129–1141 e1125 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martinez, G. J. et al. The transcription factor NFAT promotes exhaustion of activated CD8(+) T cells. Immunity 42, 265–278 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kurachi, M. et al. The transcription factor BATF operates as an essential differentiation checkpoint in early effector CD8+ T cells. Nat. Immunol. 15, 373–383 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, X. et al. Differentiation and persistence of memory CD8(+) T cells depend on T cell factor 1. Immunity 33, 229–240 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kallies, A. & Nutt, S. L. Terminal differentiation of lymphocytes depends on Blimp-1. Curr. Opin. Immunol. 19, 156–162 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jadhav, R. R. et al. Epigenetic signature of PD-1+ TCF1+ CD8 T cells that act as resource cells during chronic viral infection and respond to PD-1 blockade. Proc. Natl. Acad. Sci. USA 116, 14113–14118 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kallies, A. et al. Transcriptional repressor Blimp-1 is essential for T cell homeostasis and self-tolerance. Nat. Immunol. 7, 466–474 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yao, C. et al. Single-cell RNA-seq reveals TOX as a key regulator of CD8(+) T cell persistence in chronic infection. Nat. Immunol. 20, 890–901 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Belk, J. A., Daniel, B. & Satpathy, A. T. Epigenetic regulation of T cell exhaustion. Nat. Immunol. 23, 848–860 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kallies, A., Zehn, D. & Utzschneider, D. T. Precursor exhausted T cells: key to successful immunotherapy? Nat. Rev. Immunol. 20, 128–136 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chow, A., Perica, K., Klebanoff, C. A. & Wolchok, J. D. Clinical implications of T cell exhaustion for cancer immunotherapy. Nat. Rev. Clin. Oncol. 19, 775–790 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Joshi, N. S. & Kaech, S. M. Effector CD8 T cell development: a balancing act between memory cell potential and terminal differentiation. J. Immunol. 180, 1309–1315 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tschumi, B. O. et al. CART cells are prone to Fas- and DR5-mediated cell death. J. Immunother. Cancer 6, 71 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kasakovski, D., Xu, L. & Li, Y. T cell senescence and CAR-T cell exhaustion in hematological malignancies. J. Hematol. Oncol. 11, 91 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sanmamed, M. F. et al. A burned-out CD8(+) T-cell subset expands in the tumor microenvironment and curbs cancer immunotherapy. Cancer Discov. 11, 1700–1715 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Franco, F. et al. Metabolic and epigenetic regulation of T-cell exhaustion. Nat. Metab. 2, 1001–1012 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • O’Donnell, J. S., Teng, M. W. L. & Smyth, M. J. Cancer immunoediting and resistance to T cell-based immunotherapy. Nat. Rev. Clin. Oncol. 16, 151–167 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Courtnay, R. et al. Cancer metabolism and the Warburg effect: the role of HIF-1 and PI3K. Mol. Biol. Rep. 42, 841–851 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kopecka, J. et al. Hypoxia as a driver of resistance to immunotherapy. Drug Resist Updat 59, 100787 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shao, A. et al. Bclaf1 is a direct target of HIF-1 and critically regulates the stability of HIF-1α under hypoxia. Oncogene 39, 2807–2818 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ramapriyan, R. et al. Altered cancer metabolism in mechanisms of immunotherapy resistance. Pharm. Ther. 195, 162–171 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Facciabene, A. et al. Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells. Nature 475, 226–230 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Palazon, A. et al. An HIF-1α/VEGF-A axis in cytotoxic T cells regulates tumor progression. Cancer Cell 32, 669–683.e665 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jain, R. K. Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia. Cancer Cell 26, 605–622 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Galbo, P. M. Jr, Zang, X. & Zheng, D. Molecular features of cancer-associated fibroblast subtypes and their implication on cancer pathogenesis, prognosis, and immunotherapy resistance. Clin. Cancer Res. 27, 2636–2647 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, D. S. & Mellman, I. Elements of cancer immunity and the cancer-immune set point. Nature 541, 321–330 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Passaro, A. et al. Managing resistance to immune checkpoint inhibitors in lung cancer: Treatment and novel strategies. J. Clin. Oncol. 40, 598–610 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schoenfeld, A. J. et al. Clinical definition of acquired resistance to immunotherapy in patients with metastatic non-small-cell lung cancer. Ann. Oncol. 32, 1597–1607 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kroschinsky, F. et al. New drugs, new toxicities: severe side effects of modern targeted and immunotherapy of cancer and their management. Crit. Care (Lond., Engl.) 21, 89 (2017).

    Article 

    Google Scholar
     

  • Berner, F. et al. Association of checkpoint inhibitor-induced toxic effects with shared cancer and tissue antigens in non-small cell lung cancer. JAMA Oncol. 5, 1043–1047 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Barroso-Sousa, R. et al. Incidence of endocrine dysfunction following the use of different immune checkpoint inhibitor regimens: A systematic review and meta-analysis. JAMA Oncol. 4, 173–182 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Khoja, L. et al. Tumour- and class-specific patterns of immune-related adverse events of immune checkpoint inhibitors: a systematic review. Ann. Oncol. 28, 2377–2385 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saito, S., Nakashima, A., Shima, T. & Ito, M. Th1/Th2/Th17 and regulatory T-cell paradigm in pregnancy. Am. J. Reprod. Immunol. 63, 601–610 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Burns, D. N. et al. Changes in immune activation markers during pregnancy and postpartum. J. Reprod. Immunol. 42, 147–165 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, J. et al. Concurrent decrease in IL-10 with development of immune-related adverse events in a patient treated with anti-CTLA-4 therapy. Cancer Immun. 8, 9 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tarhini, A. A. et al. Baseline circulating IL-17 predicts toxicity while TGF-β1 and IL-10 are prognostic of relapse in ipilimumab neoadjuvant therapy of melanoma. J. Immunother. Cancer 3, 39 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lim, S. Y. et al. Circulating cytokines predict immune-related toxicity in melanoma patients receiving Anti-PD-1-based immunotherapy. Clin. Cancer Res 25, 1557–1563 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Borgers, J. S. W. et al. Immunotherapy for cancer treatment during pregnancy. Lancet Oncol. 22, e550–e561 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Burotto, M. et al. Viable Pregnancy in a patient with metastatic melanoma treated with double checkpoint immunotherapy. Semin Oncol. 45, 164–169 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mehta, A., Kim, K. B. & Minor, D. R. Case report of a pregnancy during ipilimumab therapy. J. Glob. Oncol. 4, 1–3 (2018).

    PubMed 

    Google Scholar
     

  • Nosrati, A. et al. Evaluation of clinicopathological factors in PD-1 response: derivation and validation of a prediction scale for response to PD-1 monotherapy. Br. J. Cancer 116, 1141–1147 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kugel, C. H. 3rd et al. Age correlates with response to Anti-PD1, reflecting age-related differences in intratumoral effector and regulatory T-cell populations. Clin. Cancer Res 24, 5347–5356 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, Y. et al. Correlation between sex and efficacy of immune checkpoint inhibitors (PD-1 and CTLA-4 inhibitors). Int J. Cancer 143, 45–51 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Klein, S. L. & Flanagan, K. L. Sex differences in immune responses. Nat. Rev. Immunol. 16, 626–638 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wallis, C. J. D. et al. Association of patient sex with efficacy of immune checkpoint inhibitors and overall survival in advanced cancers: A systematic review and meta-analysis. JAMA Oncol. 5, 529–536 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cortellini, A. et al. A multicenter study of body mass index in cancer patients treated with anti-PD-1/PD-L1 immune checkpoint inhibitors: when overweight becomes favorable. J. Immunother. Cancer 7, 57 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leiter, A. et al. Metabolic disease and adverse events from immune checkpoint inhibitors. Eur. J. Endocrinol. 184, 857–865 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sury, K., Perazella, M. A. & Shirali, A. C. Cardiorenal complications of immune checkpoint inhibitors. Nat. Rev. Nephrol. 14, 571–588 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Patel, R. P. et al. Cardiotoxicity of immune checkpoint inhibitors. Curr. Oncol. Rep. 23, 79 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mahmood, S. S. et al. Myocarditis in patients treated with immune checkpoint inhibitors. J. Am. Coll. Cardiol. 71, 1755–1764 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brahmer, J. et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N. Engl. J. Med 373, 123–135 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Delanoy, N. et al. Haematological immune-related adverse events induced by anti-PD-1 or anti-PD-L1 immunotherapy: a descriptive observational study. Lancet Haematol. 6, e48–e57 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Johnson, D. B., Nebhan, C. A., Moslehi, J. J. & Balko, J. M. Immune-checkpoint inhibitors: long-term implications of toxicity. Nat. Rev. Clin. Oncol. 19, 254–267 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patrinely, J. R. Jr et al. Chronic Immune-related adverse events following adjuvant anti-PD-1 therapy for high-risk resected melanoma. JAMA Oncol. 7, 744–748 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Patrinely, J. R. Jr et al. Survivorship in immune therapy: Assessing toxicities, body composition and health-related quality of life among long-term survivors treated with antibodies to programmed death-1 receptor and its ligand. Eur. J. Cancer 135, 211–220 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seymour, L. et al. iRECIST: guidelines for response criteria for use in trials testing immunotherapeutics. Lancet Oncol. 18, e143–e152 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Miguel, M. & Calvo, E. Clinical challenges of immune checkpoint inhibitors. Cancer Cell 38, 326–333 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Billan, S., Kaidar-Person, O. & Gil, Z. Treatment after progression in the era of immunotherapy. Lancet Oncol. 21, e463–e476 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Adashek, J. J. et al. Hyperprogression and immunotherapy: Fact, fiction, or alternative fact? Trends Cancer 6, 181–191 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Costa, L. B. et al. Reassessing patterns of response to immunotherapy with PET: From morphology to metabolism. Radiographics 41, 120–143 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Gibney, G. T., Weiner, L. M. & Atkins, M. B. Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol. 17, e542–e551 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song, Y., Li, Z., Xue, W. & Zhang, M. Predictive biomarkers for PD-1 and PD-L1 immune checkpoint blockade therapy. Immunotherapy 11, 515–529 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duffy, M. J. & Crown, J. Biomarkers for predicting response to immunotherapy with immune checkpoint inhibitors in cancer patients. Clin. Chem. 65, 1228–1238 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mok, T. S. K. et al. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): a randomised, open-label, controlled, phase 3 trial. Lancet 393, 1819–1830 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, J. M. et al. Pembrolizumab plus chemotherapy versus chemotherapy alone for first-line treatment of advanced oesophageal cancer (KEYNOTE-590): a randomised, placebo-controlled, phase 3 study. Lancet 398, 759–771 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, B., Song, Y. & Liu, D. Recent development in clinical applications of PD-1 and PD-L1 antibodies for cancer immunotherapy. J. Hematol. Oncol. 10, 174 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rimm, D. L. et al. A prospective, multi-institutional, pathologist-based assessment of 4 immunohistochemistry assays for PD-L1 expression in non-small cell lung cancer. JAMA Oncol. 3, 1051–1058 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Naso, J. R. et al. Comparability of laboratory-developed and commercial PD-L1 assays in non-small cell lung carcinoma. Ann. Diagn. Pathol. 50, 151590 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Suraweera, N. et al. Evaluation of tumor microsatellite instability using five quasimonomorphic mononucleotide repeats and pentaplex PCR. Gastroenterology 123, 1804–1811 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Svrcek, M. et al. MSI/MMR-deficient tumor diagnosis: Which standard for screening and for diagnosis? Diagnostic modalities for the colon and other sites: Differences between tumors. Bull. du cancer 106, 119–128 (2019).

    Article 

    Google Scholar
     

  • El Hussein, S. et al. Microsatellite instability assessment by immunohistochemistry in acute myeloid leukemia: A reappraisal and review of the literature. Clin. Lymphoma Myeloma Leuk. 22, e386–e391 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • André, T. et al. Nivolumab plus low-dose ipilimumab in previously treated patients with microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: 4-year follow-up from CheckMate 142. Ann. Oncol. 33, 1052–1060 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Overman, M. J. et al. Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair-deficient/microsatellite instability-high metastatic colorectal cancer. J. Clin. Oncol. 36, 773–779 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vanderwalde, A. et al. Microsatellite instability status determined by next-generation sequencing and compared with PD-L1 and tumor mutational burden in 11,348 patients. Cancer Med. 7, 746–756 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Samstein, R. M. et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat. Genet 51, 202–206 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jardim, D. L., Goodman, A., de Melo Gagliato, D. & Kurzrock, R. The challenges of tumor mutational burden as an immunotherapy biomarker. Cancer Cell 39, 154–173 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Patterson, A. & Auslander, N. Mutated processes predict immune checkpoint inhibitor therapy benefit in metastatic melanoma. Nat. Commun. 13, 5151 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Niknafs, N. et al. Persistent mutation burden drives sustained anti-tumor immune responses. Nat. Med. 29, 440–449 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nassar, A. H. et al. Ancestry-driven recalibration of tumor mutational burden and disparate clinical outcomes in response to immune checkpoint inhibitors. Cancer Cell 40, 1161–1172.e5 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jing, Y. et al. Multi-omics prediction of immune-related adverse events during checkpoint immunotherapy. Nat. Commun. 11, 4946 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao, Y. et al. Multi-omics analysis based on genomic instability for prognostic prediction in lower-grade glioma. Front Genet 12, 758596 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma, S. et al. Extended application of genomic selection to screen multi-omics data for the development of novel pyroptosis-immune signatures and predicting immunotherapy of glioma. Front Pharm. 13, 893160 (2022).

    Article 
    CAS 

    Google Scholar
     

  • He, Y. & Wang, X. Identification of molecular features correlating with tumor immunity in gastric cancer by multi-omics data analysis. Ann. Transl. Med. 8, 1050 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, Y. et al. A multi-omics-based serial deep learning approach to predict clinical outcomes of single-agent anti-PD-1/PD-L1 immunotherapy in advanced stage non-small-cell lung cancer. Am. J. Transl. Res. 13, 743–756 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krieg, C. et al. High-dimensional single-cell analysis predicts response to anti-PD-1 immunotherapy. Nat. Med. 24, 144–153 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, C. C. et al. Prediction of biomarkers and therapeutic combinations for anti-PD-1 immunotherapy using the global gene network association. Nat. Commun. 13, 42 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kamphorst, A. O. et al. Proliferation of PD-1+ CD8 T cells in peripheral blood after PD-1-targeted therapy in lung cancer patients. Proc. Natl. Acad. Sci. USA 114, 4993–4998 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fehlings, M. et al. Late-differentiated effector neoantigen-specific CD8+ T cells are enriched in peripheral blood of non-small cell lung carcinoma patients responding to atezolizumab treatment. J. Immunother. Cancer 7, 249 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fehlings, M. et al. Single-cell analysis reveals clonally expanded tumor-associated CD57(+) CD8 T cells are enriched in the periphery of patients with metastatic urothelial cancer responding to PD-L1 blockade. J. Immunother. Cancer 10, e004759 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, J. H. et al. Association between circulating tumor DNA and pseudoprogression in patients with metastatic melanoma treated with anti-programmed cell death 1 antibodies. JAMA Oncol. 4, 717–721 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin, Y. et al. The predicting role of circulating tumor DNA landscape in gastric cancer patients treated with immune checkpoint inhibitors. Mol. Cancer 19, 154 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kasi, P. M. et al. Circulating tumor DNA (ctDNA) serial analysis during progression on PD-1 blockade and later CTLA-4 rescue in patients with mismatch repair deficient metastatic colorectal cancer. J. Immunother. Cancer 10, e003312 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, C. et al. Regorafenib and nivolumab or pembrolizumab combination and circulating tumor DNA response assessment in refractory microsatellite stable colorectal cancer. Oncologist 25, e1188–e1194 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Forschner, A. et al. Tumor mutation burden and circulating tumor DNA in combined CTLA-4 and PD-1 antibody therapy in metastatic melanoma – results of a prospective biomarker study. J. Immunother. Cancer 7, 180 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nisar, S. et al. Non-invasive biomarkers for monitoring the immunotherapeutic response to cancer. J. Transl. Med 18, 471 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, W., Yu, S., Xin, J. & Guo, Q. (18)F-FLT and (18)F-FDG PET-CT imaging in the evaluation of early therapeutic effects of chemotherapy on Walker 256 tumor-bearing rats. Exp. Ther. Med. 12, 4154–4158 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haris, M. et al. Molecular imaging biomarkers for cell-based immunotherapies. J. Transl. Med. 15, 140 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chennamadhavuni, A. et al. Risk factors and biomarkers for immune-related adverse events: A practical guide to identifying high-risk patients and rechallenging immune checkpoint inhibitors. Front Immunol. 13, 779691 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khan, S. et al. Immune dysregulation in cancer patients developing immune-related adverse events. Br. J. Cancer 120, 63–68 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wanderley, C. W. et al. Paclitaxel reduces tumor growth by reprogramming tumor-associated macrophages to an M1 profile in a TLR4-dependent manner. Cancer Res 78, 5891–5900 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiménez-Sánchez, A. et al. Unraveling tumor-immune heterogeneity in advanced ovarian cancer uncovers immunogenic effect of chemotherapy. Nat. Genet 52, 582–593 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vos, J. L. et al. Neoadjuvant immunotherapy with nivolumab and ipilimumab induces major pathological responses in patients with head and neck squamous cell carcinoma. Nat. Commun. 12, 7348 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heinhuis, K. M. et al. Enhancing antitumor response by combining immune checkpoint inhibitors with chemotherapy in solid tumors. Ann. Oncol. 30, 219–235 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lhuillier, C. et al. Radiation therapy and anti-tumor immunity: exposing immunogenic mutations to the immune system. Genome Med. 11, 40 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Z., Liu, X., Chen, D. & Yu, J. Radiotherapy combined with immunotherapy: the dawn of cancer treatment. Signal Transduct. Target Ther. 7, 258 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jie, X. et al. Targeting KDM4C enhances CD8(+) T cell mediated antitumor immunity by activating chemokine CXCL10 transcription in lung cancer. J. Immunother. Cancer 10, e003716 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pieper, A. A. et al. Combination of radiation therapy, bempegaldesleukin, and checkpoint blockade eradicates advanced solid tumors and metastases in mice. J. Immunother. Cancer 9, e002715 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Olivo Pimentel, V. et al. Releasing the brakes of tumor immunity with anti-PD-L1 and pushing its accelerator with L19-IL2 cures poorly immunogenic tumors when combined with radiotherapy. J. Immunother. Cancer 9, e001764 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Donlon, N. E. et al. Radiotherapy, immunotherapy, and the tumour microenvironment: Turning an immunosuppressive milieu into a therapeutic opportunity. Cancer Lett. 502, 84–96 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, L. et al. Angiogenesis and immune checkpoint dual blockade in combination with radiotherapy for treatment of solid cancers: opportunities and challenges. Oncogenesis 10, 47 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bedard, P. L., Hyman, D. M., Davids, M. S. & Siu, L. L. Small molecules, big impact: 20 years of targeted therapy in oncology. Lancet 395, 1078–1088 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Min, H. Y. & Lee, H. Y. Molecular targeted therapy for anticancer treatment. Exp. Mol. Med. 54, 1670–1694 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fang, Y. et al. Comprehensive analyses reveal TKI-induced remodeling of the tumor immune microenvironment in EGFR/ALK-positive non-small-cell lung cancer. Oncoimmunology 10, 1951019 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moya-Horno, I., Viteri, S., Karachaliou, N. & Rosell, R. Combination of immunotherapy with targeted therapies in advanced non-small cell lung cancer (NSCLC). Ther. Adv. Med. Oncol. 10, 1758834017745012 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, N. et al. Preclinical rationale and clinical efficacy of antiangiogenic therapy and immune checkpoint blockade combination therapy in urogenital tumors. J. Cancer Res Clin. Oncol. 145, 3021–3036 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guiard, E. et al. Radiological patterns of tumour progression in patients treated with a combination of immune checkpoint blockers and antiangiogenic drugs. Eur. J. Cancer 167, 42–53 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Spigel, D. R. et al. Phase 1/2 study of the safety and tolerability of nivolumab plus crizotinib for the first-line treatment of anaplastic lymphoma kinase translocation – positive advanced non-small cell lung cancer (CheckMate 370). J. Thorac. Oncol. 13, 682–688 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Pyonteck, S. M. et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat. Med. 19, 1264–1272 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quail, D. F. et al. The tumor microenvironment underlies acquired resistance to CSF-1R inhibition in gliomas. Science 352, aad3018 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Foster, C. C. et al. Phase I study of stereotactic body radiotherapy plus nivolumab and urelumab or cabiralizumab in advanced solid tumors. Clin. Cancer Res 27, 5510–5518 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weiss, S. A. et al. A phase I study of APX005M and cabiralizumab with or without nivolumab in patients with melanoma, kidney cancer, or non-small cell lung cancer resistant to Anti-PD-1/PD-L1. Clin. Cancer Res. 27, 4757–4767 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bommareddy, P. K., Shettigar, M. & Kaufman, H. L. Integrating oncolytic viruses in combination cancer immunotherapy. Nat. Rev. Immunol. 18, 498–513 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Andtbacka, R. H. et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J. Clin. Oncol. 33, 2780–2788 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Z. et al. Rational combination of oncolytic vaccinia virus and PD-L1 blockade works synergistically to enhance therapeutic efficacy. Nat. Commun. 8, 14754 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Z. et al. Pan-cancer landscape of T-cell exhaustion heterogeneity within the tumor microenvironment revealed a progressive roadmap of hierarchical dysfunction associated with prognosis and therapeutic efficacy. EBioMedicine 83, 104207 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Malvehy, J. et al. Talimogene laherparepvec upregulates immune-cell populations in non-injected lesions: findings from a phase II, multicenter, open-label study in patients with stage IIIB-IVM1c melanoma. J. Immunother. Cancer 9, e001621 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ribas, A. et al. Oncolytic virotherapy promotes intratumoral T cell infiltration and improves Anti-PD-1 immunotherapy. Cell 170, 1109–1119.e1110 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Melcher, A., Harrington, K. & Vile, R. Oncolytic virotherapy as immunotherapy. Science 374, 1325–1326 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bordon, Y. An RNA vaccine for advanced melanoma. Nat. Rev. Immunol. 20, 517 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Simon, P. et al. Functional TCR retrieval from single antigen-specific human T cells reveals multiple novel epitopes. Cancer Immunol. Res 2, 1230–1244 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sahin, U. et al. An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma. Nature 585, 107–112 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weersma, R. K., Zhernakova, A. & Fu, J. Interaction between drugs and the gut microbiome. Gut 69, 1510–1519 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Routy, B. et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359, 91–97 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gopalakrishnan, V. et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359, 97–103 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tanoue, T. et al. A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. Nature 565, 600–605 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, K. A. et al. Cross-cohort gut microbiome associations with immune checkpoint inhibitor response in advanced melanoma. Nat. Med. 28, 535–544 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Z., Yue, Z., Yang, K. & Li, S. Nanomaterials: small particles show huge possibilities for cancer immunotherapy. J. Nanobiotechnol. 20, 484 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, X. et al. PD-1 blockade cellular vesicles for cancer immunotherapy. Adv. Mater. 30, e1707112 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Yin, T. et al. Engineered macrophage-membrane-coated nanoparticles with enhanced PD-1 expression induce immunomodulation for a synergistic and targeted antiglioblastoma activity. Nano Lett. 22, 6606–6614 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng, K. et al. Sequentially responsive therapeutic peptide assembling nanoparticles for dual-targeted cancer immunotherapy. Nano Lett. 18, 3250–3258 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, F. et al. Engineering magnetosomes for ferroptosis/immunomodulation synergism in cancer. ACS Nano 13, 5662–5673 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maio, M. et al. Five-year survival rates for treatment-naive patients with advanced melanoma who received ipilimumab plus dacarbazine in a phase III trial. J. Clin. Oncol. 33, 1191–1196 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eggermont, A. M. et al. Prolonged survival in stage iii melanoma with ipilimumab adjuvant therapy. N. Engl. J. Med. 375, 1845–1855 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ascierto, P. A. et al. Overall survival at 5 years of follow-up in a phase III trial comparing ipilimumab 10 mg/kg with 3 mg/kg in patients with advanced melanoma. J. Immunother. Cancer 8, e000391 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robert, C. et al. Pembrolizumab versus ipilimumab in advanced melanoma (KEYNOTE-006): post-hoc 5-year results from an open-label, multicentre, randomised, controlled, phase 3 study. Lancet Oncol. 20, 1239–1251 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Robert, C. et al. Five-year outcomes with nivolumab in patients with wild-type BRAF advanced melanoma. J. Clin. Oncol. 38, 3937–3946 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Borghaei, H. et al. Five-year outcomes from the randomized, phase III Trials CheckMate 017 and 057: Nivolumab versus docetaxel in previously treated non-small-cell lung cancer. J. Clin. Oncol. 39, 723–733 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herbst, R. S. et al. Five year survival update from KEYNOTE-010: Pembrolizumab versus docetaxel for previously treated, programmed death-ligand 1-positive advanced NSCLC. J. Thorac. Oncol. 16, 1718–1732 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reck, M. et al. Five-year outcomes with pembrolizumab versus chemotherapy for metastatic non-small-cell lung cancer with PD-L1 tumor proportion score ≥50. J. Clin. Oncol. 39, 2339–2349 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Castro, G., Jr et al. Five-year outcomes with pembrolizumab versus chemotherapy as first-line therapy in patients with non-small-cell lung cancer and programmed death ligand-1 tumor proportion score ≥ 1% in the KEYNOTE-042 study. J. Clin. Oncol., Jco2102885, (2022).

  • Rittmeyer, A. et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet 389, 255–265 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • West, H. et al. Atezolizumab in combination with carboplatin plus nab-paclitaxel chemotherapy compared with chemotherapy alone as first-line treatment for metastatic non-squamous non-small-cell lung cancer (IMpower130): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 20, 924–937 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Herbst, R. S. et al. Atezolizumab for first-line treatment of PD-L1-selected patients with NSCLC. N. Engl. J. Med. 383, 1328–1339 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Motzer, R. J. et al. Nivolumab versus everolimus in patients with advanced renal cell carcinoma: Updated results with long-term follow-up of the randomized, open-label, phase 3 CheckMate 025 trial. Cancer 126, 4156–4167 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fradet, Y. et al. Randomized phase III KEYNOTE-045 trial of pembrolizumab versus paclitaxel, docetaxel, or vinflunine in recurrent advanced urothelial cancer: results of >2 years of follow-up. Ann. Oncol. 30, 970–976 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Motzer, R. et al. Lenvatinib plus Pembrolizumab or Everolimus for Advanced Renal Cell Carcinoma. N. Engl. J. Med. 384, 1289–1300 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Motzer, R. et al. Health-related quality-of-life outcomes in patients with advanced renal cell carcinoma treated with lenvatinib plus pembrolizumab or everolimus versus sunitinib (CLEAR): a randomised, phase 3 study. Lancet Oncol. 23, 768–780 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van der Heijden, M. S. et al. Atezolizumab versus chemotherapy in patients with platinum-treated locally advanced or metastatic urothelial carcinoma: A long-term overall survival and safety update from the phase 3 IMvigor211 clinical trial. Eur. Urol. 80, 7–11 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Kato, K. et al. Nivolumab versus chemotherapy in patients with advanced oesophageal squamous cell carcinoma refractory or intolerant to previous chemotherapy (ATTRACTION-3): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 20, 1506–1517 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kojima, T. et al. Randomized phase III KEYNOTE-181 study of pembrolizumab versus chemotherapy in advanced esophageal cancer. J. Clin. Oncol. 38, 4138–4148 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ferris, R. L. et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N. Engl. J. Med. 375, 1856–1867 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cohen, E. E. W. et al. Pembrolizumab versus methotrexate, docetaxel, or cetuximab for recurrent or metastatic head-and-neck squamous cell carcinoma (KEYNOTE-040): a randomised, open-label, phase 3 study. Lancet 393, 156–167 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harrington, K. J. et al. Pembrolizumab with or without chemotherapy in recurrent or metastatic head and neck squamous cell carcinoma: Updated results of the phase III KEYNOTE-048 study. J. Clin. Oncol. 41, 790–802 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Diaz, L. A. Jr et al. Pembrolizumab versus chemotherapy for microsatellite instability-high or mismatch repair-deficient metastatic colorectal cancer (KEYNOTE-177): final analysis of a randomised, open-label, phase 3 study. Lancet Oncol. 23, 659–670 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tewari, K. S. et al. Survival with cemiplimab in recurrent cervical cancer. N. Engl. J. Med 386, 544–555 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Colombo, N. et al. Pembrolizumab for persistent, recurrent, or metastatic cervical cancer. N. Engl. J. Med 385, 1856–1867 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • NCCN Guidelines for Cervical Cancer Version 1. (2022).

  • Emens, L. A. et al. First-line atezolizumab plus nab-paclitaxel for unresectable, locally advanced, or metastatic triple-negative breast cancer: IMpassion130 final overall survival analysis. Ann. Oncol. 32, 983–993 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cortes, J. et al. Pembrolizumab plus chemotherapy in advanced triple-negative breast cancer. N. Engl. J. Med. 387, 217–226 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schmid, P. et al. Event-free survival with pembrolizumab in early triple-negative breast cancer. N. Engl. J. Med. 386, 556–567 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reck, M. et al. Phase III randomized trial of ipilimumab plus etoposide and platinum versus placebo plus etoposide and platinum in extensive-stage small-cell lung cancer. J. Clin. Oncol. 34, 3740–3748 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Owonikoko, T. K. et al. Nivolumab and ipilimumab as maintenance therapy in extensive-disease small-cell lung cancer: CheckMate 451. J. Clin. Oncol. 39, 1349–1359 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rudin, C. M. et al. Pembrolizumab or placebo plus etoposide and platinum as first-line therapy for extensive-stage small-cell lung cancer: Randomized, double-blind, phase III KEYNOTE-604 study. J. Clin. Oncol. 38, 2369–2379 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mansfield, A. S. et al. Safety and patient-reported outcomes of atezolizumab, carboplatin, and etoposide in extensive-stage small-cell lung cancer (IMpower133): a randomized phase I/III trial. Ann. Oncol. 31, 310–317 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, S. V. et al. Updated overall survival and PD-L1 subgroup analysis of patients with extensive-stage small-cell lung cancer treated with atezolizumab, carboplatin, and etoposide (IMpower133). J. Clin. Oncol. 39, 619–630 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paz-Ares, L. et al. Durvalumab plus platinum-etoposide versus platinum-etoposide in first-line treatment of extensive-stage small-cell lung cancer (CASPIAN): a randomised, controlled, open-label, phase 3 trial. Lancet 394, 1929–1939 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goldman, J. W. et al. Durvalumab, with or without tremelimumab, plus platinum-etoposide versus platinum-etoposide alone in first-line treatment of extensive-stage small-cell lung cancer (CASPIAN): updated results from a randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 22, 51–65 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng, Y. et al. Effect of first-line serplulimab vs placebo added to chemotherapy on survival in patients with extensive-stage small cell lung cancer: The ASTRUM-005 randomized clinical trial. Jama 328, 1223–1232 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hellmann, M. D. et al. Nivolumab plus ipilimumab in advanced non-small-cell lung cancer. N. Engl. J. Med. 381, 2020–2031 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baas, P. et al. First-line nivolumab plus ipilimumab in unresectable malignant pleural mesothelioma (CheckMate 743): a multicentre, randomised, open-label, phase 3 trial. Lancet 397, 375–386 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Janjigian, Y. Y. et al. CheckMate-032 Study: Efficacy and safety of nivolumab and nivolumab plus ipilimumab in patients with metastatic esophagogastric cancer. J. Clin. Oncol. 36, 2836–2844 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tregunna, R. Neoadjuvant anti-CTLA4 and anti-PD1 blockade in advanced urothelial cancer. Nat. Rev. Urol. 17, 658–658 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Larkin, J. et al. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med. 381, 1535–1546 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shitara, K. et al. Nivolumab plus chemotherapy or ipilimumab in gastro-oesophageal cancer. Nature 603, 942–948 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boyer, M. et al. Pembrolizumab plus ipilimumab or placebo for metastatic non-small-cell lung cancer with PD-L1 tumor proportion score ≥50%: Randomized, double-blind phase III KEYNOTE-598 study. J. Clin. Oncol. 39, 2327–2338 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weber, J. S. et al. Adjuvant therapy of nivolumab combined with ipilimumab versus nivolumab alone in patients with resected stage IIIB-D or stage IV melanoma (CheckMate 915). J. Clin. Oncol. 41, 517–527 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jing, Y. et al. Harnessing big data to characterize immune-related adverse events. Nat. Rev. Clin. Oncol. 19, 269–280 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Klevorn, L. E. & Teague, R. M. Adapting cancer immunotherapy models for the real world. Trends Immunol. 37, 354–363 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ivanović, M. et al. Immunotherapy for metastatic non-small cell lung cancer: Real-world data from an academic central and eastern European Center. Oncologist 26, e2143–e2150 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hsu, G. G., MacKay, E., Scheuer, N. & Ramagopalan, S. V. Keeping it real: implications of real-world treatment outcomes for first-line immunotherapy in metastatic non-small-cell lung cancer. Immunotherapy 13, 1453–1456 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, X. et al. Real-world treatment patterns and outcomes in PD-L1-positive non-small cell lung cancer. Immunotherapy 13, 1521–1533 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cramer-van der Welle, C. M. et al. Real-world outcomes versus clinical trial results of immunotherapy in stage IV non-small cell lung cancer (NSCLC) in the Netherlands. Sci. Rep. 11, 6306 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Palmeri, M. et al. Real-world application of tumor mutational burden-high (TMB-high) and microsatellite instability (MSI) confirms their utility as immunotherapy biomarkers. ESMO Open 7, 100336 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, D. R., Wu, X. L. & Sun, Y. L. Therapeutic targets and biomarkers of tumor immunotherapy: response versus non-response. Signal Transduct. Target Ther. 7, 331 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Badrinath, S. et al. A vaccine targeting resistant tumours by dual T cell plus NK cell attack. Nature 606, 992–998 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rahim, M. K. et al. Dynamic CD8(+) T cell responses to cancer immunotherapy in human regional lymph nodes are disrupted in metastatic lymph nodes. Cell 186, 1127–1143.e1118 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Johnson, P. C. et al. Immune checkpoint inhibitors—the need for innovation. N. Engl. J. Med. 388, 1529–1532 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Sharma, P. et al. Immune checkpoint therapy-current perspectives and future directions. Cell 186, 1652–1669 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rossi, G., Manfrin, A. & Lutolf, M. P. Progress and potential in organoid research. Nat. Rev. Genet 19, 671–687 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Reply

    Stay Connected

    9FansLike
    4FollowersFollow
    0SubscribersSubscribe
    - Advertisement -spot_img

    Latest Articles